메뉴 건너뛰기




Volumn 76, Issue , 2017, Pages 7-15

Identification of adverse drug-drug interactions through causal association rule discovery from spontaneous adverse event reports

Author keywords

Adverse drug reaction; Association rule; Causality; Drug drug interaction

Indexed keywords

ASSOCIATION REACTIONS; ASSOCIATION RULES; BAYESIAN NETWORKS; DRUG PRODUCTS; PHARMACODYNAMICS;

EID: 85013192692     PISSN: 09333657     EISSN: 18732860     Source Type: Journal    
DOI: 10.1016/j.artmed.2017.01.004     Document Type: Article
Times cited : (58)

References (55)
  • 1
    • 85013200241 scopus 로고    scopus 로고
    • United States 2014: with Special Feature on Adults Aged 55–64
    • National Center for Health Statistics Hyattsville, MD
    • [1] Health, United States 2014: with Special Feature on Adults Aged 55–64. 2015, National Center for Health Statistics, Hyattsville, MD.
    • (2015)
    • Health1
  • 2
    • 0032522873 scopus 로고    scopus 로고
    • Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies
    • [2] Lazarou, J., Pomeranz, B.H., Corey, P.N., Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279 (1998), 1200–1205.
    • (1998) JAMA , vol.279 , pp. 1200-1205
    • Lazarou, J.1    Pomeranz, B.H.2    Corey, P.N.3
  • 3
    • 0029130580 scopus 로고
    • Drug-related morbidity and mortality. A cost-of-illness model
    • [3] Johnson, J.A., Bootman, J.L., Drug-related morbidity and mortality. A cost-of-illness model. Arch Intern Med 155 (1995), 1949–1956.
    • (1995) Arch Intern Med , vol.155 , pp. 1949-1956
    • Johnson, J.A.1    Bootman, J.L.2
  • 4
    • 46149112718 scopus 로고    scopus 로고
    • Drug interactions of clinical importance
    • Chapman & Hall
    • [4] Pirmohamed, M., Drug interactions of clinical importance. 1998, Chapman & Hall.
    • (1998)
    • Pirmohamed, M.1
  • 5
    • 84864808953 scopus 로고    scopus 로고
    • KDIGO clinical practice guidelines for acute kidney injury
    • [5] Khwaja, A., KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 120 (2012), c179–c184.
    • (2012) Nephron Clin Pract , vol.120 , pp. c179-c184
    • Khwaja, A.1
  • 6
    • 84879968440 scopus 로고    scopus 로고
    • Adherence to drug-drug interaction alerts in high-risk patients: a trial of context-enhanced alerting
    • [6] Duke, J.D., Li, X., Dexter, P., Adherence to drug-drug interaction alerts in high-risk patients: a trial of context-enhanced alerting. J Am Med Inform Assoc 20 (2013), 494–498.
    • (2013) J Am Med Inform Assoc , vol.20 , pp. 494-498
    • Duke, J.D.1    Li, X.2    Dexter, P.3
  • 7
    • 84954364324 scopus 로고    scopus 로고
    • Feasibility of prioritizing drug–drug-event associations found in electronic health records
    • [7] Banda, J.M., Callahan, A., Winnenburg, R., Strasberg, H.R., CamiBen, A., Reis, Y., et al. Feasibility of prioritizing drug–drug-event associations found in electronic health records. Drug Saf 39:1 (2016), 45–57.
    • (2016) Drug Saf , vol.39 , Issue.1 , pp. 45-57
    • Banda, J.M.1    Callahan, A.2    Winnenburg, R.3    Strasberg, H.R.4    CamiBen, A.5    Reis, Y.6
  • 8
    • 84883509421 scopus 로고    scopus 로고
    • Pediatric pharmacovigilance enhancing adverse drug reaction reporting in a tertiary care children's hospital
    • [8] Goldman, J.L., Sullins, A., Sandritter, S., Leeder, J.S., Lowry, J., Pediatric pharmacovigilance enhancing adverse drug reaction reporting in a tertiary care children's hospital. Ther Innov Regul Sci 47 (2013), 566–571.
    • (2013) Ther Innov Regul Sci , vol.47 , pp. 566-571
    • Goldman, J.L.1    Sullins, A.2    Sandritter, S.3    Leeder, J.S.4    Lowry, J.5
  • 9
    • 68149124572 scopus 로고    scopus 로고
    • Quantitative signal detection using spontaneous ADR reporting
    • [9] Bate, A., Evans, S.J., Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiol Drug Saf 18 (2009), 427–436.
    • (2009) Pharmacoepidemiol Drug Saf , vol.18 , pp. 427-436
    • Bate, A.1    Evans, S.J.2
  • 10
    • 3142557936 scopus 로고    scopus 로고
    • Acute and clinically relevant drug-induced liver injury: a population based case-control study
    • [10] de Abajo, F.J., Montero, D., Madurga, M., Garcia Rodriguez, L.A., Acute and clinically relevant drug-induced liver injury: a population based case-control study. Br J Clin Pharmacol 58 (2004), 71–80.
    • (2004) Br J Clin Pharmacol , vol.58 , pp. 71-80
    • de Abajo, F.J.1    Montero, D.2    Madurga, M.3    Garcia Rodriguez, L.A.4
  • 11
    • 0042413852 scopus 로고    scopus 로고
    • Disproportionality analysis using empirical Bayes data mining: a tool for the evaluation of drug interactions in the post-marketing setting
    • [11] Almenoff, J.S., DuMouchel, W., Kindman, L.A., Yang, X., Fram, D., Disproportionality analysis using empirical Bayes data mining: a tool for the evaluation of drug interactions in the post-marketing setting. Pharmacoepidemiol Drug Saf 12 (2003), 517–521.
    • (2003) Pharmacoepidemiol Drug Saf , vol.12 , pp. 517-521
    • Almenoff, J.S.1    DuMouchel, W.2    Kindman, L.A.3    Yang, X.4    Fram, D.5
  • 12
    • 0036210975 scopus 로고    scopus 로고
    • A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions
    • [12] Puijenbroek, E., Bate, A., Leufkens, H.G.M., Lindquist, M., Orre, R., Egberts, A.C.G., et al. A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemiol Drug Saf 11 (2002), 3–10.
    • (2002) Pharmacoepidemiol Drug Saf , vol.11 , pp. 3-10
    • Puijenbroek, E.1    Bate, A.2    Leufkens, H.G.M.3    Lindquist, M.4    Orre, R.5    Egberts, A.C.G.6
  • 13
    • 0036300732 scopus 로고    scopus 로고
    • Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA's spontaneous reports database
    • [13] Szarfman, A., Machado, S.G., O'Neill, R.T., Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA's spontaneous reports database. Drug Saf 25 (2002), 381–392.
    • (2002) Drug Saf , vol.25 , pp. 381-392
    • Szarfman, A.1    Machado, S.G.2    O'Neill, R.T.3
  • 18
    • 77957018502 scopus 로고    scopus 로고
    • Pharmacovigilance data mining with methods based on false discovery rates: a comparative simulation study
    • [18] Ahmed, I., Thiessard, F., Miremont-Salame, G., Begaud, B., Tubert-Bitter, P., Pharmacovigilance data mining with methods based on false discovery rates: a comparative simulation study. Clin Pharmacol Ther 88 (2010), 492–498.
    • (2010) Clin Pharmacol Ther , vol.88 , pp. 492-498
    • Ahmed, I.1    Thiessard, F.2    Miremont-Salame, G.3    Begaud, B.4    Tubert-Bitter, P.5
  • 19
    • 0033061701 scopus 로고    scopus 로고
    • Signalling possible drug-drug interactions in a spontaneous reporting system: delay of withdrawal bleeding during concomitant use of oral contraceptives and itraconazole
    • [19] Van Puijenbroek, E.P., Egberts, A.C., Meyboom, R.H., Leufkens, H.G., Signalling possible drug-drug interactions in a spontaneous reporting system: delay of withdrawal bleeding during concomitant use of oral contraceptives and itraconazole. Br J Clin Pharmacol 47 (1999), 689–693.
    • (1999) Br J Clin Pharmacol , vol.47 , pp. 689-693
    • Van Puijenbroek, E.P.1    Egberts, A.C.2    Meyboom, R.H.3    Leufkens, H.G.4
  • 20
    • 34548608965 scopus 로고    scopus 로고
    • Detecting signals of drug-drug interactions in a spontaneous reports database
    • [20] Thakrar, B.T., Grundschober, S.B., Doessegger, L., Detecting signals of drug-drug interactions in a spontaneous reports database. Br J Clin Pharmacol 64 (2007), 489–495.
    • (2007) Br J Clin Pharmacol , vol.64 , pp. 489-495
    • Thakrar, B.T.1    Grundschober, S.B.2    Doessegger, L.3
  • 21
    • 0034469565 scopus 로고    scopus 로고
    • Detecting drug-drug interactions using a database for spontaneous adverse drug reactions: an example with diuretics and non-steroidal anti-inflammatory drugs
    • [21] van Puijenbroek, E.P., Egberts, A.C., Heerdink, E.R., Leufkens, H.G., Detecting drug-drug interactions using a database for spontaneous adverse drug reactions: an example with diuretics and non-steroidal anti-inflammatory drugs. Eur J Clin Pharmacol 56 (2000), 733–738.
    • (2000) Eur J Clin Pharmacol , vol.56 , pp. 733-738
    • van Puijenbroek, E.P.1    Egberts, A.C.2    Heerdink, E.R.3    Leufkens, H.G.4
  • 22
    • 79959379936 scopus 로고    scopus 로고
    • Detecting drug interactions from adverse-event reports: interaction between paroxetine and pravastatin increases blood glucose levels
    • [22] Tatonetti, N., Denny, J., Murphy, S., Fernald, G., Krishnan, G., Castro, V., et al. Detecting drug interactions from adverse-event reports: interaction between paroxetine and pravastatin increases blood glucose levels. Clin Pharmacol Ther 90 (2011), 133–142.
    • (2011) Clin Pharmacol Ther , vol.90 , pp. 133-142
    • Tatonetti, N.1    Denny, J.2    Murphy, S.3    Fernald, G.4    Krishnan, G.5    Castro, V.6
  • 23
    • 84856805878 scopus 로고    scopus 로고
    • A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports
    • [23] Tatonetti, N.P., Fernald, G.H., Altman, R.B., A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports. J Am Med Inform Assoc 19 (2012), 79–85.
    • (2012) J Am Med Inform Assoc , vol.19 , pp. 79-85
    • Tatonetti, N.P.1    Fernald, G.H.2    Altman, R.B.3
  • 24
    • 78049477630 scopus 로고    scopus 로고
    • Mining multi-item drug adverse effect associations in spontaneous reporting systems
    • [24] Harpaz, R., Chase, H.S., Friedman, C., Mining multi-item drug adverse effect associations in spontaneous reporting systems. BMC Bioinformatics, 11(Suppl. 9), 2010, S7.
    • (2010) BMC Bioinformatics , vol.11 , pp. S7
    • Harpaz, R.1    Chase, H.S.2    Friedman, C.3
  • 26
    • 0003398906 scopus 로고    scopus 로고
    • Causality: models, reasoning and inference
    • first edition Cambridge Univ Press
    • [26] Pearl, J., Causality: models, reasoning and inference. first edition, 2000, Cambridge Univ Press.
    • (2000)
    • Pearl, J.1
  • 27
    • 85047692188 scopus 로고
    • Empirical evidence of bias. Dimensions of methodological quality associated with estimates of treatment effects in controlled trials
    • [27] Schulz, K.F., Chalmers, I., Hayes, R.J., Altman, D.G., Empirical evidence of bias. Dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA 273 (1995), 408–412.
    • (1995) JAMA , vol.273 , pp. 408-412
    • Schulz, K.F.1    Chalmers, I.2    Hayes, R.J.3    Altman, D.G.4
  • 28
    • 0008418780 scopus 로고
    • Causes
    • discussion 89 (1995)
    • [28] Rothman, K.J., Causes. Am J Epidemiol 141 (1976), 90–95 discussion 89 (1995).
    • (1976) Am J Epidemiol , vol.141 , pp. 90-95
    • Rothman, K.J.1
  • 29
    • 77952295734 scopus 로고    scopus 로고
    • How to assess the external validity of therapeutic trials: a conceptual approach
    • [29] Dekkers, O.M., von Elm, E., Algra, A., Romijn, J.A., Vandenbroucke, J.P., How to assess the external validity of therapeutic trials: a conceptual approach. Int J Epidemiol 39 (2010), 89–94.
    • (2010) Int J Epidemiol , vol.39 , pp. 89-94
    • Dekkers, O.M.1    von Elm, E.2    Algra, A.3    Romijn, J.A.4    Vandenbroucke, J.P.5
  • 30
    • 34249761849 scopus 로고
    • Learning Bayesian networks: the combination of knowledge and statistical data
    • [30] Heckerman, D., Geiger, D., Chickering, D.M., Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learn 20 (1995), 197–243.
    • (1995) Mach Learn , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 31
    • 84858789485 scopus 로고    scopus 로고
    • Nonlinear causal discovery with additive noise models
    • Neural Information Processing Systems (NIPS)
    • [31] Hoyer, P.O., Janzing, D., Mooij, J., Peters, M., Scholkopf, B., Nonlinear causal discovery with additive noise models. 2008, Neural Information Processing Systems (NIPS), 689–696.
    • (2008) , pp. 689-696
    • Hoyer, P.O.1    Janzing, D.2    Mooij, J.3    Peters, M.4    Scholkopf, B.5
  • 32
    • 80053155838 scopus 로고    scopus 로고
    • On the identifiability of the post-nonlinear causal model
    • [32] Zhang, K., Hyvärinen, A., On the identifiability of the post-nonlinear causal model. UAI 64 (2009), 7–655.
    • (2009) UAI , vol.64 , pp. 7-655
    • Zhang, K.1    Hyvärinen, A.2
  • 33
    • 84874074317 scopus 로고
    • From Bayesian network to causal networks
    • [33] Pearl, J., From Bayesian network to causal networks. Bayesian Netw Probab Reason, 1994, 1–31.
    • (1994) Bayesian Netw Probab Reason , pp. 1-31
    • Pearl, J.1
  • 34
    • 33646107783 scopus 로고    scopus 로고
    • Large-sample learning of Bayesian networks is NP-hard
    • [34] Chickering, D.M., Heckerman, D., Meek, C., Large-sample learning of Bayesian networks is NP-hard. J Mach Learn Res 5 (2004), 1287–1330.
    • (2004) J Mach Learn Res , vol.5 , pp. 1287-1330
    • Chickering, D.M.1    Heckerman, D.2    Meek, C.3
  • 35
    • 21944436304 scopus 로고    scopus 로고
    • A simple contraint-based algorithm for efficiently mining observational databases for causal relationships
    • [35] Cooper, G.F., A simple contraint-based algorithm for efficiently mining observational databases for causal relationships. Data Min Knowl Discov 1 (1997), 203–224.
    • (1997) Data Min Knowl Discov , vol.1 , pp. 203-224
    • Cooper, G.F.1
  • 36
    • 48849110444 scopus 로고    scopus 로고
    • Using Markov blankets for causal structure learning
    • [36] Pellet, J.P., Using Markov blankets for causal structure learning. J Mach Learn Res 9 (2008), 1295–1342.
    • (2008) J Mach Learn Res , vol.9 , pp. 1295-1342
    • Pellet, J.P.1
  • 37
    • 76749137632 scopus 로고    scopus 로고
    • Local causal and Markov blanket induction for causal discovery and feature selection for classification Part I: algorithms and empirical evaluation
    • [37] Aliferis, C.F., Statnikov, A., Tsannardinos, I., Mani, S., Koutsoukos, X.D., Local causal and Markov blanket induction for causal discovery and feature selection for classification Part I: algorithms and empirical evaluation. J Mach Learn Res 11 (2010), 171–234.
    • (2010) J Mach Learn Res , vol.11 , pp. 171-234
    • Aliferis, C.F.1    Statnikov, A.2    Tsannardinos, I.3    Mani, S.4    Koutsoukos, X.D.5
  • 38
    • 84875241812 scopus 로고    scopus 로고
    • Causal gene identification using combinatorial V-structure search
    • [38] Cai, R., Zhang, Z., Hao, Z., Causal gene identification using combinatorial V-structure search. Neural Netw 43 (2013), 63–71.
    • (2013) Neural Netw , vol.43 , pp. 63-71
    • Cai, R.1    Zhang, Z.2    Hao, Z.3
  • 39
    • 84897543765 scopus 로고    scopus 로고
    • SADA: a general framework to support robust causation discovery
    • [39] Cai, R., Zhang, Z., Hao, Z., SADA: a general framework to support robust causation discovery. ICML 20 (2013), 8–216.
    • (2013) ICML , vol.20 , pp. 8-216
    • Cai, R.1    Zhang, Z.2    Hao, Z.3
  • 40
    • 79955666806 scopus 로고    scopus 로고
    • A potential causal association mining algorithm for screening adverse drug reactions in postmarketing surveillance
    • [40] Ji, Y., Ying, H., Dews, P., Mansour, A., Tran, J., Miller, R.E., et al. A potential causal association mining algorithm for screening adverse drug reactions in postmarketing surveillance. IEEE Trans Inf Technol Biomed 15 (2011), 428–437.
    • (2011) IEEE Trans Inf Technol Biomed , vol.15 , pp. 428-437
    • Ji, Y.1    Ying, H.2    Dews, P.3    Mansour, A.4    Tran, J.5    Miller, R.E.6
  • 44
    • 34147207121 scopus 로고    scopus 로고
    • Duplicate detection in adverse drug reaction surveillance
    • [44] Noren, G.N., Orre, R., Bate, A., Edwards, I.R., Duplicate detection in adverse drug reaction surveillance. Data Min Knowl Discov 14 (2007), 305–328, 10.1007/s10618-006-0052-8.
    • (2007) Data Min Knowl Discov , vol.14 , pp. 305-328
    • Noren, G.N.1    Orre, R.2    Bate, A.3    Edwards, I.R.4
  • 45
    • 34249896410 scopus 로고    scopus 로고
    • ‘Extreme duplication’ in the USFDA adverse events reporting system database
    • [45] Reich, L., ‘Extreme duplication’ in the USFDA adverse events reporting system database. Drug Saf 30 (2007), 551–554.
    • (2007) Drug Saf , vol.30 , pp. 551-554
    • Reich, L.1
  • 46
    • 48449095979 scopus 로고    scopus 로고
    • Mining unexpected temporal associations: applications in detecting adverse drug reactions
    • [46] Jin, H., Chen, J., He, H., Williams, G.J., Kelman, C., et al. Mining unexpected temporal associations: applications in detecting adverse drug reactions. IEEE Trans Inf Technol Biomed 48 (2008), 8–500.
    • (2008) IEEE Trans Inf Technol Biomed , vol.48 , pp. 8-500
    • Jin, H.1    Chen, J.2    He, H.3    Williams, G.J.4    Kelman, C.5
  • 47
    • 78649420560 scopus 로고    scopus 로고
    • Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance
    • [47] Vinh, N.X., Epps, J., Bailey, J., Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J Mach Learn Res 11 (2010), 2837–2854.
    • (2010) J Mach Learn Res , vol.11 , pp. 2837-2854
    • Vinh, N.X.1    Epps, J.2    Bailey, J.3
  • 48
    • 84858982530 scopus 로고    scopus 로고
    • KDIGO clinical practice guideline for acute kidney injury
    • [48] KDIGO, KDIGO clinical practice guideline for acute kidney injury. Kidney Int(Suppl. 2), 2012, 1–141.
    • (2012) Kidney Int , pp. 1-141
    • KDIGO1
  • 53
    • 84975246659 scopus 로고    scopus 로고
    • Cusation, prediction, and search
    • second edition
    • [53] Spirtes, P., Glymour, C., Scheines, R., Cusation, prediction, and search. second edition, 2001.
    • (2001)
    • Spirtes, P.1    Glymour, C.2    Scheines, R.3
  • 54
    • 84858789485 scopus 로고    scopus 로고
    • Nonlinear causal discovery with additive noise models
    • Neural Information Processing Systems (NIPS) Vancouver, Canada
    • [54] Hoyer, P.O., Janzing, D., Mooij, J., Peters, M., Scholkopf, B., Nonlinear causal discovery with additive noise models. 2008, Neural Information Processing Systems (NIPS), Vancouver, Canada, 689–696.
    • (2008) , pp. 689-696
    • Hoyer, P.O.1    Janzing, D.2    Mooij, J.3    Peters, M.4    Scholkopf, B.5
  • 55
    • 80053272338 scopus 로고    scopus 로고
    • What is unequal among the equals? Ranking equivalent rules from gene expression data
    • [56] Cai, R., Tung, A.K.H., Zhang, Z.J., Hao, Z.F., What is unequal among the equals? Ranking equivalent rules from gene expression data. IEEE Trans Knowl Data Eng 23:11 (2011), 1735–1747.
    • (2011) IEEE Trans Knowl Data Eng , vol.23 , Issue.11 , pp. 1735-1747
    • Cai, R.1    Tung, A.K.H.2    Zhang, Z.J.3    Hao, Z.F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.