메뉴 건너뛰기




Volumn 4, Issue , 2016, Pages 1965-1974

Semi-supervised learning for neural machine translation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; COMPUTER AIDED LANGUAGE TRANSLATION; LEARNING ALGORITHMS; SUPERVISED LEARNING;

EID: 85011958920     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/p16-1185     Document Type: Conference Paper
Times cited : (218)

References (27)
  • 1
    • 84937844873 scopus 로고    scopus 로고
    • Conditional random field autoencoders for unsupervised structred prediction
    • Waleed Ammar, Chris Dyer, and Noah Smith. 2014. Conditional random field autoencoders for unsupervised structred prediction. In Proceedings of NIPS 2014.
    • (2014) Proceedings of NIPS 2014
    • Ammar, W.1    Dyer, C.2    Smith, N.3
  • 2
    • 85083953689 scopus 로고    scopus 로고
    • Neural machine translation by jointly learning to align and translate
    • Dzmitry Bahdanau, KyungHyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to align and translate. In Proceedings of ICLR.
    • (2015) Proceedings of ICLR
    • Bahdanau, D.1    Cho, K.H.2    Bengio, Y.3
  • 3
    • 80051893169 scopus 로고    scopus 로고
    • Domain adaptation for statistical machine translation
    • Nicola Bertoldi and Marcello Federico. 2009. Domain adaptation for statistical machine translation. In Proceedings of WMT.
    • (2009) Proceedings of WMT
    • Bertoldi, N.1    Federico, M.2
  • 5
    • 84859893686 scopus 로고    scopus 로고
    • A hierarchical phrase-based model for statistical machine translation
    • David Chiang. 2005. A hierarchical phrase-based model for statistical machine translation. In Proceedings of ACL.
    • (2005) Proceedings of ACL
    • Chiang, D.1
  • 6
  • 7
    • 84965138788 scopus 로고    scopus 로고
    • Semi-supervised sequence learning
    • Andrew M. Dai and Quoc V. Le. 2015. Semi-supervised sequence learning. In Proceedings of NIPS.
    • (2015) Proceedings of NIPS
    • Dai, A.M.1    Le, Q.V.2
  • 8
    • 84961333449 scopus 로고    scopus 로고
    • Beyond parallel data: Joint word alignment and decipherment improves machine translation
    • Qing Dou, Ashish Vaswani, and Kevin Knight. 2014. Beyond parallel data: Joint word alignment and decipherment improves machine translation. In Proceedings of EMNLP.
    • (2014) Proceedings of EMNLP
    • Dou, Q.1    Vaswani, A.2    Knight, K.3
  • 10
    • 85044611587 scopus 로고
    • The mathematics of statistical machine translation: Parameter estimation
    • Sepp Hochreiter and Jürgen Schmidhuber. 1993. The mathematics of statistical machine translation: Parameter estimation. Computational Linguisitics.
    • (1993) Computational Linguisitics
    • Hochreiter, S.1    Schmidhuber, J.2
  • 11
    • 84943744936 scopus 로고    scopus 로고
    • On using very large target vocabulary for neural machine translation
    • Sebastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. 2015. On using very large target vocabulary for neural machine translation. In Proceedings of ACL.
    • (2015) Proceedings of ACL
    • Jean, S.1    Cho, K.2    Memisevic, R.3    Bengio, Y.4
  • 18
    • 84944098666 scopus 로고    scopus 로고
    • Minimum error rate training in statistical machine translation
    • Franz Och. 2003. Minimum error rate training in statistical machine translation. In Proceedings of ACL.
    • (2003) Proceedings of ACL
    • Franz, O.1
  • 19
    • 85133336275 scopus 로고    scopus 로고
    • Bleu: A methof for automatic evaluation of machine translation
    • Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a methof for automatic evaluation of machine translation. In Proceedings of ACL.
    • (2002) Proceedings of ACL
    • Papineni, K.1    Roukos, S.2    Ward, T.3    Zhu, W.-J.4
  • 22
    • 80053261327 scopus 로고    scopus 로고
    • Semi-supervised recursive autoencoders for predicting sentiment distributions
    • Richard Socher, Jeffrey Pennington, Eric Huang, Andrew Ng, and Christopher Manning. 2011. Semi-supervised recursive autoencoders for predicting sentiment distributions. In Proceedings of EMNLP.
    • (2011) Proceedings of EMNLP
    • Socher, R.1    Pennington, J.2    Huang, E.3    Ng, A.4    Manning, C.5
  • 23
    • 84891308106 scopus 로고    scopus 로고
    • Srilm - Am extensible language modeling toolkit
    • Andreas Stolcke. 2002. Srilm - am extensible language modeling toolkit. In Proceedings of ICSLP.
    • (2002) Proceedings of ICSLP
    • Stolcke, A.1
  • 25
    • 84860532036 scopus 로고    scopus 로고
    • Trasductive learning for statistical machine translation
    • Nicola Ueffing, Gholamreza Haffari, and Anoop Sarkar. 2007. Trasductive learning for statistical machine translation. In Proceedings of ACL.
    • (2007) Proceedings of ACL
    • Ueffing, N.1    Haffari, G.2    Sarkar, A.3
  • 26
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Autoine Manzagol. 2010. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research.
    • (2010) Journal of Machine Learning Research
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 27
    • 84906933175 scopus 로고    scopus 로고
    • Learning a phrase-based translation model from monolingual data with application to domain adaptation
    • Jiajun Zhang and Chengqing Zong. 2013. Learning a phrase-based translation model from monolingual data with application to domain adaptation. In Proceedings of ACL.
    • (2013) Proceedings of ACL
    • Zhang, J.1    Zong, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.