메뉴 건너뛰기




Volumn 56, Issue , 2017, Pages 139-146

CRISPRi based system for enhancing 1-butanol production in engineered Klebsiella pneumoniae

Author keywords

Biobutanol; CRISPRi; Klebsiella pneumoniae

Indexed keywords

AMINO ACIDS; BIOCHEMISTRY; METABOLISM; STRAIN; TRANSCRIPTION;

EID: 85013073153     PISSN: 13595113     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.procbio.2017.02.013     Document Type: Article
Times cited : (17)

References (18)
  • 1
    • 84910067798 scopus 로고    scopus 로고
    • 1-Butanol production from glycerol by engineered Klebsiella pneumoniae
    • [1] Wang, M.M., Fan, L.H., Tan, T., 1-Butanol production from glycerol by engineered Klebsiella pneumoniae. RSC Adv., 4, 2014.
    • (2014) RSC Adv. , vol.4
    • Wang, M.M.1    Fan, L.H.2    Tan, T.3
  • 2
    • 79958709458 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium tyrobutyricum for n-butanol production
    • [2] Yu, M., Zhang, Y., Tang, I.C., Yang, S.-T., Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab. Eng. 13 (2011), 373–382.
    • (2011) Metab. Eng. , vol.13 , pp. 373-382
    • Yu, M.1    Zhang, Y.2    Tang, I.C.3    Yang, S.-T.4
  • 3
    • 68049142960 scopus 로고    scopus 로고
    • Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio
    • [3] Jiang, Y., Xu, C., Dong, F., Yang, Y., Jiang, W., Yang, S., Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab. Eng. 11 (2009), 284–291.
    • (2009) Metab. Eng. , vol.11 , pp. 284-291
    • Jiang, Y.1    Xu, C.2    Dong, F.3    Yang, Y.4    Jiang, W.5    Yang, S.6
  • 4
    • 84925064811 scopus 로고    scopus 로고
    • Enhanced 1-Butanol production in engineered Klebsiella pneumoniaeby NADH regeneration
    • [4] Wang, M., Hu, L., Fan, L., Tan, T., Enhanced 1-Butanol production in engineered Klebsiella pneumoniaeby NADH regeneration. Energy Fuel 29 (2015), 1823–1829.
    • (2015) Energy Fuel , vol.29 , pp. 1823-1829
    • Wang, M.1    Hu, L.2    Fan, L.3    Tan, T.4
  • 5
    • 84892965991 scopus 로고    scopus 로고
    • Reducing cofactors contribute to the increase of butanol production by a wild-type Clostridium sp. strain BOH3
    • [5] Li, T., Yan, Y., He, J., Reducing cofactors contribute to the increase of butanol production by a wild-type Clostridium sp. strain BOH3. Bioresour. Technol. 155 (2014), 220–228.
    • (2014) Bioresour. Technol. , vol.155 , pp. 220-228
    • Li, T.1    Yan, Y.2    He, J.3
  • 6
    • 84859950774 scopus 로고    scopus 로고
    • ATP drives direct photosynthetic production of 1-butanol in cyanobacteria
    • [6] Ethan, I., Lan, J.C.L., ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. P. Natl. Acad. Sci. 109 (2012), 6018–6023.
    • (2012) P. Natl. Acad. Sci. , vol.109 , pp. 6018-6023
    • Ethan, I.1    Lan, J.C.L.2
  • 7
    • 84940467231 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium tyrobutyricumfor n-butanol production through co-utilization of glucose and xylose
    • [7] Yu, L., Xu, M., Tang, I.C., Yang, S.-T., Metabolic engineering of Clostridium tyrobutyricumfor n-butanol production through co-utilization of glucose and xylose. Biotechnol. Bioeng. 112 (2015), 2134–2141.
    • (2015) Biotechnol. Bioeng. , vol.112 , pp. 2134-2141
    • Yu, L.1    Xu, M.2    Tang, I.C.3    Yang, S.-T.4
  • 8
    • 84907359503 scopus 로고    scopus 로고
    • Butanol production by immobilised Clostridium acetobutylicum in repeated batch, fed-batch, and continuous modes of fermentation
    • [8] Dolejš, I., Krasňan, V., Stloukal, R., Rosenberg, M., Rebroš, M., Butanol production by immobilised Clostridium acetobutylicum in repeated batch, fed-batch, and continuous modes of fermentation. Bioresour. Technol. 169 (2014), 723–730.
    • (2014) Bioresour. Technol. , vol.169 , pp. 723-730
    • Dolejš, I.1    Krasňan, V.2    Stloukal, R.3    Rosenberg, M.4    Rebroš, M.5
  • 9
    • 77949779562 scopus 로고    scopus 로고
    • Combined NMR and LC–MS analysis reveals the metabonomic changes in Salvia miltiorrhiza Bunge induced by water depletion
    • [9] Dai, Hui, Xiao, Chaoni, Liu, Hongbing, Tang, H., Combined NMR and LC–MS analysis reveals the metabonomic changes in Salvia miltiorrhiza Bunge induced by water depletion. J. Proteome Res. 9 (2010), 1460–1475.
    • (2010) J. Proteome Res. , vol.9 , pp. 1460-1475
    • Dai, H.1    Xiao, C.2    Liu, H.3    Tang, H.4
  • 11
    • 84943162282 scopus 로고    scopus 로고
    • Microbial metabolomics: welcome to the real world!
    • [11] Baidoo, E.E.K., Keasling, J.D., Microbial metabolomics: welcome to the real world!. Metabolomics 9 (2013), 755–756.
    • (2013) Metabolomics , vol.9 , pp. 755-756
    • Baidoo, E.E.K.1    Keasling, J.D.2
  • 12
    • 84940840437 scopus 로고    scopus 로고
    • Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli
    • [12] Wu, J., Du, G., Chen, J., Zhou, J., Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli. Sci. Rep., 5, 2015, 13477.
    • (2015) Sci. Rep. , vol.5 , pp. 13477
    • Wu, J.1    Du, G.2    Chen, J.3    Zhou, J.4
  • 14
    • 84926645319 scopus 로고    scopus 로고
    • Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis
    • [14] Lv, L., Ren, Y.-L., Chen, J.-C., Wu, Q., Chen, G.-Q., Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis. Metab. Eng. 29 (2015), 160–168.
    • (2015) Metab. Eng. , vol.29 , pp. 160-168
    • Lv, L.1    Ren, Y.-L.2    Chen, J.-C.3    Wu, Q.4    Chen, G.-Q.5
  • 15
    • 79958115671 scopus 로고    scopus 로고
    • Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst
    • [15] Xia, J., Wishart, D.S., Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat. Protoc. 6 (2011), 743–760.
    • (2011) Nat. Protoc. , vol.6 , pp. 743-760
    • Xia, J.1    Wishart, D.S.2
  • 16
    • 67849083088 scopus 로고    scopus 로고
    • FMM: a web server for metabolic pathway reconstruction and comparative analysis
    • [16] Chou, C.H., Chang, W.C., Chiu, C.M., Huang, C.C., Huang, H.D., FMM: a web server for metabolic pathway reconstruction and comparative analysis. Nucleic Acids Res., 37, 2009, 28.
    • (2009) Nucleic Acids Res. , vol.37 , pp. 28
    • Chou, C.H.1    Chang, W.C.2    Chiu, C.M.3    Huang, C.C.4    Huang, H.D.5
  • 17
    • 54349114978 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways
    • [17] Shen, C.R., Liao, J.C., Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab. Eng. 10 (2008), 312–320.
    • (2008) Metab. Eng. , vol.10 , pp. 312-320
    • Shen, C.R.1    Liao, J.C.2
  • 18
    • 63049085861 scopus 로고    scopus 로고
    • Engineering metabolic systems for production of advanced fuels
    • [18] Yan, Y., Liao, J.C., Engineering metabolic systems for production of advanced fuels. J Ind Microbiol Biotechnol. 36 (2009), 471–479.
    • (2009) J Ind Microbiol Biotechnol. , vol.36 , pp. 471-479
    • Yan, Y.1    Liao, J.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.