-
1
-
-
84910067798
-
1-Butanol production from glycerol by engineered Klebsiella pneumoniae
-
[1] Wang, M.M., Fan, L.H., Tan, T., 1-Butanol production from glycerol by engineered Klebsiella pneumoniae. RSC Adv., 4, 2014.
-
(2014)
RSC Adv.
, vol.4
-
-
Wang, M.M.1
Fan, L.H.2
Tan, T.3
-
2
-
-
79958709458
-
Metabolic engineering of Clostridium tyrobutyricum for n-butanol production
-
[2] Yu, M., Zhang, Y., Tang, I.C., Yang, S.-T., Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab. Eng. 13 (2011), 373–382.
-
(2011)
Metab. Eng.
, vol.13
, pp. 373-382
-
-
Yu, M.1
Zhang, Y.2
Tang, I.C.3
Yang, S.-T.4
-
3
-
-
68049142960
-
Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio
-
[3] Jiang, Y., Xu, C., Dong, F., Yang, Y., Jiang, W., Yang, S., Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab. Eng. 11 (2009), 284–291.
-
(2009)
Metab. Eng.
, vol.11
, pp. 284-291
-
-
Jiang, Y.1
Xu, C.2
Dong, F.3
Yang, Y.4
Jiang, W.5
Yang, S.6
-
4
-
-
84925064811
-
Enhanced 1-Butanol production in engineered Klebsiella pneumoniaeby NADH regeneration
-
[4] Wang, M., Hu, L., Fan, L., Tan, T., Enhanced 1-Butanol production in engineered Klebsiella pneumoniaeby NADH regeneration. Energy Fuel 29 (2015), 1823–1829.
-
(2015)
Energy Fuel
, vol.29
, pp. 1823-1829
-
-
Wang, M.1
Hu, L.2
Fan, L.3
Tan, T.4
-
5
-
-
84892965991
-
Reducing cofactors contribute to the increase of butanol production by a wild-type Clostridium sp. strain BOH3
-
[5] Li, T., Yan, Y., He, J., Reducing cofactors contribute to the increase of butanol production by a wild-type Clostridium sp. strain BOH3. Bioresour. Technol. 155 (2014), 220–228.
-
(2014)
Bioresour. Technol.
, vol.155
, pp. 220-228
-
-
Li, T.1
Yan, Y.2
He, J.3
-
6
-
-
84859950774
-
ATP drives direct photosynthetic production of 1-butanol in cyanobacteria
-
[6] Ethan, I., Lan, J.C.L., ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. P. Natl. Acad. Sci. 109 (2012), 6018–6023.
-
(2012)
P. Natl. Acad. Sci.
, vol.109
, pp. 6018-6023
-
-
Ethan, I.1
Lan, J.C.L.2
-
7
-
-
84940467231
-
Metabolic engineering of Clostridium tyrobutyricumfor n-butanol production through co-utilization of glucose and xylose
-
[7] Yu, L., Xu, M., Tang, I.C., Yang, S.-T., Metabolic engineering of Clostridium tyrobutyricumfor n-butanol production through co-utilization of glucose and xylose. Biotechnol. Bioeng. 112 (2015), 2134–2141.
-
(2015)
Biotechnol. Bioeng.
, vol.112
, pp. 2134-2141
-
-
Yu, L.1
Xu, M.2
Tang, I.C.3
Yang, S.-T.4
-
8
-
-
84907359503
-
Butanol production by immobilised Clostridium acetobutylicum in repeated batch, fed-batch, and continuous modes of fermentation
-
[8] Dolejš, I., Krasňan, V., Stloukal, R., Rosenberg, M., Rebroš, M., Butanol production by immobilised Clostridium acetobutylicum in repeated batch, fed-batch, and continuous modes of fermentation. Bioresour. Technol. 169 (2014), 723–730.
-
(2014)
Bioresour. Technol.
, vol.169
, pp. 723-730
-
-
Dolejš, I.1
Krasňan, V.2
Stloukal, R.3
Rosenberg, M.4
Rebroš, M.5
-
9
-
-
77949779562
-
Combined NMR and LC–MS analysis reveals the metabonomic changes in Salvia miltiorrhiza Bunge induced by water depletion
-
[9] Dai, Hui, Xiao, Chaoni, Liu, Hongbing, Tang, H., Combined NMR and LC–MS analysis reveals the metabonomic changes in Salvia miltiorrhiza Bunge induced by water depletion. J. Proteome Res. 9 (2010), 1460–1475.
-
(2010)
J. Proteome Res.
, vol.9
, pp. 1460-1475
-
-
Dai, H.1
Xiao, C.2
Liu, H.3
Tang, H.4
-
10
-
-
33845631601
-
Microbial metabolomics: past, present and future methodologies
-
[10] Mashego, M.R., Rumbold, K., De Mey, M., Vandamme, E., Soetaert, W., Heijnen, J.J., Microbial metabolomics: past, present and future methodologies. Biotechnol. Lett. 29 (2006), 1–16.
-
(2006)
Biotechnol. Lett.
, vol.29
, pp. 1-16
-
-
Mashego, M.R.1
Rumbold, K.2
De Mey, M.3
Vandamme, E.4
Soetaert, W.5
Heijnen, J.J.6
-
11
-
-
84943162282
-
Microbial metabolomics: welcome to the real world!
-
[11] Baidoo, E.E.K., Keasling, J.D., Microbial metabolomics: welcome to the real world!. Metabolomics 9 (2013), 755–756.
-
(2013)
Metabolomics
, vol.9
, pp. 755-756
-
-
Baidoo, E.E.K.1
Keasling, J.D.2
-
12
-
-
84940840437
-
Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli
-
[12] Wu, J., Du, G., Chen, J., Zhou, J., Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli. Sci. Rep., 5, 2015, 13477.
-
(2015)
Sci. Rep.
, vol.5
, pp. 13477
-
-
Wu, J.1
Du, G.2
Chen, J.3
Zhou, J.4
-
13
-
-
84919634760
-
Specific gene repression by CRISPRi system transferred through bacterial conjugation
-
[13] Ji, W., Lee, D., Wong, E., Dadlani, P., Dinh, D., Huang, V., Kearns, K., Teng, S., Chen, S., Haliburton, J., Heimberg, G., Heineike, B., Ramasubramanian, A., Stevens, T., Helmke, K.J., Zepeda, V., Qi, L.S., Lim, W.A., Specific gene repression by CRISPRi system transferred through bacterial conjugation. ACS Synth. Biol. 3 (2014), 929–931.
-
(2014)
ACS Synth. Biol.
, vol.3
, pp. 929-931
-
-
Ji, W.1
Lee, D.2
Wong, E.3
Dadlani, P.4
Dinh, D.5
Huang, V.6
Kearns, K.7
Teng, S.8
Chen, S.9
Haliburton, J.10
Heimberg, G.11
Heineike, B.12
Ramasubramanian, A.13
Stevens, T.14
Helmke, K.J.15
Zepeda, V.16
Qi, L.S.17
Lim, W.A.18
-
14
-
-
84926645319
-
Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis
-
[14] Lv, L., Ren, Y.-L., Chen, J.-C., Wu, Q., Chen, G.-Q., Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis. Metab. Eng. 29 (2015), 160–168.
-
(2015)
Metab. Eng.
, vol.29
, pp. 160-168
-
-
Lv, L.1
Ren, Y.-L.2
Chen, J.-C.3
Wu, Q.4
Chen, G.-Q.5
-
15
-
-
79958115671
-
Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst
-
[15] Xia, J., Wishart, D.S., Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat. Protoc. 6 (2011), 743–760.
-
(2011)
Nat. Protoc.
, vol.6
, pp. 743-760
-
-
Xia, J.1
Wishart, D.S.2
-
16
-
-
67849083088
-
FMM: a web server for metabolic pathway reconstruction and comparative analysis
-
[16] Chou, C.H., Chang, W.C., Chiu, C.M., Huang, C.C., Huang, H.D., FMM: a web server for metabolic pathway reconstruction and comparative analysis. Nucleic Acids Res., 37, 2009, 28.
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. 28
-
-
Chou, C.H.1
Chang, W.C.2
Chiu, C.M.3
Huang, C.C.4
Huang, H.D.5
-
17
-
-
54349114978
-
Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways
-
[17] Shen, C.R., Liao, J.C., Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab. Eng. 10 (2008), 312–320.
-
(2008)
Metab. Eng.
, vol.10
, pp. 312-320
-
-
Shen, C.R.1
Liao, J.C.2
-
18
-
-
63049085861
-
Engineering metabolic systems for production of advanced fuels
-
[18] Yan, Y., Liao, J.C., Engineering metabolic systems for production of advanced fuels. J Ind Microbiol Biotechnol. 36 (2009), 471–479.
-
(2009)
J Ind Microbiol Biotechnol.
, vol.36
, pp. 471-479
-
-
Yan, Y.1
Liao, J.C.2
|