메뉴 건너뛰기




Volumn 112, Issue 10, 2015, Pages 2134-2141

Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose

Author keywords

Butanol; Carbon catabolite repression; Clostridium tyrobutyricum; Metabolic engineering; Soybean hull hydrolysate; Xylose

Indexed keywords

BUTENES; CARBON; CLOSTRIDIUM; GLUCOSE; METABOLISM; PRODUCTIVITY; XYLOSE;

EID: 84940467231     PISSN: 00063592     EISSN: 10970290     Source Type: Journal    
DOI: 10.1002/bit.25613     Document Type: Article
Times cited : (89)

References (44)
  • 1
    • 0034071629 scopus 로고    scopus 로고
    • Metabolic engineering applications to renewable resource utilization
    • Aristidou A, Penttila M. 2000. Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187-198.
    • (2000) Curr Opin Biotechnol , vol.11 , pp. 187-198
    • Aristidou, A.1    Penttila, M.2
  • 2
    • 84925500463 scopus 로고    scopus 로고
    • Microbial inhibitors: Formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass
    • Baral NR, Shah A. 2014. Microbial inhibitors: Formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 98:9151-9172.
    • (2014) Appl Microbiol Biotechnol , vol.98 , pp. 9151-9172
    • Baral, N.R.1    Shah, A.2
  • 3
    • 0027280377 scopus 로고    scopus 로고
    • Simultaneous uptake and utilization of glucose and xylose by Clostridium thermohydrosulfuricum
    • Cook GM, Janssen PH, Morgan HW. 2006. Simultaneous uptake and utilization of glucose and xylose by Clostridium thermohydrosulfuricum. FEMS Microbiol Lett 109:55-61.
    • (2006) FEMS Microbiol Lett , vol.109 , pp. 55-61
    • Cook, G.M.1    Janssen, P.H.2    Morgan, H.W.3
  • 4
    • 84927536059 scopus 로고    scopus 로고
    • Butanol production from lignocellulosic biomass and agriculture residues by Acetone-Butanol-Ethanol fermentation
    • Ph.D. Dissertation, The Ohio State University, Columbus, Ohio.
    • Dong J. 2014. Butanol production from lignocellulosic biomass and agriculture residues by Acetone-Butanol-Ethanol fermentation. Ph.D. Dissertation, The Ohio State University, Columbus, Ohio.
    • (2014)
    • Dong, J.1
  • 5
    • 84927548515 scopus 로고    scopus 로고
    • Butanol production from soybean hull and soy molasses by acetone-butanol-ethanol fermentation
    • In: Brentin Robert, editor. . Washington, DC: American Chemical Society. Ch 2
    • Dong J, Du YM, Zhou YP, Yang ST. 2014. Butanol production from soybean hull and soy molasses by acetone-butanol-ethanol fermentation. In: Brentin Robert, editor. Soy-based chemicals and materials, ACS Symposium Series 1178. Washington, DC: American Chemical Society. Ch 2, p 25-41.
    • (2014) Soy-based chemicals and materials, ACS Symposium Series 1178 , pp. 25-41
    • Dong, J.1    Du, Y.M.2    Zhou, Y.P.3    Yang, S.T.4
  • 6
    • 84927536058 scopus 로고    scopus 로고
    • High-yield and high-titer n-butanol production from lignocellulosic feedstocks by metabolically engineered Clostridium tyrobutyricum
    • Ph.D. Dissertation, The Ohio State University, Columbus, Ohio.
    • Du Y. 2013. High-yield and high-titer n-butanol production from lignocellulosic feedstocks by metabolically engineered Clostridium tyrobutyricum, Ph.D. Dissertation, The Ohio State University, Columbus, Ohio.
    • (2013)
    • Du, Y.1
  • 7
    • 84924042410 scopus 로고    scopus 로고
    • Metabolic process engineering of Clostridium tyrobutyricum Δack-adhE2 for enhanced n-butanol production from glucose: Effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics
    • Du YM, Jiang WY, Yu MR, Tang IC, Yang ST. 2015. Metabolic process engineering of Clostridium tyrobutyricum Δack-adhE2 for enhanced n-butanol production from glucose: Effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics. Biotechnol Bioeng 112:705-715.
    • (2015) Biotechnol Bioeng , vol.112 , pp. 705-715
    • Du, Y.M.1    Jiang, W.Y.2    Yu, M.R.3    Tang, I.C.4    Yang, S.T.5
  • 8
    • 47549110972 scopus 로고    scopus 로고
    • Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients
    • Görke B, Stülke J. 2008. Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients. Nat Rev Microbiol 6:613-624.
    • (2008) Nat Rev Microbiol , vol.6 , pp. 613-624
    • Görke, B.1    Stülke, J.2
  • 9
    • 79958010538 scopus 로고    scopus 로고
    • Fermentative production of butanol-the industrial perspective
    • Green EM. 2011. Fermentative production of butanol-the industrial perspective. Curr Opin Biotechnol 22:337-343.
    • (2011) Curr Opin Biotechnol , vol.22 , pp. 337-343
    • Green, E.M.1
  • 10
    • 78149464840 scopus 로고    scopus 로고
    • Transcriptional analysis of catabolite repression in Clostridium acetobutylicum growing on mixtures of D-glucose and D-xylose
    • Grimmler C, Held C, Liebl W, Ehrenreich A. 2010. Transcriptional analysis of catabolite repression in Clostridium acetobutylicum growing on mixtures of D-glucose and D-xylose. J Biotechnol 150:315-323.
    • (2010) J Biotechnol , vol.150 , pp. 315-323
    • Grimmler, C.1    Held, C.2    Liebl, W.3    Ehrenreich, A.4
  • 12
    • 70249106057 scopus 로고    scopus 로고
    • Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli
    • Gu Y, Li J, Zhang L, Chen J, Niu L, Yang Y, Yang S, Jiang W. 2009. Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli. J Biotechnol 143:284-287.
    • (2009) J Biotechnol , vol.143 , pp. 284-287
    • Gu, Y.1    Li, J.2    Zhang, L.3    Chen, J.4    Niu, L.5    Yang, Y.6    Yang, S.7    Jiang, W.8
  • 13
    • 84876702558 scopus 로고    scopus 로고
    • Butanol production from hemicellulosic hydrolysate of corn fiber by a Clostridium beijerinckii mutant with high inhibitor-tolerance
    • Guo T, He AY, Du TF, Zhu DW, Liang DF, Jiang M, Wei P, Ouyang PK. 2013. Butanol production from hemicellulosic hydrolysate of corn fiber by a Clostridium beijerinckii mutant with high inhibitor-tolerance. Bioresour Technol 135:379-385.
    • (2013) Bioresour Technol , vol.135 , pp. 379-385
    • Guo, T.1    He, A.Y.2    Du, T.F.3    Zhu, D.W.4    Liang, D.F.5    Jiang, M.6    Wei, P.7    Ouyang, P.K.8
  • 14
    • 79251640164 scopus 로고    scopus 로고
    • Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018
    • Hu S, Zheng H, Gu Y, Zhao J, Zhang W, Yang Y, Wang S, Zhao G, Yang S, Jiang W. 2011. Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018. BMC Genomics 12:93.
    • (2011) BMC Genomics , vol.12 , pp. 93
    • Hu, S.1    Zheng, H.2    Gu, Y.3    Zhao, J.4    Zhang, W.5    Yang, Y.6    Wang, S.7    Zhao, G.8    Yang, S.9    Jiang, W.10
  • 16
    • 84899835651 scopus 로고    scopus 로고
    • Stable high-titer n-butanol production from sucrose and sugarcane juice by Clostridium acetobutylicum JB200 in repeated batch fermentations
    • Jiang W, Zhao J, Wang Z, Yang ST. 2014. Stable high-titer n-butanol production from sucrose and sugarcane juice by Clostridium acetobutylicum JB200 in repeated batch fermentations. Bioresour Technol 163:172-179.
    • (2014) Bioresour Technol , vol.163 , pp. 172-179
    • Jiang, W.1    Zhao, J.2    Wang, Z.3    Yang, S.T.4
  • 17
    • 84893019174 scopus 로고    scopus 로고
    • Combined overexpression of genes involved in pentose phosphate pathway enables enhanced D-xylose utilization by Clostridium acetobutylicum
    • Jin L, Zhang H, Chen L, Yang C, Yang S, Jiang W, Gu Y. 2014. Combined overexpression of genes involved in pentose phosphate pathway enables enhanced D-xylose utilization by Clostridium acetobutylicum. J Biotechnol 173:7-9.
    • (2014) J Biotechnol , vol.173 , pp. 7-9
    • Jin, L.1    Zhang, H.2    Chen, L.3    Yang, C.4    Yang, S.5    Jiang, W.6    Gu, Y.7
  • 18
    • 84857998688 scopus 로고    scopus 로고
    • Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks
    • Kumar M, Goyal Y, Sarkar A, Gayen K. 2013. Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks. Appl Energy 93:193-204.
    • (2013) Appl Energy , vol.93 , pp. 193-204
    • Kumar, M.1    Goyal, Y.2    Sarkar, A.3    Gayen, K.4
  • 19
    • 77952239223 scopus 로고    scopus 로고
    • Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran
    • Liu Z, Ying Y, Li F, Ma C, Xu P. 2010. Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J Ind Microbiol Biotechnol 37:495-501.
    • (2010) J Ind Microbiol Biotechnol , vol.37 , pp. 495-501
    • Liu, Z.1    Ying, Y.2    Li, F.3    Ma, C.4    Xu, P.5
  • 20
    • 33750015473 scopus 로고    scopus 로고
    • Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production
    • Liu X, Zhu Y, Yang ST. 2006. Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production. Biotechnol Prog 22:1265-1275.
    • (2006) Biotechnol Prog , vol.22 , pp. 1265-1275
    • Liu, X.1    Zhu, Y.2    Yang, S.T.3
  • 22
    • 84880085395 scopus 로고    scopus 로고
    • Butanol production from wood pulping hydrolysate in an integrated fermentation-gas stripping process
    • Lu C, Dong J, Yang ST. 2013. Butanol production from wood pulping hydrolysate in an integrated fermentation-gas stripping process. Bioresour Technol 143:467-475.
    • (2013) Bioresour Technol , vol.143 , pp. 467-475
    • Lu, C.1    Dong, J.2    Yang, S.T.3
  • 23
    • 84655167594 scopus 로고    scopus 로고
    • Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping
    • Lu C, Zhao J, Yang ST, Wei D. 2012. Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresour Technol 104:380-387.
    • (2012) Bioresour Technol , vol.104 , pp. 380-387
    • Lu, C.1    Zhao, J.2    Yang, S.T.3    Wei, D.4
  • 24
    • 0035103809 scopus 로고    scopus 로고
    • Catabolite repression mediated by the CcpA protein in Bacillus subtilis: Novel modes of regulation revealed by whole-genome analyses
    • Moreno MS, Schneider BL, Maile RR, Weyler W, Saier MH Jr. 2001. Catabolite repression mediated by the CcpA protein in Bacillus subtilis: Novel modes of regulation revealed by whole-genome analyses. Mol Microbiol 39:1366-1381.
    • (2001) Mol Microbiol , vol.39 , pp. 1366-1381
    • Moreno, M.S.1    Schneider, B.L.2    Maile, R.R.3    Weyler, W.4    Saier Jr, M.H.5
  • 25
    • 0021957625 scopus 로고
    • Regulation and butanol inhibition of D-xylose and D-glucose uptake in Clostridium acetobutylicum
    • Ounine K, Petitdemange H, Raval G, Gay R. 1985. Regulation and butanol inhibition of D-xylose and D-glucose uptake in Clostridium acetobutylicum. Appl Environ Microbiol 49:874-878.
    • (1985) Appl Environ Microbiol , vol.49 , pp. 874-878
    • Ounine, K.1    Petitdemange, H.2    Raval, G.3    Gay, R.4
  • 26
    • 43049168575 scopus 로고    scopus 로고
    • Butanol production by Clostridium beijerinckii. Part I: Use of acid and enzyme hydrolyzed corn fiber
    • Qureshi N, Ezeji TC, Ebener J, Dien BS, Cotta MA, Blaschek HP. 2008. Butanol production by Clostridium beijerinckii. Part I: Use of acid and enzyme hydrolyzed corn fiber. Bioresour Technol 99:5915-5922.
    • (2008) Bioresour Technol , vol.99 , pp. 5915-5922
    • Qureshi, N.1    Ezeji, T.C.2    Ebener, J.3    Dien, B.S.4    Cotta, M.A.5    Blaschek, H.P.6
  • 27
    • 77649235958 scopus 로고    scopus 로고
    • Production of butanol (a biofuel) from agricultural residues: Part I-Use of barley straw hydrolysate
    • Qureshi N, Saha BC, Dien B, Hector RE, Cotta MA. 2010a. Production of butanol (a biofuel) from agricultural residues: Part I-Use of barley straw hydrolysate. Biomass Bioenerg 34:559-565.
    • (2010) Biomass Bioenerg , vol.34 , pp. 559-565
    • Qureshi, N.1    Saha, B.C.2    Dien, B.3    Hector, R.E.4    Cotta, M.A.5
  • 29
    • 77955660471 scopus 로고    scopus 로고
    • Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum
    • Ren C, Gu Y, Hu S, Wu Y, Wang P, Yang Y, Yang C, Yang S, Jiang W. 2010. Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum. Metab Eng 12:446-454.
    • (2010) Metab Eng , vol.12 , pp. 446-454
    • Ren, C.1    Gu, Y.2    Hu, S.3    Wu, Y.4    Wang, P.5    Yang, Y.6    Yang, C.7    Yang, S.8    Jiang, W.9
  • 30
    • 0035910178 scopus 로고    scopus 로고
    • Transcriptional regulation of pentose utilisation systems in the Bacillus/Clostridium group of bacteria
    • Rodionov DA, Mironov AA, Gelfand MS. 2001. Transcriptional regulation of pentose utilisation systems in the Bacillus/Clostridium group of bacteria. FEMS Microbiol Lett 205:305-314.
    • (2001) FEMS Microbiol Lett , vol.205 , pp. 305-314
    • Rodionov, D.A.1    Mironov, A.A.2    Gelfand, M.S.3
  • 31
    • 33846817518 scopus 로고    scopus 로고
    • Characterization of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824
    • Tangney M, Mitchell WJ. 2007. Characterization of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824. Appl Microbiol Biotechnol 74:398-405.
    • (2007) Appl Microbiol Biotechnol , vol.74 , pp. 398-405
    • Tangney, M.1    Mitchell, W.J.2
  • 32
    • 78650757380 scopus 로고    scopus 로고
    • Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors
    • Wang L, Chen HZ. 2011. Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors. Process Biochem 46:604-607.
    • (2011) Process Biochem , vol.46 , pp. 604-607
    • Wang, L.1    Chen, H.Z.2
  • 33
    • 84907526320 scopus 로고    scopus 로고
    • Engineering clostridia for butanol production from biorenewable resources: From cells to process integration
    • Wang J, Yang X, Chen CC, Yang ST. 2014. Engineering clostridia for butanol production from biorenewable resources: From cells to process integration. Curr Opin Chem Eng 6:43-54.
    • (2014) Curr Opin Chem Eng , vol.6 , pp. 43-54
    • Wang, J.1    Yang, X.2    Chen, C.C.3    Yang, S.T.4
  • 34
    • 0025290597 scopus 로고
    • Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum
    • Williams DR, Young DI, Young M. 1990. Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum. Microbiology 136: 819-826.
    • (1990) Microbiology , vol.136 , pp. 819-826
    • Williams, D.R.1    Young, D.I.2    Young, M.3
  • 35
    • 84922387175 scopus 로고    scopus 로고
    • Molecular modulation of pleiotropic regulator CcpA for glucose and xylose coutilization by solvent-producing Clostridium acetobutylicum
    • Wu Y, Yang Y, Ren C, Yang C, Yang S, Gu Y, Jiang W. 2015. Molecular modulation of pleiotropic regulator CcpA for glucose and xylose coutilization by solvent-producing Clostridium acetobutylicum. Metab Eng 28:169-179.
    • (2015) Metab Eng , vol.28 , pp. 169-179
    • Wu, Y.1    Yang, Y.2    Ren, C.3    Yang, C.4    Yang, S.5    Gu, Y.6    Jiang, W.7
  • 36
    • 83055184898 scopus 로고    scopus 로고
    • Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose
    • Xiao H, Gu Y, Ning Y, Yang Y, Mitchell WJ, Jiang W, Yang S. 2011. Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose. Appl Environ Microbiol 77:7886-7895.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 7886-7895
    • Xiao, H.1    Gu, Y.2    Ning, Y.3    Yang, Y.4    Mitchell, W.J.5    Jiang, W.6    Yang, S.7
  • 37
    • 84865613048 scopus 로고    scopus 로고
    • Metabolic engineering of D-xylose pathway in Clostridium beijerinckii to optimize solvent production from xylose mother liquid
    • Xiao H, Li Z, Jiang Y, Yang Y, Jiang W, Gu Y, Yang S. 2012. Metabolic engineering of D-xylose pathway in Clostridium beijerinckii to optimize solvent production from xylose mother liquid. Metab Eng 14:569-578.
    • (2012) Metab Eng , vol.14 , pp. 569-578
    • Xiao, H.1    Li, Z.2    Jiang, Y.3    Yang, Y.4    Jiang, W.5    Gu, Y.6    Yang, S.7
  • 38
    • 84904909089 scopus 로고    scopus 로고
    • Simultaneous fermentation of glucose and xylose to butanol by Clostridium sp. strain BOH3
    • Xin F, Wu YR, He J. 2014. Simultaneous fermentation of glucose and xylose to butanol by Clostridium sp. strain BOH3. Appl Environ Microbiol 80:4771-4778.
    • (2014) Appl Environ Microbiol , vol.80 , pp. 4771-4778
    • Xin, F.1    Wu, Y.R.2    He, J.3
  • 39
    • 84925497895 scopus 로고    scopus 로고
    • Engineering Clostridium acetobutylicum with a histidine kinase knockout for enhanced n-butanol tolerance and production
    • Xu M, Zhao J, Yu L, Tang IC, Xue C, Yang ST. 2015. Engineering Clostridium acetobutylicum with a histidine kinase knockout for enhanced n-butanol tolerance and production. Appl Microbiol Biotechnol 99:1011-1022.
    • (2015) Appl Microbiol Biotechnol , vol.99 , pp. 1011-1022
    • Xu, M.1    Zhao, J.2    Yu, L.3    Tang, I.C.4    Xue, C.5    Yang, S.T.6
  • 40
    • 84882918390 scopus 로고    scopus 로고
    • Recent progress in metabolic engineering for the production of biofuels and biochemicals from renewable sources with particular emphasis on catabolite regulation and its modulation
    • Yao R, Shimizu K. 2013. Recent progress in metabolic engineering for the production of biofuels and biochemicals from renewable sources with particular emphasis on catabolite regulation and its modulation. Process Biochem 48:1409-1417.
    • (2013) Process Biochem , vol.48 , pp. 1409-1417
    • Yao, R.1    Shimizu, K.2
  • 41
    • 84856283798 scopus 로고    scopus 로고
    • Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum
    • Yu M, Du Y, Jiang W, Chang WL, Yang ST, Tang IC. 2012. Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum. Appl Microbiol Biotechnol 93:881-889.
    • (2012) Appl Microbiol Biotechnol , vol.93 , pp. 881-889
    • Yu, M.1    Du, Y.2    Jiang, W.3    Chang, W.L.4    Yang, S.T.5    Tang, I.C.6
  • 42
    • 79958709458 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium tyrobutyricum for n-butanol production
    • Yu M, Zhang Y, Tang IC, Yang ST. 2011. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab Eng 13:373-382.
    • (2011) Metab Eng , vol.13 , pp. 373-382
    • Yu, M.1    Zhang, Y.2    Tang, I.C.3    Yang, S.T.4
  • 44
    • 0037359080 scopus 로고    scopus 로고
    • Adaptation of Clostridium tyrobutyricum for enhanced tolerance to butyric acid in a fibrous-bed bioreactor
    • Zhu Y, Yang ST. 2003. Adaptation of Clostridium tyrobutyricum for enhanced tolerance to butyric acid in a fibrous-bed bioreactor. Biotechnol Prog 19:365-372.
    • (2003) Biotechnol Prog , vol.19 , pp. 365-372
    • Zhu, Y.1    Yang, S.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.