메뉴 건너뛰기




Volumn 35, Issue 5, 2017, Pages 383-392

Enabling Microfluidics: from Clean Rooms to Makerspaces

Author keywords

[No Author keywords available]

Indexed keywords

3D PRINTERS; BIOLOGICAL MATERIALS; CLEAN ROOMS; FLUIDIC DEVICES; PLASTIC BUILDING MATERIALS; PRINTING MACHINERY; PRINTING PRESSES;

EID: 85011321086     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2017.01.001     Document Type: Review
Times cited : (140)

References (58)
  • 1
    • 84896284039 scopus 로고    scopus 로고
    • The present and future role of microfluidics in biomedical research
    • 1 Sackmann, E.K., et al. The present and future role of microfluidics in biomedical research. Nature 507 (2014), 181–189.
    • (2014) Nature , vol.507 , pp. 181-189
    • Sackmann, E.K.1
  • 2
    • 33747117373 scopus 로고    scopus 로고
    • The origins and the future of microfluidics
    • 2 Whitesides, G.M., The origins and the future of microfluidics. Nature 442 (2006), 368–373.
    • (2006) Nature , vol.442 , pp. 368-373
    • Whitesides, G.M.1
  • 3
    • 84902669563 scopus 로고    scopus 로고
    • Microfluidic Applications in the Pharmaceutical, Life Sciences, In-Vitro Diagnostic and Medical Device Markets Report
    • 3 Yole Development, Microfluidic Applications in the Pharmaceutical, Life Sciences, In-Vitro Diagnostic and Medical Device Markets Report., 2013 http://www.prnewswire.com/news-releases/microfluidic-applications-in-the-pharmaceutical-life-sciences-in-vitro-diagnostic-and-medical-device-markets-report-242837751.html.
    • (2013)
    • Yole Development1
  • 4
    • 85017692054 scopus 로고    scopus 로고
    • Markets and Markets () Microfluidics market by materials (polymers, silicon, glass), pharmaceuticals (microreactors, toxicity screening, lab on a chip, proteomic & genomic analysis), drug delivery devices (microneedles, micropumps), IVD (POC) - global trends & forecast to 2018
    • 4 Markets and Markets (2013) Microfluidics market by materials (polymers, silicon, glass), pharmaceuticals (microreactors, toxicity screening, lab on a chip, proteomic & genomic analysis), drug delivery devices (microneedles, micropumps), IVD (POC) - global trends & forecast to 2018,.
    • (2013)
  • 5
    • 0000767293 scopus 로고    scopus 로고
    • Soft lithographic methods for nano-fabrication
    • 5 Zhao, X.-M., et al. Soft lithographic methods for nano-fabrication. J. Mater. Chem. 7 (1997), 1069–1074.
    • (1997) J. Mater. Chem. , vol.7 , pp. 1069-1074
    • Zhao, X.-M.1
  • 6
    • 0034802766 scopus 로고    scopus 로고
    • Soft lithography in biology
    • 6 Whitesides, G.M., et al. Soft lithography in biology. Annu. Rev. Biomed. Eng. 3 (2001), 335–373.
    • (2001) Annu. Rev. Biomed. Eng. , vol.3 , pp. 335-373
    • Whitesides, G.M.1
  • 7
    • 57349108790 scopus 로고    scopus 로고
    • Soft lithography for microfluidics: a review
    • 7 Kim, P., et al. Soft lithography for microfluidics: a review. Biochip J. 2 (2008), 1–11.
    • (2008) Biochip J. , vol.2 , pp. 1-11
    • Kim, P.1
  • 8
    • 0033988843 scopus 로고    scopus 로고
    • Review – fabrication of microfluidic systems in poly (dimethylsiloxane)
    • 8 Mcdonald, J.C., et al. Review – fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 21 (2000), 27–40.
    • (2000) Electrophoresis , vol.21 , pp. 27-40
    • Mcdonald, J.C.1
  • 9
    • 0032403465 scopus 로고    scopus 로고
    • Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)
    • 9 Duffy, D.C., et al. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70 (1998), 4974–4984.
    • (1998) Anal. Chem. , vol.70 , pp. 4974-4984
    • Duffy, D.C.1
  • 10
    • 84915758513 scopus 로고    scopus 로고
    • Perspective on microfluidic cell separation: a solved problem?
    • 10 Plouffe, B.D., Murthy, S.K., Perspective on microfluidic cell separation: a solved problem?. Anal. Chem. 86 (2014), 11481–11488.
    • (2014) Anal. Chem. , vol.86 , pp. 11481-11488
    • Plouffe, B.D.1    Murthy, S.K.2
  • 11
    • 84862231072 scopus 로고    scopus 로고
    • Commercialization of microfluidic point-of-care devices
    • 11 Chin, C., et al. Commercialization of microfluidic point-of-care devices. Lab Chip 12 (2012), 2118–2134.
    • (2012) Lab Chip , vol.12 , pp. 2118-2134
    • Chin, C.1
  • 12
    • 84902659771 scopus 로고    scopus 로고
    • Commercialization of microfluidic devices
    • 12 Volpatti, L.R., Yetisen, A.K., Commercialization of microfluidic devices. Trends Biotechnol. 32 (2014), 347–350.
    • (2014) Trends Biotechnol. , vol.32 , pp. 347-350
    • Volpatti, L.R.1    Yetisen, A.K.2
  • 13
    • 15244347610 scopus 로고    scopus 로고
    • Disposable microfluidic devices: fabrication, function, and application
    • 13 Fiorini, G.S., Chiu, D.T., Disposable microfluidic devices: fabrication, function, and application. Biotechniques 38 (2005), 429–446.
    • (2005) Biotechniques , vol.38 , pp. 429-446
    • Fiorini, G.S.1    Chiu, D.T.2
  • 14
    • 84876099601 scopus 로고    scopus 로고
    • Advances in microfluidic materials, functions, integration, and applications
    • 14 Nge, P.N., et al. Advances in microfluidic materials, functions, integration, and applications. Chemical Reviews 113 (2013), 2550–2583.
    • (2013) Chemical Reviews , vol.113 , pp. 2550-2583
    • Nge, P.N.1
  • 15
    • 84884937482 scopus 로고    scopus 로고
    • New materials for microfluidics in biology
    • 15 Ren, K., et al. New materials for microfluidics in biology. Curr. Opin. Biotechnol. 25 (2014), 78–85.
    • (2014) Curr. Opin. Biotechnol. , vol.25 , pp. 78-85
    • Ren, K.1
  • 16
    • 85017724071 scopus 로고    scopus 로고
    • Rapid Prototyping Techniques for the Fabrication of Biosensors
    • Woodhead Publishing Limited
    • 16 Pataky, K., Brugger, J., Rapid Prototyping Techniques for the Fabrication of Biosensors. 2014, Woodhead Publishing Limited.
    • (2014)
    • Pataky, K.1    Brugger, J.2
  • 17
    • 84897818335 scopus 로고    scopus 로고
    • Microfluidic channels laser-cut in thin double-sided tapes: cost-effective biocompatible fluidics in minutes from design to final integration with optical biochips
    • 17 Patko, D., et al. Microfluidic channels laser-cut in thin double-sided tapes: cost-effective biocompatible fluidics in minutes from design to final integration with optical biochips. Sensors Actuators, B Chem. 196 (2014), 352–356.
    • (2014) Sensors Actuators, B Chem. , vol.196 , pp. 352-356
    • Patko, D.1
  • 18
    • 0042040751 scopus 로고    scopus 로고
    • CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems
    • 18 Klank, H., et al. CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 2 (2002), 242–246.
    • (2002) Lab Chip , vol.2 , pp. 242-246
    • Klank, H.1
  • 19
    • 84907697539 scopus 로고    scopus 로고
    • Simple and cost-effective fabrication of microvalve arrays in PDMS using laser cut molds with application to C. elegans manipulation in microfluidics
    • 19 Samuel, R., et al. Simple and cost-effective fabrication of microvalve arrays in PDMS using laser cut molds with application to C. elegans manipulation in microfluidics. J. Micromechanics Microengineering, 24, 2014, 105007.
    • (2014) J. Micromechanics Microengineering , vol.24 , pp. 105007
    • Samuel, R.1
  • 20
    • 84874104584 scopus 로고    scopus 로고
    • Fabrication of glass microchannels by xurography for electrophoresis applications
    • 20 Pessoa de Santana, P., Fabrication of glass microchannels by xurography for electrophoresis applications. Analyst 138 (2013), 1660–1664.
    • (2013) Analyst , vol.138 , pp. 1660-1664
    • Pessoa de Santana, P.1
  • 21
    • 77952889848 scopus 로고    scopus 로고
    • Glass-composite prototyping for flow PCR with in situ DNA analysis
    • 21 Pješčić, I., et al. Glass-composite prototyping for flow PCR with in situ DNA analysis. Biomed. Microdevices 12 (2010), 333–343.
    • (2010) Biomed. Microdevices , vol.12 , pp. 333-343
    • Pješčić, I.1
  • 22
    • 29244476881 scopus 로고    scopus 로고
    • Xurography: rapid prototyping of microstructures using a cutting plotter
    • 22 Bartholomeusz, D.A., Xurography: rapid prototyping of microstructures using a cutting plotter. J. Microelectromechanical Syst. 14 (2005), 1364–1374.
    • (2005) J. Microelectromechanical Syst. , vol.14 , pp. 1364-1374
    • Bartholomeusz, D.A.1
  • 23
    • 84896756739 scopus 로고    scopus 로고
    • Fast fabrication process of microfluidic devices based on cyclic olefin copolymer
    • 23 Azouz, A. Ben, et al. Fast fabrication process of microfluidic devices based on cyclic olefin copolymer. Mater. Manuf. Process. 29 (2014), 93–99.
    • (2014) Mater. Manuf. Process. , vol.29 , pp. 93-99
    • Azouz, A.B.1
  • 24
    • 84915825782 scopus 로고    scopus 로고
    • Ultra-rapid prototyping of flexible, multi-layered microfluidic devices via razor writing
    • 24 Cosson, S., et al. Ultra-rapid prototyping of flexible, multi-layered microfluidic devices via razor writing. Lab Chip 15 (2014), 72–76.
    • (2014) Lab Chip , vol.15 , pp. 72-76
    • Cosson, S.1
  • 25
    • 84940047332 scopus 로고    scopus 로고
    • 3D printed microfluidics for biological applications
    • 25 Ho, C.M.B., et al. 3D printed microfluidics for biological applications. Lab Chip 15 (2015), 3627–3637.
    • (2015) Lab Chip , vol.15 , pp. 3627-3637
    • Ho, C.M.B.1
  • 26
    • 84969375488 scopus 로고    scopus 로고
    • 3D-printed microfluidics
    • 26 Au, A.K., et al. 3D-printed microfluidics. Angewandte Chemie Int Ed 55 (2016), 3862–3881.
    • (2016) Angewandte Chemie Int Ed , vol.55 , pp. 3862-3881
    • Au, A.K.1
  • 27
    • 84969951671 scopus 로고    scopus 로고
    • The upcoming 3D-printing revolution in microfluidics
    • 27 Bhattacharjee, N., The upcoming 3D-printing revolution in microfluidics. Lab Chip 16 (2016), 1720–1742.
    • (2016) Lab Chip , vol.16 , pp. 1720-1742
    • Bhattacharjee, N.1
  • 28
    • 85017687775 scopus 로고    scopus 로고
    • What are makerspaces, hackerspaces, and fab labs?
    • 28 Van Holm, E.J., What are makerspaces, hackerspaces, and fab labs?. SSRN Electron. J., 2012, 10.2139/ssrn.2548211.
    • (2012) SSRN Electron. J.
    • Van Holm, E.J.1
  • 29
    • 84871200997 scopus 로고    scopus 로고
    • How to make almost anything: the digital fabrication revolution
    • 29 Gershenfeld, N., How to make almost anything: the digital fabrication revolution. Foreign Aff. 91 (2012), 43–57.
    • (2012) Foreign Aff. , vol.91 , pp. 43-57
    • Gershenfeld, N.1
  • 30
    • 85017707409 scopus 로고    scopus 로고
    • BioCoder
    • O'Rielly
    • 30 Scroggins, M., et al. BioCoder. 2013, O'Rielly.
    • (2013)
    • Scroggins, M.1
  • 31
    • 84910052995 scopus 로고    scopus 로고
    • Lab-on-a-chip devices: How to close and plug the lab?
    • 31 Temiz, Y., et al. Lab-on-a-chip devices: How to close and plug the lab?. Microelectron. Eng. 132 (2015), 156–175.
    • (2015) Microelectron. Eng. , vol.132 , pp. 156-175
    • Temiz, Y.1
  • 32
    • 84988841558 scopus 로고    scopus 로고
    • A rapid, instrument-free, sample-to-result nucleic acid amplification test
    • 32 Lafleur, L., et al. A rapid, instrument-free, sample-to-result nucleic acid amplification test. Lab Chip, 2016, 10.1039/C6LC00677A.
    • (2016) Lab Chip
    • Lafleur, L.1
  • 33
    • 84984821828 scopus 로고    scopus 로고
    • Xurography actuated valving for centrifugal flow control
    • 33 Kinahan, D.J., et al. Xurography actuated valving for centrifugal flow control. Lab Chip, 2016, 10.1039/C6LC00568C.
    • (2016) Lab Chip
    • Kinahan, D.J.1
  • 34
    • 0037060168 scopus 로고    scopus 로고
    • Polymer microfluidic devices
    • 34 Becker, H., Locascio, L.E., Polymer microfluidic devices. Talanta 56 (2002), 267–287.
    • (2002) Talanta , vol.56 , pp. 267-287
    • Becker, H.1    Locascio, L.E.2
  • 35
    • 84860439214 scopus 로고    scopus 로고
    • Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models
    • 35 Van Midwoud, P.M., Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal. Chem. 84 (2012), 3938–3944.
    • (2012) Anal. Chem. , vol.84 , pp. 3938-3944
    • Van Midwoud, P.M.1
  • 36
    • 84877937373 scopus 로고    scopus 로고
    • Integration of functional materials and surface modification for polymeric microfluidic systems
    • 36 Kitsara, M., Ducrée, J., Integration of functional materials and surface modification for polymeric microfluidic systems. J. Micromechanics Microengineering, 23, 2013, 33001.
    • (2013) J. Micromechanics Microengineering , vol.23 , pp. 33001
    • Kitsara, M.1    Ducrée, J.2
  • 37
    • 1842866915 scopus 로고    scopus 로고
    • Nonlinear decrease of background fluorescence in polymer thin-films – a survey of materials and how they can complicate fluorescence detection in microTAS
    • 37 Hawkins, K.R., Yager, P., Nonlinear decrease of background fluorescence in polymer thin-films – a survey of materials and how they can complicate fluorescence detection in microTAS. Lab Chip 3 (2003), 248–252.
    • (2003) Lab Chip , vol.3 , pp. 248-252
    • Hawkins, K.R.1    Yager, P.2
  • 38
    • 28944432273 scopus 로고    scopus 로고
    • The autofluorescence of plastic materials and chips measured under laser irradiation
    • 38 Piruska, A., et al. The autofluorescence of plastic materials and chips measured under laser irradiation. Lab Chip 5 (2005), 1348–1354.
    • (2005) Lab Chip , vol.5 , pp. 1348-1354
    • Piruska, A.1
  • 39
    • 85098321437 scopus 로고    scopus 로고
    • Microfluidics for Biologists, Chapter 8
    • 1st edn Springer
    • 39 Solanki, S., Pandey, C.M., Microfluidics for Biologists, Chapter 8. 1st edn, 2016, Springer.
    • (2016)
    • Solanki, S.1    Pandey, C.M.2
  • 40
    • 33749422172 scopus 로고    scopus 로고
    • Mapping the landscape of diagnostics for sexually transmitted infections: Key findings and recommandations
    • 40 Kettler, H., et al. Mapping the landscape of diagnostics for sexually transmitted infections: Key findings and recommandations. 2004 http://www.who.int/tdr/publications/tdr-research-publications/mapping-landscape-sti/en/index html.
    • (2004)
    • Kettler, H.1
  • 41
    • 84958053482 scopus 로고    scopus 로고
    • A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples
    • 41 Rodriguez, N.M., et al. A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples. Lab Chip 16 (2016), 753–763.
    • (2016) Lab Chip , vol.16 , pp. 753-763
    • Rodriguez, N.M.1
  • 42
    • 84958246393 scopus 로고    scopus 로고
    • A concentration gradient generator on a paper-based microfluidic chip coupled with cell culture microarray for high-throughput drug screening
    • 42 Hong, B., et al. A concentration gradient generator on a paper-based microfluidic chip coupled with cell culture microarray for high-throughput drug screening. Biomed. Microdevices 18 (2016), 1–8.
    • (2016) Biomed. Microdevices , vol.18 , pp. 1-8
    • Hong, B.1
  • 43
    • 84903718176 scopus 로고    scopus 로고
    • Highly sensitive immunoassay based on controlled rehydration of patterned reagents in a 2-dimensional paper network
    • 43 Fridley, G.E., et al. Highly sensitive immunoassay based on controlled rehydration of patterned reagents in a 2-dimensional paper network. Anal. Chem. 86 (2014), 6447–6453.
    • (2014) Anal. Chem. , vol.86 , pp. 6447-6453
    • Fridley, G.E.1
  • 44
    • 84943560059 scopus 로고    scopus 로고
    • Paper-based chemical and biological sensors: Engineering aspects
    • 44 Ahmed, S., et al. Paper-based chemical and biological sensors: Engineering aspects. Biosens. Bioelectron. 77 (2016), 249–263.
    • (2016) Biosens. Bioelectron. , vol.77 , pp. 249-263
    • Ahmed, S.1
  • 45
    • 77955540776 scopus 로고    scopus 로고
    • Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes
    • 45 Nath, P., et al. Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes. Lab Chip 10 (2010), 2286–2291.
    • (2010) Lab Chip , vol.10 , pp. 2286-2291
    • Nath, P.1
  • 46
    • 84901593888 scopus 로고    scopus 로고
    • Polymerase chain reaction compatibility of adhesive transfer tape based microfluidic platforms
    • 46 Nath, P., et al. Polymerase chain reaction compatibility of adhesive transfer tape based microfluidic platforms. Microsyst. Technol. 20 (2014), 1187–1193.
    • (2014) Microsyst. Technol. , vol.20 , pp. 1187-1193
    • Nath, P.1
  • 47
    • 84930065455 scopus 로고    scopus 로고
    • Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method
    • 47 Thompson, B.L., et al. Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method. Nat. Protoc. 10 (2015), 875–886.
    • (2015) Nat. Protoc. , vol.10 , pp. 875-886
    • Thompson, B.L.1
  • 48
    • 82555176812 scopus 로고    scopus 로고
    • A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami
    • 48 Govindarajan, A.V., et al. A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Lab Chip 12 (2012), 174–181.
    • (2012) Lab Chip , vol.12 , pp. 174-181
    • Govindarajan, A.V.1
  • 49
    • 68849107869 scopus 로고    scopus 로고
    • Understanding wax printing : a simple micropatterning process for paper-based microfluidics
    • 49 Carrilho, E. et al. (2009) Understanding wax printing : a simple micropatterning process for paper-based microfluidics. 81, 7091–7095.
    • (2009) , vol.81 , pp. 7091-7095
    • Carrilho, E.1
  • 50
    • 84930668091 scopus 로고    scopus 로고
    • Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices
    • 50 Guckenberger, D.J., Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15 (2015), 2364–2378.
    • (2015) Lab Chip , vol.15 , pp. 2364-2378
    • Guckenberger, D.J.1
  • 51
    • 84991823793 scopus 로고    scopus 로고
    • 3D-printable materials for microbial liquid culture
    • 51 Walsh, M.E. et al. (2016) 3D-printable materials for microbial liquid culture. 3, 113–118.
    • (2016) , vol.3 , pp. 113-118
    • Walsh, M.E.1
  • 52
    • 84926363165 scopus 로고    scopus 로고
    • Open labware: 3-D printing your own lab equipment
    • 52 Baden, T., et al. Open labware: 3-D printing your own lab equipment. PLoS Biol. 13 (2015), 1–12.
    • (2015) PLoS Biol. , vol.13 , pp. 1-12
    • Baden, T.1
  • 53
    • 84977572032 scopus 로고    scopus 로고
    • Design of problem-based learning activities in the field of microfluidics for 12- to 13-year-old participants – small plumbing!: empowering the next generation of microfluidic engineers
    • 53 Bridle, H., et al. Design of problem-based learning activities in the field of microfluidics for 12- to 13-year-old participants – small plumbing!: empowering the next generation of microfluidic engineers. Microfluid. Nanofluidics 20 (2016), 1–11.
    • (2016) Microfluid. Nanofluidics , vol.20 , pp. 1-11
    • Bridle, H.1
  • 54
    • 84892596034 scopus 로고    scopus 로고
    • Using paper-based diagnostics with high school students to model forensic investigation and colorimetric analysis
    • 54 Ravgiala, R.R., et al. Using paper-based diagnostics with high school students to model forensic investigation and colorimetric analysis. J. Chem. Educ. 91 (2014), 107–111.
    • (2014) J. Chem. Educ. , vol.91 , pp. 107-111
    • Ravgiala, R.R.1
  • 55
    • 70350464298 scopus 로고    scopus 로고
    • Inertial microfluidics
    • 55 Di Carlo, D., Inertial microfluidics. Lab Chip 9 (2009), 3038–3046.
    • (2009) Lab Chip , vol.9 , pp. 3038-3046
    • Di Carlo, D.1
  • 56
    • 84939839651 scopus 로고    scopus 로고
    • Centrifugal microfluidic platforms: advanced unit operations and applications
    • 56 Strohmeier, O., et al. Centrifugal microfluidic platforms: advanced unit operations and applications. Chem. Soc. Rev. 44 (2015), 6187–6229.
    • (2015) Chem. Soc. Rev. , vol.44 , pp. 6187-6229
    • Strohmeier, O.1
  • 57
    • 77957089903 scopus 로고    scopus 로고
    • Marginality and problem solving effectiveness in broadcast search
    • 57 Jeppesen, L.B., Lakhani, K.R., Marginality and problem solving effectiveness in broadcast search. Organ. Sci. 21 (2010), 1016–1033.
    • (2010) Organ. Sci. , vol.21 , pp. 1016-1033
    • Jeppesen, L.B.1    Lakhani, K.R.2
  • 58
    • 84857891803 scopus 로고    scopus 로고
    • The value of crowdsourcing: can users really compete with professionals in generating new product ideas?
    • 58 Poetz, M.K., Schreier, M., The value of crowdsourcing: can users really compete with professionals in generating new product ideas?. J. Prod. Innov. Manag. 29 (2012), 245–256.
    • (2012) J. Prod. Innov. Manag. , vol.29 , pp. 245-256
    • Poetz, M.K.1    Schreier, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.