-
1
-
-
84896284039
-
The present and future role of microfluidics in biomedical research
-
1 Sackmann, E.K., et al. The present and future role of microfluidics in biomedical research. Nature 507 (2014), 181–189.
-
(2014)
Nature
, vol.507
, pp. 181-189
-
-
Sackmann, E.K.1
-
2
-
-
33747117373
-
The origins and the future of microfluidics
-
2 Whitesides, G.M., The origins and the future of microfluidics. Nature 442 (2006), 368–373.
-
(2006)
Nature
, vol.442
, pp. 368-373
-
-
Whitesides, G.M.1
-
3
-
-
84902669563
-
Microfluidic Applications in the Pharmaceutical, Life Sciences, In-Vitro Diagnostic and Medical Device Markets Report
-
3 Yole Development, Microfluidic Applications in the Pharmaceutical, Life Sciences, In-Vitro Diagnostic and Medical Device Markets Report., 2013 http://www.prnewswire.com/news-releases/microfluidic-applications-in-the-pharmaceutical-life-sciences-in-vitro-diagnostic-and-medical-device-markets-report-242837751.html.
-
(2013)
-
-
Yole Development1
-
4
-
-
85017692054
-
-
Markets and Markets () Microfluidics market by materials (polymers, silicon, glass), pharmaceuticals (microreactors, toxicity screening, lab on a chip, proteomic & genomic analysis), drug delivery devices (microneedles, micropumps), IVD (POC) - global trends & forecast to 2018
-
4 Markets and Markets (2013) Microfluidics market by materials (polymers, silicon, glass), pharmaceuticals (microreactors, toxicity screening, lab on a chip, proteomic & genomic analysis), drug delivery devices (microneedles, micropumps), IVD (POC) - global trends & forecast to 2018,.
-
(2013)
-
-
-
5
-
-
0000767293
-
Soft lithographic methods for nano-fabrication
-
5 Zhao, X.-M., et al. Soft lithographic methods for nano-fabrication. J. Mater. Chem. 7 (1997), 1069–1074.
-
(1997)
J. Mater. Chem.
, vol.7
, pp. 1069-1074
-
-
Zhao, X.-M.1
-
6
-
-
0034802766
-
Soft lithography in biology
-
6 Whitesides, G.M., et al. Soft lithography in biology. Annu. Rev. Biomed. Eng. 3 (2001), 335–373.
-
(2001)
Annu. Rev. Biomed. Eng.
, vol.3
, pp. 335-373
-
-
Whitesides, G.M.1
-
7
-
-
57349108790
-
Soft lithography for microfluidics: a review
-
7 Kim, P., et al. Soft lithography for microfluidics: a review. Biochip J. 2 (2008), 1–11.
-
(2008)
Biochip J.
, vol.2
, pp. 1-11
-
-
Kim, P.1
-
8
-
-
0033988843
-
Review – fabrication of microfluidic systems in poly (dimethylsiloxane)
-
8 Mcdonald, J.C., et al. Review – fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 21 (2000), 27–40.
-
(2000)
Electrophoresis
, vol.21
, pp. 27-40
-
-
Mcdonald, J.C.1
-
9
-
-
0032403465
-
Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)
-
9 Duffy, D.C., et al. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70 (1998), 4974–4984.
-
(1998)
Anal. Chem.
, vol.70
, pp. 4974-4984
-
-
Duffy, D.C.1
-
10
-
-
84915758513
-
Perspective on microfluidic cell separation: a solved problem?
-
10 Plouffe, B.D., Murthy, S.K., Perspective on microfluidic cell separation: a solved problem?. Anal. Chem. 86 (2014), 11481–11488.
-
(2014)
Anal. Chem.
, vol.86
, pp. 11481-11488
-
-
Plouffe, B.D.1
Murthy, S.K.2
-
11
-
-
84862231072
-
Commercialization of microfluidic point-of-care devices
-
11 Chin, C., et al. Commercialization of microfluidic point-of-care devices. Lab Chip 12 (2012), 2118–2134.
-
(2012)
Lab Chip
, vol.12
, pp. 2118-2134
-
-
Chin, C.1
-
12
-
-
84902659771
-
Commercialization of microfluidic devices
-
12 Volpatti, L.R., Yetisen, A.K., Commercialization of microfluidic devices. Trends Biotechnol. 32 (2014), 347–350.
-
(2014)
Trends Biotechnol.
, vol.32
, pp. 347-350
-
-
Volpatti, L.R.1
Yetisen, A.K.2
-
13
-
-
15244347610
-
Disposable microfluidic devices: fabrication, function, and application
-
13 Fiorini, G.S., Chiu, D.T., Disposable microfluidic devices: fabrication, function, and application. Biotechniques 38 (2005), 429–446.
-
(2005)
Biotechniques
, vol.38
, pp. 429-446
-
-
Fiorini, G.S.1
Chiu, D.T.2
-
14
-
-
84876099601
-
Advances in microfluidic materials, functions, integration, and applications
-
14 Nge, P.N., et al. Advances in microfluidic materials, functions, integration, and applications. Chemical Reviews 113 (2013), 2550–2583.
-
(2013)
Chemical Reviews
, vol.113
, pp. 2550-2583
-
-
Nge, P.N.1
-
15
-
-
84884937482
-
New materials for microfluidics in biology
-
15 Ren, K., et al. New materials for microfluidics in biology. Curr. Opin. Biotechnol. 25 (2014), 78–85.
-
(2014)
Curr. Opin. Biotechnol.
, vol.25
, pp. 78-85
-
-
Ren, K.1
-
16
-
-
85017724071
-
Rapid Prototyping Techniques for the Fabrication of Biosensors
-
Woodhead Publishing Limited
-
16 Pataky, K., Brugger, J., Rapid Prototyping Techniques for the Fabrication of Biosensors. 2014, Woodhead Publishing Limited.
-
(2014)
-
-
Pataky, K.1
Brugger, J.2
-
17
-
-
84897818335
-
Microfluidic channels laser-cut in thin double-sided tapes: cost-effective biocompatible fluidics in minutes from design to final integration with optical biochips
-
17 Patko, D., et al. Microfluidic channels laser-cut in thin double-sided tapes: cost-effective biocompatible fluidics in minutes from design to final integration with optical biochips. Sensors Actuators, B Chem. 196 (2014), 352–356.
-
(2014)
Sensors Actuators, B Chem.
, vol.196
, pp. 352-356
-
-
Patko, D.1
-
18
-
-
0042040751
-
CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems
-
18 Klank, H., et al. CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 2 (2002), 242–246.
-
(2002)
Lab Chip
, vol.2
, pp. 242-246
-
-
Klank, H.1
-
19
-
-
84907697539
-
Simple and cost-effective fabrication of microvalve arrays in PDMS using laser cut molds with application to C. elegans manipulation in microfluidics
-
19 Samuel, R., et al. Simple and cost-effective fabrication of microvalve arrays in PDMS using laser cut molds with application to C. elegans manipulation in microfluidics. J. Micromechanics Microengineering, 24, 2014, 105007.
-
(2014)
J. Micromechanics Microengineering
, vol.24
, pp. 105007
-
-
Samuel, R.1
-
20
-
-
84874104584
-
Fabrication of glass microchannels by xurography for electrophoresis applications
-
20 Pessoa de Santana, P., Fabrication of glass microchannels by xurography for electrophoresis applications. Analyst 138 (2013), 1660–1664.
-
(2013)
Analyst
, vol.138
, pp. 1660-1664
-
-
Pessoa de Santana, P.1
-
21
-
-
77952889848
-
Glass-composite prototyping for flow PCR with in situ DNA analysis
-
21 Pješčić, I., et al. Glass-composite prototyping for flow PCR with in situ DNA analysis. Biomed. Microdevices 12 (2010), 333–343.
-
(2010)
Biomed. Microdevices
, vol.12
, pp. 333-343
-
-
Pješčić, I.1
-
22
-
-
29244476881
-
Xurography: rapid prototyping of microstructures using a cutting plotter
-
22 Bartholomeusz, D.A., Xurography: rapid prototyping of microstructures using a cutting plotter. J. Microelectromechanical Syst. 14 (2005), 1364–1374.
-
(2005)
J. Microelectromechanical Syst.
, vol.14
, pp. 1364-1374
-
-
Bartholomeusz, D.A.1
-
23
-
-
84896756739
-
Fast fabrication process of microfluidic devices based on cyclic olefin copolymer
-
23 Azouz, A. Ben, et al. Fast fabrication process of microfluidic devices based on cyclic olefin copolymer. Mater. Manuf. Process. 29 (2014), 93–99.
-
(2014)
Mater. Manuf. Process.
, vol.29
, pp. 93-99
-
-
Azouz, A.B.1
-
24
-
-
84915825782
-
Ultra-rapid prototyping of flexible, multi-layered microfluidic devices via razor writing
-
24 Cosson, S., et al. Ultra-rapid prototyping of flexible, multi-layered microfluidic devices via razor writing. Lab Chip 15 (2014), 72–76.
-
(2014)
Lab Chip
, vol.15
, pp. 72-76
-
-
Cosson, S.1
-
25
-
-
84940047332
-
3D printed microfluidics for biological applications
-
25 Ho, C.M.B., et al. 3D printed microfluidics for biological applications. Lab Chip 15 (2015), 3627–3637.
-
(2015)
Lab Chip
, vol.15
, pp. 3627-3637
-
-
Ho, C.M.B.1
-
26
-
-
84969375488
-
3D-printed microfluidics
-
26 Au, A.K., et al. 3D-printed microfluidics. Angewandte Chemie Int Ed 55 (2016), 3862–3881.
-
(2016)
Angewandte Chemie Int Ed
, vol.55
, pp. 3862-3881
-
-
Au, A.K.1
-
27
-
-
84969951671
-
The upcoming 3D-printing revolution in microfluidics
-
27 Bhattacharjee, N., The upcoming 3D-printing revolution in microfluidics. Lab Chip 16 (2016), 1720–1742.
-
(2016)
Lab Chip
, vol.16
, pp. 1720-1742
-
-
Bhattacharjee, N.1
-
28
-
-
85017687775
-
What are makerspaces, hackerspaces, and fab labs?
-
28 Van Holm, E.J., What are makerspaces, hackerspaces, and fab labs?. SSRN Electron. J., 2012, 10.2139/ssrn.2548211.
-
(2012)
SSRN Electron. J.
-
-
Van Holm, E.J.1
-
29
-
-
84871200997
-
How to make almost anything: the digital fabrication revolution
-
29 Gershenfeld, N., How to make almost anything: the digital fabrication revolution. Foreign Aff. 91 (2012), 43–57.
-
(2012)
Foreign Aff.
, vol.91
, pp. 43-57
-
-
Gershenfeld, N.1
-
30
-
-
85017707409
-
BioCoder
-
O'Rielly
-
30 Scroggins, M., et al. BioCoder. 2013, O'Rielly.
-
(2013)
-
-
Scroggins, M.1
-
31
-
-
84910052995
-
Lab-on-a-chip devices: How to close and plug the lab?
-
31 Temiz, Y., et al. Lab-on-a-chip devices: How to close and plug the lab?. Microelectron. Eng. 132 (2015), 156–175.
-
(2015)
Microelectron. Eng.
, vol.132
, pp. 156-175
-
-
Temiz, Y.1
-
32
-
-
84988841558
-
A rapid, instrument-free, sample-to-result nucleic acid amplification test
-
32 Lafleur, L., et al. A rapid, instrument-free, sample-to-result nucleic acid amplification test. Lab Chip, 2016, 10.1039/C6LC00677A.
-
(2016)
Lab Chip
-
-
Lafleur, L.1
-
33
-
-
84984821828
-
Xurography actuated valving for centrifugal flow control
-
33 Kinahan, D.J., et al. Xurography actuated valving for centrifugal flow control. Lab Chip, 2016, 10.1039/C6LC00568C.
-
(2016)
Lab Chip
-
-
Kinahan, D.J.1
-
34
-
-
0037060168
-
Polymer microfluidic devices
-
34 Becker, H., Locascio, L.E., Polymer microfluidic devices. Talanta 56 (2002), 267–287.
-
(2002)
Talanta
, vol.56
, pp. 267-287
-
-
Becker, H.1
Locascio, L.E.2
-
35
-
-
84860439214
-
Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models
-
35 Van Midwoud, P.M., Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal. Chem. 84 (2012), 3938–3944.
-
(2012)
Anal. Chem.
, vol.84
, pp. 3938-3944
-
-
Van Midwoud, P.M.1
-
36
-
-
84877937373
-
Integration of functional materials and surface modification for polymeric microfluidic systems
-
36 Kitsara, M., Ducrée, J., Integration of functional materials and surface modification for polymeric microfluidic systems. J. Micromechanics Microengineering, 23, 2013, 33001.
-
(2013)
J. Micromechanics Microengineering
, vol.23
, pp. 33001
-
-
Kitsara, M.1
Ducrée, J.2
-
37
-
-
1842866915
-
Nonlinear decrease of background fluorescence in polymer thin-films – a survey of materials and how they can complicate fluorescence detection in microTAS
-
37 Hawkins, K.R., Yager, P., Nonlinear decrease of background fluorescence in polymer thin-films – a survey of materials and how they can complicate fluorescence detection in microTAS. Lab Chip 3 (2003), 248–252.
-
(2003)
Lab Chip
, vol.3
, pp. 248-252
-
-
Hawkins, K.R.1
Yager, P.2
-
38
-
-
28944432273
-
The autofluorescence of plastic materials and chips measured under laser irradiation
-
38 Piruska, A., et al. The autofluorescence of plastic materials and chips measured under laser irradiation. Lab Chip 5 (2005), 1348–1354.
-
(2005)
Lab Chip
, vol.5
, pp. 1348-1354
-
-
Piruska, A.1
-
39
-
-
85098321437
-
Microfluidics for Biologists, Chapter 8
-
1st edn Springer
-
39 Solanki, S., Pandey, C.M., Microfluidics for Biologists, Chapter 8. 1st edn, 2016, Springer.
-
(2016)
-
-
Solanki, S.1
Pandey, C.M.2
-
40
-
-
33749422172
-
Mapping the landscape of diagnostics for sexually transmitted infections: Key findings and recommandations
-
40 Kettler, H., et al. Mapping the landscape of diagnostics for sexually transmitted infections: Key findings and recommandations. 2004 http://www.who.int/tdr/publications/tdr-research-publications/mapping-landscape-sti/en/index html.
-
(2004)
-
-
Kettler, H.1
-
41
-
-
84958053482
-
A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples
-
41 Rodriguez, N.M., et al. A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples. Lab Chip 16 (2016), 753–763.
-
(2016)
Lab Chip
, vol.16
, pp. 753-763
-
-
Rodriguez, N.M.1
-
42
-
-
84958246393
-
A concentration gradient generator on a paper-based microfluidic chip coupled with cell culture microarray for high-throughput drug screening
-
42 Hong, B., et al. A concentration gradient generator on a paper-based microfluidic chip coupled with cell culture microarray for high-throughput drug screening. Biomed. Microdevices 18 (2016), 1–8.
-
(2016)
Biomed. Microdevices
, vol.18
, pp. 1-8
-
-
Hong, B.1
-
43
-
-
84903718176
-
Highly sensitive immunoassay based on controlled rehydration of patterned reagents in a 2-dimensional paper network
-
43 Fridley, G.E., et al. Highly sensitive immunoassay based on controlled rehydration of patterned reagents in a 2-dimensional paper network. Anal. Chem. 86 (2014), 6447–6453.
-
(2014)
Anal. Chem.
, vol.86
, pp. 6447-6453
-
-
Fridley, G.E.1
-
44
-
-
84943560059
-
Paper-based chemical and biological sensors: Engineering aspects
-
44 Ahmed, S., et al. Paper-based chemical and biological sensors: Engineering aspects. Biosens. Bioelectron. 77 (2016), 249–263.
-
(2016)
Biosens. Bioelectron.
, vol.77
, pp. 249-263
-
-
Ahmed, S.1
-
45
-
-
77955540776
-
Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes
-
45 Nath, P., et al. Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes. Lab Chip 10 (2010), 2286–2291.
-
(2010)
Lab Chip
, vol.10
, pp. 2286-2291
-
-
Nath, P.1
-
46
-
-
84901593888
-
Polymerase chain reaction compatibility of adhesive transfer tape based microfluidic platforms
-
46 Nath, P., et al. Polymerase chain reaction compatibility of adhesive transfer tape based microfluidic platforms. Microsyst. Technol. 20 (2014), 1187–1193.
-
(2014)
Microsyst. Technol.
, vol.20
, pp. 1187-1193
-
-
Nath, P.1
-
47
-
-
84930065455
-
Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method
-
47 Thompson, B.L., et al. Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method. Nat. Protoc. 10 (2015), 875–886.
-
(2015)
Nat. Protoc.
, vol.10
, pp. 875-886
-
-
Thompson, B.L.1
-
48
-
-
82555176812
-
A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami
-
48 Govindarajan, A.V., et al. A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Lab Chip 12 (2012), 174–181.
-
(2012)
Lab Chip
, vol.12
, pp. 174-181
-
-
Govindarajan, A.V.1
-
49
-
-
68849107869
-
Understanding wax printing : a simple micropatterning process for paper-based microfluidics
-
49 Carrilho, E. et al. (2009) Understanding wax printing : a simple micropatterning process for paper-based microfluidics. 81, 7091–7095.
-
(2009)
, vol.81
, pp. 7091-7095
-
-
Carrilho, E.1
-
50
-
-
84930668091
-
Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices
-
50 Guckenberger, D.J., Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15 (2015), 2364–2378.
-
(2015)
Lab Chip
, vol.15
, pp. 2364-2378
-
-
Guckenberger, D.J.1
-
51
-
-
84991823793
-
3D-printable materials for microbial liquid culture
-
51 Walsh, M.E. et al. (2016) 3D-printable materials for microbial liquid culture. 3, 113–118.
-
(2016)
, vol.3
, pp. 113-118
-
-
Walsh, M.E.1
-
52
-
-
84926363165
-
Open labware: 3-D printing your own lab equipment
-
52 Baden, T., et al. Open labware: 3-D printing your own lab equipment. PLoS Biol. 13 (2015), 1–12.
-
(2015)
PLoS Biol.
, vol.13
, pp. 1-12
-
-
Baden, T.1
-
53
-
-
84977572032
-
Design of problem-based learning activities in the field of microfluidics for 12- to 13-year-old participants – small plumbing!: empowering the next generation of microfluidic engineers
-
53 Bridle, H., et al. Design of problem-based learning activities in the field of microfluidics for 12- to 13-year-old participants – small plumbing!: empowering the next generation of microfluidic engineers. Microfluid. Nanofluidics 20 (2016), 1–11.
-
(2016)
Microfluid. Nanofluidics
, vol.20
, pp. 1-11
-
-
Bridle, H.1
-
54
-
-
84892596034
-
Using paper-based diagnostics with high school students to model forensic investigation and colorimetric analysis
-
54 Ravgiala, R.R., et al. Using paper-based diagnostics with high school students to model forensic investigation and colorimetric analysis. J. Chem. Educ. 91 (2014), 107–111.
-
(2014)
J. Chem. Educ.
, vol.91
, pp. 107-111
-
-
Ravgiala, R.R.1
-
55
-
-
70350464298
-
Inertial microfluidics
-
55 Di Carlo, D., Inertial microfluidics. Lab Chip 9 (2009), 3038–3046.
-
(2009)
Lab Chip
, vol.9
, pp. 3038-3046
-
-
Di Carlo, D.1
-
56
-
-
84939839651
-
Centrifugal microfluidic platforms: advanced unit operations and applications
-
56 Strohmeier, O., et al. Centrifugal microfluidic platforms: advanced unit operations and applications. Chem. Soc. Rev. 44 (2015), 6187–6229.
-
(2015)
Chem. Soc. Rev.
, vol.44
, pp. 6187-6229
-
-
Strohmeier, O.1
-
57
-
-
77957089903
-
Marginality and problem solving effectiveness in broadcast search
-
57 Jeppesen, L.B., Lakhani, K.R., Marginality and problem solving effectiveness in broadcast search. Organ. Sci. 21 (2010), 1016–1033.
-
(2010)
Organ. Sci.
, vol.21
, pp. 1016-1033
-
-
Jeppesen, L.B.1
Lakhani, K.R.2
-
58
-
-
84857891803
-
The value of crowdsourcing: can users really compete with professionals in generating new product ideas?
-
58 Poetz, M.K., Schreier, M., The value of crowdsourcing: can users really compete with professionals in generating new product ideas?. J. Prod. Innov. Manag. 29 (2012), 245–256.
-
(2012)
J. Prod. Innov. Manag.
, vol.29
, pp. 245-256
-
-
Poetz, M.K.1
Schreier, M.2
|