메뉴 건너뛰기




Volumn 39, Issue 3, 2017, Pages 417-429

A deep matrix factorization method for learning attribute representations

Author keywords

deep semi NMF; Deep WSF; face classification; face clustering; matrix factorization; Semi NMF; semi supervised learning; unsupervised feature learning; WSF

Indexed keywords

DEEP LEARNING; FACTORIZATION; SUPERVISED LEARNING;

EID: 85012894180     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2016.2554555     Document Type: Article
Times cited : (317)

References (55)
  • 1
    • 0028561099 scopus 로고
    • Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values
    • P. Paatero, and U. Tapper, "Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values, " Environmetrics, vol. 5, no. 2, pp. 111-126, 1994.
    • (1994) Environmetrics , vol.5 , Issue.2 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 2
    • 1642529511 scopus 로고    scopus 로고
    • Metagenes and molecular pattern discovery using matrix factorization
    • J.-P. Brunet, P. Tamayo, T. R. Golub, and J. P. Mesirov, "Metagenes and molecular pattern discovery using matrix factorization, " Proc. Nat. Academy Sciences, vol. 101, pp. 4164-4149, 2004.
    • (2004) Proc. Nat. Academy Sciences , vol.101 , pp. 4149-4164
    • Brunet, J.-P.1    Tamayo, P.2    Golub, T.R.3    Mesirov, J.P.4
  • 3
    • 48249151183 scopus 로고    scopus 로고
    • Nonnegative matrix factorization: An analytical and interpretive tool in computational biology
    • Art. no. e1000029
    • K. Devarajan, "Nonnegative matrix factorization: An analytical and interpretive tool in computational biology, " PLoS Comput. Biol, vol. 4, 2008, Art. no. e1000029.
    • (2008) PLoS Comput. Biol , vol.4
    • Devarajan, K.1
  • 4
    • 31044445386 scopus 로고    scopus 로고
    • Email surveillance using non-negative matrix factorization
    • M. W. Berry, and M. Browne, "Email surveillance using non-negative matrix factorization, " Comput. Math. Org. Theory, vol. 11, pp. 249-264, 2005.
    • (2005) Comput. Math. Org. Theory , vol.11 , pp. 249-264
    • Berry, M.W.1    Browne, M.2
  • 5
    • 33646528853 scopus 로고    scopus 로고
    • Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification
    • May
    • S. Zafeiriou, A. Tefas, I. Buciu, and I. Pitas, "Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification, " IEEE Trans. Neural Netw, vol. 17, no. 3, pp. 683-695, May 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.3 , pp. 683-695
    • Zafeiriou, S.1    Tefas, A.2    Buciu, I.3    Pitas, I.4
  • 6
    • 34548062342 scopus 로고    scopus 로고
    • A novel discriminant non-negative matrix factorization algorithm with applications to facial image characterization problems
    • Sep
    • I. Kotsia, S. Zafeiriou, and I. Pitas, "A novel discriminant non-negative matrix factorization algorithm with applications to facial image characterization problems, " IEEE Trans. Inform. Forensics Security, vol. 2, no. 3, pp. 588-595, Sep. 2007.
    • (2007) IEEE Trans. Inform. Forensics Security , vol.2 , Issue.3 , pp. 588-595
    • Kotsia, I.1    Zafeiriou, S.2    Pitas, I.3
  • 7
    • 84866042020 scopus 로고    scopus 로고
    • Optimization and parallelization of monaural source separation algorithms in the openBliSSART toolkit
    • F. Weninger, and B. Schuller, "Optimization and parallelization of monaural source separation algorithms in the openBliSSART toolkit, " J. Signal Process. Syst, vol. 69, pp. 267-277, 2012.
    • (2012) J. Signal Process. Syst , vol.69 , pp. 267-277
    • Weninger, F.1    Schuller, B.2
  • 8
    • 84871617105 scopus 로고    scopus 로고
    • Convex and semi-nonnegative matrix factorizations
    • Jan
    • C. H. Ding, T. Li, and M. I. Jordan, "Convex and semi-nonnegative matrix factorizations, " IEEE Trans. Pattern Anal. Mach. Intell, vol. 32, no. 1, pp. 45-55, Jan. 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell , vol.32 , Issue.1 , pp. 45-55
    • Ding, C.H.1    Li, T.2    Jordan, M.I.3
  • 9
    • 33749255098 scopus 로고    scopus 로고
    • On the equivalence of nonnegative matrix factorization and spectral clustering
    • C. Cing, X. He, and H. Simon, "On the equivalence of nonnegative matrix factorization and spectral clustering, " in Proc. SIAM Data Mining Conf., 2005, pp. 606-610.
    • (2005) Proc. SIAM Data Mining Conf , pp. 606-610
    • Cing, C.1    He, X.2    Simon, H.3
  • 10
    • 0035108235 scopus 로고    scopus 로고
    • A hierarchical unsupervised growing neural network for clustering gene expression patterns
    • J. Herrero, A. Valencia, and J. Dopazo, "A hierarchical unsupervised growing neural network for clustering gene expression patterns, " Bioinformatics, vol. 17, pp. 126-136, 2001.
    • (2001) Bioinformatics , vol.17 , pp. 126-136
    • Herrero, J.1    Valencia, A.2    Dopazo, J.3
  • 11
    • 24044537630 scopus 로고    scopus 로고
    • Hierarchical clustering algorithms for document datasets
    • Y. Zhao, and G. Karypis, "Hierarchical clustering algorithms for document datasets, " Data Mining Knowl. Discovery, vol. 10, pp. 141-168, 2005.
    • (2005) Data Mining Knowl. Discovery , vol.10 , pp. 141-168
    • Zhao, Y.1    Karypis, G.2
  • 14
    • 78049346655 scopus 로고    scopus 로고
    • Multilabel dimensionality reduction via dependence maximization
    • Art. 14
    • Y. Zhang, and Z.-H. Zhou, "Multilabel dimensionality reduction via dependence maximization, " ACM Trans. Knowl. Discovery Data, vol. 4, 2010, Art. no. 14.
    • (2010) ACM Trans. Knowl. Discovery Data , vol.4
    • Zhang, Y.1    Zhou, Z.-H.2
  • 16
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of datawith neural networks
    • G. E.Hinton, and R. R. Salakhutdinov, "Reducing the dimensionality of datawith neural networks, " Science, vol. 313, pp. 504-507, 2006.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 17
    • 33747738463 scopus 로고
    • Singular value decomposition and least squares solutions
    • G. H. Golub, and C. Reinsch, "Singular value decomposition and least squares solutions, " Numerische Mathematik, vol. 14, pp. 403-420, 1970.
    • (1970) Numerische Mathematik , vol.14 , pp. 403-420
    • Golub, G.H.1    Reinsch, C.2
  • 19
  • 20
    • 79959532395 scopus 로고    scopus 로고
    • Graph regularized nonnegative matrix factorization for data representation
    • Aug
    • D. Cai, X. He, J. Han, and T. S. Huang, "Graph regularized nonnegative matrix factorization for data representation, " IEEE Trans. Pattern Anal. Mach. Intell, vol. 33, no. 8, pp. 1548-1560, Aug. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell , vol.33 , Issue.8 , pp. 1548-1560
    • Cai, D.1    He, X.2    Han, J.3    Huang, T.S.4
  • 23
    • 33746905129 scopus 로고    scopus 로고
    • Multilayer nonnegative matrix factorization
    • A. Cichocki, and R. Zdunek, "Multilayer nonnegative matrix factorization, " Electron. Lett, vol. 42, pp. 947-948, 2006.
    • (2006) Electron. Lett , vol.42 , pp. 947-948
    • Cichocki, A.1    Zdunek, R.2
  • 24
    • 85083953747 scopus 로고    scopus 로고
    • Hierarchical data representation model - Multi-layer NMF
    • Art. no. 1301.6316
    • H. A. Song, and S.-Y. Lee, "Hierarchical data representation model - multi-layer NMF, " in Proc. Int. Conf. Learn. Representations, 2013, Art. no. 1301.6316.
    • (2013) Proc. Int. Conf. Learn. Representations
    • Song, H.A.1    Lee, S.-Y.2
  • 25
    • 84861310732 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for image representation
    • Jul
    • H. Liu, Z.Wu, X. Li, D. Cai, and T. S.Huang, "Constrained nonnegative matrix factorization for image representation, " IEEE Trans. Pattern Anal.Mach. Intell, vol. 34, no. 7, pp. 1299-1311, Jul. 2012.
    • (2012) IEEE Trans. Pattern Anal.Mach. Intell , vol.34 , Issue.7 , pp. 1299-1311
    • Liu, H.1    Wu, Z.2    Li, X.3    Cai, D.4    Huang, T.S.5
  • 26
    • 34548062342 scopus 로고    scopus 로고
    • Novel discriminant non-negative matrix factorization algorithm with applications to facial image characterization problems
    • Sep
    • I. Kotsia, S. Zafeiriou, and I. Pitas, "Novel discriminant non-negative matrix factorization algorithm with applications to facial image characterization problems, " IEEE Trans. Inform. Forensics Security, vol. 2, no. 3, pp. 588-595, Sep. 2007.
    • (2007) IEEE Trans. Inform. Forensics Security , vol.2 , Issue.3 , pp. 588-595
    • Kotsia, I.1    Zafeiriou, S.2    Pitas, I.3
  • 27
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchicalmodels of object recognition in cortex
    • M. Riesenhuber, and T. Poggio, "Hierarchicalmodels of object recognition in cortex, " Nature Neuroscience, vol. 2, pp. 1019-1025, 1999.
    • (1999) Nature Neuroscience , vol.2 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 28
    • 30144432518 scopus 로고    scopus 로고
    • Nonlinear image representation for efficient perceptual coding
    • Jan
    • J. Malo, I. Epifanio, R. Navarro, and E. P. Simoncelli, "Nonlinear image representation for efficient perceptual coding, " IEEE Trans. Image Process, vol. 15, no. 1, pp. 68-80, Jan. 2006.
    • (2006) IEEE Trans. Image Process , vol.15 , Issue.1 , pp. 68-80
    • Malo, J.1    Epifanio, I.2    Navarro, R.3    Simoncelli, E.P.4
  • 29
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators, " Neural Netw, vol. 2, pp. 359-366, 1989.
    • (1989) Neural Netw , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 30
    • 84879800501 scopus 로고    scopus 로고
    • Gradient methods for minimizing composite objective function
    • Springer
    • Y. Nesterov, "Gradient methods for minimizing composite objective function, " Math. Program., Springer, vol. 140, no. 1, pp. 125-161, 2013.
    • (2013) Math. Program , vol.140 , Issue.1 , pp. 125-161
    • Nesterov, Y.1
  • 32
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • Presented at San Diego, CA, USA
    • D. Kingma, and J. Ba, "Adam: A method for stochastic optimization, " presented at the Int. Conf. Learning Representations, San Diego, CA, USA, 2015.
    • (2015) The Int. Conf. Learning Representations
    • Kingma, D.1    Ba, J.2
  • 34
    • 9444239916 scopus 로고    scopus 로고
    • Using manifold structure for partially labelled classification
    • M. Belkin, and P. Niyogi, "Using manifold structure for partially labelled classification, " in Proc. Adv. Neural Inf. Process. Syst., 2002, pp. 328-340.
    • (2002) Proc. Adv. Neural Inf. Process. Syst , pp. 328-340
    • Belkin, M.1    Niyogi, P.2
  • 35
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from labeled and unlabeled examples, " J. Mach. Learn. Res, vol. 7, pp. 2399-2434, 2006.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 36
    • 84886407166 scopus 로고    scopus 로고
    • Generalized graph regularized non-negative matrix factorization for data representation
    • Y. Hao, C. Han, G. Shao, and T. Guo, "Generalized graph regularized non-negative matrix factorization for data representation, " in Proc. Int. Conf. Inform. Technol. Softw. Eng., 2013, pp. 1-12.
    • (2013) Proc. Int. Conf. Inform. Technol. Softw. Eng , pp. 1-12
    • Hao, Y.1    Han, C.2    Shao, G.3    Guo, T.4
  • 37
    • 0026065565 scopus 로고
    • Eigenfaces for recognition
    • M. Turk, and A. Pentland, "Eigenfaces for recognition, " J. Cognitive Neurosci, vol. 3, pp. 71-86, 1991.
    • (1991) J. Cognitive Neurosci , vol.3 , pp. 71-86
    • Turk, M.1    Pentland, A.2
  • 39
    • 0347380229 scopus 로고    scopus 로고
    • The cmu pose, illumination, and expression (pie) database
    • T. Sim, S. Baker, and M. Bsat, "The CMU Pose, Illumination, and Expression (PIE) database, " IEEE Trans. Pattern Anal. Mach. Intell, vol. 25, pp. 1615-1618, 2003.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell , vol.25 , pp. 1615-1618
    • Sim, T.1    Baker, S.2    Bsat, M.3
  • 42
    • 84861164231 scopus 로고    scopus 로고
    • NeNMF: An optimal gradient method for nonnegative matrix factorization
    • Jun
    • N. Guan, D. Tao, Z. Luo, and B. Yuan, "NeNMF: An optimal gradient method for nonnegative matrix factorization, " IEEE Trans. Signal Process, vol. 60, no. 6, pp. 2882-2898, Jun. 2012.
    • (2012) IEEE Trans. Signal Process , vol.60 , Issue.6 , pp. 2882-2898
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4
  • 44
    • 84871617105 scopus 로고    scopus 로고
    • Convex and semi-nonnegative matrix factorizations
    • Jan
    • C. Ding, T. Li, and M. I. Jordan, "Convex and semi-nonnegative matrix factorizations, " IEEE Trans. Pattern Anal. Mach. Intell, vol. 32, no. 1, pp. 45-55, Jan. 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell , vol.32 , Issue.1 , pp. 45-55
    • Ding, C.1    Li, T.2    Jordan, M.I.3
  • 45
    • 84959208291 scopus 로고    scopus 로고
    • Exact and heuristic algorithms for seminonnegative matrix factorization
    • N. Gillis, and A. Kumar, "Exact and heuristic algorithms for seminonnegative matrix factorization, " SIAM J. Matrix Anal. Appl, vol. 36, pp. 1404-1424, 2014.
    • (2014) SIAM J. Matrix Anal. Appl , vol.36 , pp. 1404-1424
    • Gillis, N.1    Kumar, A.2
  • 46
    • 36749071484 scopus 로고    scopus 로고
    • SVD based initialization: A head start for nonnegative matrix factorization
    • C. Boutsidis, and E. Gallopoulos, "SVD based initialization: A head start for nonnegative matrix factorization, " Pattern Recog, vol. 41, pp. 1350-1362, 2008.
    • (2008) Pattern Recog , vol.41 , pp. 1350-1362
    • Boutsidis, C.1    Gallopoulos, E.2
  • 47
    • 0043278893 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • M. Belkin, and P. Niyogi, "Laplacian eigenmaps and spectral techniques for embedding and clustering, " in Proc. Adv. Neural Inf. Process. Syst., 2001, pp. 585-591.
    • (2001) Proc. Adv. Neural Inf. Process. Syst , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 49
    • 0002719797 scopus 로고
    • The Hungarian method for the assignment problem
    • H. W. Kuhn, "The Hungarian method for the assignment problem, " Naval Res. Logistics Quart, vol. 2, pp. 1-2, 1955.
    • (1955) Naval Res. Logistics Quart , vol.2 , pp. 1-2
    • Kuhn, H.W.1
  • 54
    • 60849097822 scopus 로고    scopus 로고
    • Discriminant nonnegative tensor factorization algorithms
    • Feb
    • S. Zafeiriou, "Discriminant nonnegative tensor factorization algorithms, " IEEE Trans Neural Netw, vol. 20, no. 2, pp. 217-235, Feb. 2009.
    • (2009) IEEE Trans Neural Netw , vol.20 , Issue.2 , pp. 217-235
    • Zafeiriou, S.1
  • 55
    • 77956967694 scopus 로고    scopus 로고
    • Algorithms for nonnegative tensor factorization
    • S. Zafeiriou, "Algorithms for nonnegative tensor factorization, " Tensors Image Process. Comput. Vision, vol. 1, pp. 105-124, 2009.
    • (2009) Tensors Image Process. Comput. Vision , vol.1 , pp. 105-124
    • Zafeiriou, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.