메뉴 건너뛰기




Volumn 9, Issue 7, 2014, Pages

Stochastic blockmodeling of the modules and core of the Caenorhabditis elegans connectome

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BIOLOGICAL FUNCTIONS; CAENORHABDITIS ELEGANS; COMMUNITY STRUCTURE; CONNECTOME; ERDOS RENYI MIXTURE MODEL; LOCOMOTION; NERVE CELL; NERVOUS SYSTEM; NONHUMAN; STATISTICAL ANALYSIS; STOCHASTIC MODEL; SYNAPSE; ALGORITHM; ANIMAL; BIOLOGICAL MODEL; MARKOV CHAIN; METABOLISM; NERVE CELL NETWORK;

EID: 84903759143     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0097584     Document Type: Article
Times cited : (58)

References (69)
  • 1
    • 0002843974 scopus 로고    scopus 로고
    • Chains and networks, territories and scales: Towards a relational framework for analysing the global economy
    • Dicken P, Kelly PF, Olds K, Wai-Chung Yeung H (2002) Chains and networks, territories and scales: towards a relational framework for analysing the global economy. Global networks 1: 89-112.
    • (2002) Global Networks , vol.1 , pp. 89-112
    • Dicken, P.1    Kelly, P.F.2    Olds, K.3    Wai-Chung Yeung, H.4
  • 2
    • 9544245816 scopus 로고    scopus 로고
    • Quantitative methods for ecological network analysis
    • Ulanowicz RE (2004) Quantitative methods for ecological network analysis. Computational Biology and Chemistry 28: 321-339.
    • (2004) Computational Biology and Chemistry , vol.28 , pp. 321-339
    • Ulanowicz, R.E.1
  • 3
    • 0037199968 scopus 로고    scopus 로고
    • Hierarchical organization of modularity in metabolic networks
    • DOI 10.1126/science.1073374
    • Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297: 1551-1555. (Pubitemid 34971002)
    • (2002) Science , vol.297 , Issue.5586 , pp. 1551-1555
    • Ravasz, E.1    Somera, A.L.2    Mongru, D.A.3    Oltvai, Z.N.4    Barabasi, A.-L.5
  • 4
    • 42749103823 scopus 로고    scopus 로고
    • Structural vulnerability of the north american power grid
    • Albert R, Albert I, Nakarado GL (2004) Structural vulnerability of the north american power grid. Physical Review E 69: 025103.
    • (2004) Physical Review e , vol.69 , pp. 025103
    • Albert, R.1    Albert, I.2    Nakarado, G.L.3
  • 8
    • 77949629766 scopus 로고    scopus 로고
    • Mesoscopic organization reveals the constraints governing Caenorhabditis elegans nervous system
    • Pan R, Chatterjee N, Sinha S (2010) Mesoscopic organization reveals the constraints governing Caenorhabditis elegans nervous system. PloS one 5: e9240.
    • (2010) PloS One , vol.5
    • Pan, R.1    Chatterjee, N.2    Sinha, S.3
  • 10
    • 60549103853 scopus 로고    scopus 로고
    • Complex brain networks: Graph theoretical analysis of structural and functional systems
    • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience 10: 186-198.
    • (2009) Nature Reviews Neuroscience , vol.10 , pp. 186-198
    • Bullmore, E.1    Sporns, O.2
  • 13
    • 74049087026 scopus 로고    scopus 로고
    • Community detection in graphs
    • Fortunato S (2010) Community detection in graphs. Physics Reports 486: 75-174.
    • (2010) Physics Reports , vol.486 , pp. 75-174
    • Fortunato, S.1
  • 18
    • 84925899978 scopus 로고
    • Social structure from multiple networks. I. Blockmodels of roles and positions
    • White HC, Boorman SA, Breiger RL (1976) Social structure from multiple networks. i. blockmodels of roles and positions. American journal of sociology : 730-780.
    • (1976) American Journal of Sociology , pp. 730-780
    • White, H.C.1    Boorman, S.A.2    Breiger, R.L.3
  • 23
    • 0031495186 scopus 로고    scopus 로고
    • Estimation and prediction for stochastic blockmodels for graphs with latent block structure
    • Snijders T, Nowicki K (1997) Estimation and prediction for stochastic blockmodels for graphs with latent block structure. Journal of Classification 14: 75-100.
    • (1997) Journal of Classification , vol.14 , pp. 75-100
    • Snijders, T.1    Nowicki, K.2
  • 25
    • 0001396345 scopus 로고    scopus 로고
    • Models of core/periphery structures
    • Borgatti SP, Everett MG (2000) Models of core/periphery structures. Social networks 21: 375-395.
    • (2000) Social Networks , vol.21 , pp. 375-395
    • Borgatti, S.P.1    Everett, M.G.2
  • 30
    • 77955870489 scopus 로고    scopus 로고
    • Motoneurons dedicated to either forward or backward locomotion in the nematode Caenorhabditis elegans
    • Haspel G, O'Donovan M, Hart A (2010) Motoneurons dedicated to either forward or backward locomotion in the nematode Caenorhabditis elegans. The Journal of Neuroscience 30: 11151-11156.
    • (2010) The Journal of Neuroscience , vol.30 , pp. 11151-11156
    • Haspel, G.1    O'Donovan, M.2    Hart, A.3
  • 31
    • 0004291817 scopus 로고
    • Wood WB, editor Cold Spring Harbour Laboratory
    • Wood WB, editor(1987) The nematode Caenorhabditis elegans. Cold Spring Harbour Laboratory.
    • (1987) The Nematode Caenorhabditis Elegans
  • 33
    • 84860572268 scopus 로고    scopus 로고
    • Nervous system, general description
    • HD
    • Altun ZF HD (2009) Nervous system, general description. Worm atlas.
    • (2009) Worm Atlas
    • Altun, Z.F.1
  • 34
    • 79551562611 scopus 로고    scopus 로고
    • Neural development features: Spatio-temporal development of the Caenorhabditis elegans neuronal network
    • Varier S, Kaiser M (2011) Neural development features: Spatio-temporal development of the Caenorhabditis elegans neuronal network. PLoS Computational Biology 7: e1001044.
    • (2011) PLoS Computational Biology , vol.7
    • Varier, S.1    Kaiser, M.2
  • 35
    • 0016063911 scopus 로고
    • The genetics of Caenorhabditis elegans
    • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
    • (1974) Genetics , vol.77 , pp. 71-94
    • Brenner, S.1
  • 37
    • 0001540595 scopus 로고
    • Publicationes Mathematicae Debrecen
    • Erdo{combining double acute accent}s P, Rényi A (1959) On random graphs. Publicationes Mathematicae Debrecen 6: 290-297.
    • (1959) On Random Graphs , vol.6 , pp. 290-297
    • Erdos, P.1    Rényi, A.2
  • 40
    • 49749086479 scopus 로고    scopus 로고
    • Fast online graph clustering via erdosrenyi mixture
    • Zanghi H, Ambroise C, Miele V (2008) Fast online graph clustering via erdosrenyi mixture. Pattern Recognition 41: 3592-3599.
    • (2008) Pattern Recognition , vol.41 , pp. 3592-3599
    • Zanghi, H.1    Ambroise, C.2    Miele, V.3
  • 42
    • 84855995641 scopus 로고    scopus 로고
    • Overlapping stochastic block models with application to the french political blogosphere
    • Latouche P, Birmelé E, Ambroise C (2011) Overlapping stochastic block models with application to the french political blogosphere. The Annals of Applied Statistics 5: 309-336.
    • (2011) The Annals of Applied Statistics , vol.5 , pp. 309-336
    • Latouche, P.1    Birmelé, E.2    Ambroise, C.3
  • 44
    • 0033225865 scopus 로고    scopus 로고
    • Introduction to variational methods for graphical models
    • DOI 10.1023/A:1007665907178
    • Jordan M, Ghahramani Z, Jaakkola T, Saul L (1999) An introduction to variational methods for graphical models. Machine learning 37: 183-233. (Pubitemid 30544678)
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 45
    • 37649028224 scopus 로고    scopus 로고
    • Finding and evaluating community structure in networks
    • Newman M, Girvan M (2004) Finding and evaluating community structure in networks. Physical review E 69: 026113.
    • (2004) Physical Review e , vol.69 , pp. 026113
    • Newman, M.1    Girvan, M.2
  • 47
    • 84990671447 scopus 로고
    • A critical point for random graphs with a given degree sequence
    • Molloy M, Reed B (1995) A critical point for random graphs with a given degree sequence. Random Structures & Algorithms 6: 161-180.
    • (1995) Random Structures & Algorithms , vol.6 , pp. 161-180
    • Molloy, M.1    Reed, B.2
  • 49
    • 77954385460 scopus 로고    scopus 로고
    • Complex network measures of brain connectivity: Uses and interpretations
    • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52: 1059-1069.
    • (2010) Neuroimage , vol.52 , pp. 1059-1069
    • Rubinov, M.1    Sporns, O.2
  • 50
    • 79953317960 scopus 로고    scopus 로고
    • Network clustering: Probing biological heterogeneity by sparse graphical models
    • Mukherjee S, Hill SM (2011) Network clustering: probing biological heterogeneity by sparse graphical models. Bioinformatics 27: 994-1000.
    • (2011) Bioinformatics , vol.27 , pp. 994-1000
    • Mukherjee, S.1    Hill, S.M.2
  • 51
    • 25144456056 scopus 로고    scopus 로고
    • Computational cluster validation in post-genomic data analysis
    • DOI 10.1093/bioinformatics/bti517
    • Handl J, Knowles J, Kell D (2005) Computational cluster validation in postgenomic data analysis. Bioinformatics 21: 3201-3212. (Pubitemid 41418432)
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3201-3212
    • Handl, J.1    Knowles, J.2    Kell, D.B.3
  • 53
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • RandW(1971) Objective criteria for the evaluation of clustering methods. Journal of the American Statistical association 66: 846-850.
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.1
  • 54
    • 84973745157 scopus 로고
    • The measurement of classification agreement: An adjustment to the rand statistic for chance agreement
    • Morey L, Agresti A (1984) The measurement of classification agreement: an adjustment to the rand statistic for chance agreement. Educational and Psychological Measurement 44: 33-37.
    • (1984) Educational and Psychological Measurement , vol.44 , pp. 33-37
    • Morey, L.1    Agresti, A.2
  • 56
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H (1974) A new look at the statistical model identification. Automatic Control, IEEE Transactions on 19: 716-723.
    • (1974) Automatic Control, IEEE Transactions on , vol.19 , pp. 716-723
    • Akaike, H.1
  • 57
    • 8744307994 scopus 로고    scopus 로고
    • Multimodel inference: Understanding AIC and BIC in model selection
    • DOI 10.1177/0049124104268644
    • Burnham KP, Anderson DR (2004) Multimodel inference understanding aic and bic in model selection. Sociological methods & research 33: 261-304. (Pubitemid 39519124)
    • (2004) Sociological Methods and Research , vol.33 , Issue.2 , pp. 261-304
    • Burnham, K.P.1    Anderson, D.R.2
  • 61
    • 84890913931 scopus 로고
    • Maximum likelihood approaches to variance component estimation and to related problems
    • Harville D (1977) Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association 72: 320-338.
    • (1977) Journal of the American Statistical Association , vol.72 , pp. 320-338
    • Harville, D.1
  • 62
    • 84930064585 scopus 로고    scopus 로고
    • Hierarchical organization in complex networks
    • Ravasz E, Barabási AL (2003) Hierarchical organization in complex networks. Physical Review E 67: 026112.
    • (2003) Physical Review e , vol.67 , pp. 026112
    • Ravasz, E.1    Barabási, A.L.2
  • 63
    • 80054038969 scopus 로고    scopus 로고
    • A perimotor framework reveals functional segmentation in the motoneuronal network controlling locomotion in caenorhabditis elegans
    • Haspel G, O'Donovan MJ (2011) A perimotor framework reveals functional segmentation in the motoneuronal network controlling locomotion in caenorhabditis elegans. The Journal of Neuroscience 31: 14611-14623.
    • (2011) The Journal of Neuroscience , vol.31 , pp. 14611-14623
    • Haspel, G.1    O'Donovan, M.J.2
  • 64
    • 84870818294 scopus 로고    scopus 로고
    • The anatomical distance of functional connections predicts brain network topology in health and schizophrenia
    • Alexander-Bloch AF, Vértes PE, Stidd R, Lalonde F, Clasen L, et al. (2013) The anatomical distance of functional connections predicts brain network topology in health and schizophrenia. Cerebral Cortex 23: 127-138.
    • (2013) Cerebral Cortex , vol.23 , pp. 127-138
    • Alexander-Bloch, A.F.1    Vértes, P.E.2    Stidd, R.3    Lalonde, F.4    Clasen, L.5
  • 65
    • 33244492393 scopus 로고    scopus 로고
    • Core-periphery organization of complex networks
    • Holme P (2005) Core-periphery organization of complex networks. Physical Review E 72: 046111.
    • (2005) Physical Review e , vol.72 , pp. 046111
    • Holme, P.1
  • 68
    • 79951710564 scopus 로고    scopus 로고
    • Stochastic blockmodels and community structure in networks
    • Karrer B, Newman ME (2011) Stochastic blockmodels and community structure in networks. Physical Review E 83: 016107.
    • (2011) Physical Review e , vol.83 , pp. 016107
    • Karrer, B.1    Newman, M.E.2
  • 69
    • 42449110882 scopus 로고
    • An information ow model for conict and fission in small groups
    • Zachary WW (1977) An information ow model for conict and fission in small groups. Journal of Anthropological Research : 452-473.
    • (1977) Journal of Anthropological Research , pp. 452-473
    • Zachary, W.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.