메뉴 건너뛰기




Volumn 62, Issue , 2017, Pages 443-460

Physicochemical Property Variation in Spider Silk: Ecology, Evolution, and Synthetic Production

Author keywords

Biomaterial; Chemical properties; Hierarchical structure; MaSp model; Molecular arrangement; Physical properties; Spinning processes; Supercontraction; Tensile properties

Indexed keywords

SILK;

EID: 85011309220     PISSN: 00664170     EISSN: None     Source Type: Book Series    
DOI: 10.1146/annurev-ento-031616-035615     Document Type: Review
Times cited : (97)

References (145)
  • 1
    • 53549114199 scopus 로고    scopus 로고
    • Spider silk aging: Initial improvement in a high performance material followed by slow degradation
    • Agnarsson I,Boutry C, BlackledgeTA. 2008. Spider silk aging: initial improvement in a high performance material followed by slow degradation. J. Exp. Zool. 309:494-504
    • (2008) J. Exp. Zool , vol.309 , pp. 494-504
    • Agnarsson, I.1    Boutry, C.2    Blackledge, T.A.3
  • 2
    • 67649482988 scopus 로고    scopus 로고
    • Supercontraction forces in spider dragline silk depend on hydration rate
    • Agnarsson I, Boutry C, Wong S-C, Baji A, Dhinojwala A, et al. 2009. Supercontraction forces in spider dragline silk depend on hydration rate. Zoology 112:325-31
    • (2009) Zoology , vol.112 , pp. 325-331
    • Agnarsson, I.1    Boutry, C.2    Wong, S.-C.3    Baji, A.4    Dhinojwala, A.5
  • 3
    • 84916630544 scopus 로고    scopus 로고
    • Carbonic anhydrase generates CO2 and H+ that drive spider silk formation via opposite effects on the terminal domains
    • Andersson M, Chen G, Otikovs M, Landreh M, Nordling K, et al. 2014. Carbonic anhydrase generates CO2 and H+ that drive spider silk formation via opposite effects on the terminal domains. PLOS Biol. 12:e1001921
    • (2014) PLOS Biol. , vol.12 , pp. e1001921
    • Andersson, M.1    Chen, G.2    Otikovs, M.3    Landreh, M.4    Nordling, K.5
  • 7
    • 36649007963 scopus 로고    scopus 로고
    • Blueprint for a high-performance biomaterial: Full-length spider dragline silk genes
    • Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY. 2007. Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLOS ONE 2:e514
    • (2007) PLOS ONE , vol.2 , pp. e514
    • Ayoub, N.A.1    Garb, J.E.2    Tinghitella, R.M.3    Collin, M.A.4    Hayashi, C.Y.5
  • 8
    • 38949105514 scopus 로고    scopus 로고
    • Multiple recombining loci encode MaSp1, the primary constituent of dragline silk, in widow spiders (Latrodectus: Theridiidae)
    • Ayoub NA, Hayashi CY. 2008. Multiple recombining loci encode MaSp1, the primary constituent of dragline silk, in widow spiders (Latrodectus: Theridiidae). Mol. Biol. Evol. 25:277-86
    • (2008) Mol. Biol. Evol , vol.25 , pp. 277-286
    • Ayoub, N.A.1    Hayashi, C.Y.2
  • 9
    • 33747078717 scopus 로고    scopus 로고
    • Silken toolkits: Biomechanics of silk fibers spun by the orb web spider Argiope arentata (Fabricius 1775)
    • Blackledge TA, Hayashi CY. 2006. Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope arentata (Fabricius 1775). J. Exp. Biol. 209:2452-61
    • (2006) J. Exp. Biol. , vol.209 , pp. 2452-2461
    • Blackledge, T.A.1    Hayashi, C.Y.2
  • 10
    • 33749169644 scopus 로고    scopus 로고
    • Unraveling the mechanical properties of composite silk threads spun by cribellate orb-weaving spiders
    • Blackledge TA, Hayashi CY. 2006. Unraveling the mechanical properties of composite silk threads spun by cribellate orb-weaving spiders. J. Exp. Biol. 209:3131-40
    • (2006) J. Exp. Biol. , vol.209 , pp. 3131-3140
    • Blackledge, T.A.1    Hayashi, C.Y.2
  • 12
    • 65249141185 scopus 로고    scopus 로고
    • Reconstructing web evolution and spider diversification in the molecular era
    • Blackledge TA, Scharff N, Coddington JA, Sz üts T, Wenzel JW, et al. 2009. Reconstructing web evolution and spider diversification in the molecular era. PNAS 106:5229-34
    • (2009) PNAS , vol.106 , pp. 5229-5234
    • Blackledge, T.A.1    Scharff, N.2    Coddington, J.A.3    Sz Üts, T.4    Wenzel, J.W.5
  • 13
    • 78649312175 scopus 로고    scopus 로고
    • Prey type, vibrations and handling interactively influence spider silk expression
    • Blamires SJ, Chou I-C, Tso I-M. 2010. Prey type, vibrations and handling interactively influence spider silk expression. J. Exp. Biol. 213:3906-10
    • (2010) J. Exp. Biol. , vol.213 , pp. 3906-3910
    • Blamires, S.J.1    Chou, I.-C.2    Tso, I.-M.3
  • 14
    • 84927948236 scopus 로고    scopus 로고
    • Mechanical performance of spider silk is robust to nutrient-mediated changes in protein composition
    • Blamires SJ, Liao C-P, Chang C-K, Chuang Y-C, Wu C-L, et al. 2015. Mechanical performance of spider silk is robust to nutrient-mediated changes in protein composition. Biomacromolecules 16:1225-32
    • (2015) Biomacromolecules , vol.16 , pp. 1225-1232
    • Blamires, S.J.1    Liao, C.-P.2    Chang, C.-K.3    Chuang, Y.-C.4    Wu, C.-L.5
  • 15
    • 84872799446 scopus 로고    scopus 로고
    • Nutrient-mediated architectural plasticity of a predatory trap
    • Blamires SJ, Tso I-M. 2013. Nutrient-mediated architectural plasticity of a predatory trap. PLOS ONE 8:e54558
    • (2013) PLOS ONE , vol.8 , pp. e54558
    • Blamires, S.J.1    Tso, I.-M.2
  • 16
    • 84862337989 scopus 로고    scopus 로고
    • Environmentally induced post-spin property changes in spider silks: Influences of web type, spidroin composition and ecology
    • Blamires SJ, Wu C-L, Blackledge TA, Tso I-M. 2012. Environmentally induced post-spin property changes in spider silks: influences of web type, spidroin composition and ecology. Biol. J. Linn. Soc. 106:580-88
    • (2012) Biol. J. Linn. Soc , vol.106 , pp. 580-588
    • Blamires, S.J.1    Wu, C.-L.2    Blackledge, T.A.3    Tso, I.-M.4
  • 18
    • 84857422251 scopus 로고    scopus 로고
    • Variation in protein intake induces variation in spider silk expression
    • Blamires SJ,Wu C-L, Tso I-M. 2012. Variation in protein intake induces variation in spider silk expression. PLOS ONE 7:e31626
    • (2012) PLOS ONE , vol.7 , pp. e31626
    • Blamires, S.J.1    Wu, C.-L.2    Tso, I.-M.3
  • 19
    • 84885643709 scopus 로고    scopus 로고
    • Uncovering spider silk nanocrystalline variations that facilitate wind-induced mechanical property changes
    • Blamires SJ, Wu C-C, Wu C-L, Sheu H-S, Tso I-M. 2013. Uncovering spider silk nanocrystalline variations that facilitate wind-induced mechanical property changes. Biomacromolecules 14:3484-90
    • (2013) Biomacromolecules , vol.14 , pp. 3484-3490
    • Blamires, S.J.1    Wu, C.-C.2    Wu, C.-L.3    Sheu, H.-S.4    Tso, I.-M.5
  • 20
    • 84905657657 scopus 로고    scopus 로고
    • Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution
    • Bond JE, Garrison NL, Hamilton CA, Godwin RL, Hedin M, Agnarsson I. 2014. Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Curr. Biol. 24:1765-71
    • (2014) Curr. Biol. , vol.24 , pp. 1765-1771
    • Bond, J.E.1    Garrison, N.L.2    Hamilton, C.A.3    Godwin, R.L.4    Hedin, M.5    Agnarsson, I.6
  • 21
    • 84858866402 scopus 로고    scopus 로고
    • Molecular mechanics of silk nanostructures under varied mechanical loading
    • Bratzel G, Buehler MJ. 2011. Molecular mechanics of silk nanostructures under varied mechanical loading. Biopolymers 97:408-17
    • (2011) Biopolymers , vol.97 , pp. 408-417
    • Bratzel, G.1    Buehler, M.J.2
  • 24
    • 0032651287 scopus 로고    scopus 로고
    • Molecular order in spider major ampullate silk (Dragline): Effects of spinning rate and post-spin drawing
    • Carmichael S, Viney C. 1999. Molecular order in spider major ampullate silk (Dragline): effects of spinning rate and post-spin drawing. J. Appl. Polym. Sci. 72:895-903
    • (1999) J. Appl. Polym. Sci. , vol.72 , pp. 895-903
    • Carmichael, S.1    Viney, C.2
  • 26
    • 0036059262 scopus 로고    scopus 로고
    • Rheological characterization of Nephila spidroin solution
    • Chen X, Knight DP, Vollrath F. 2002. Rheological characterization of Nephila spidroin solution. Biomacromolecules 3:644-48
    • (2002) Biomacromolecules , vol.3 , pp. 644-648
    • Chen, X.1    Knight, D.P.2    Vollrath, F.3
  • 27
    • 33744769347 scopus 로고    scopus 로고
    • The spinning processes for spider silk
    • Chen X, Shao Z, Vollrath F. 2006. The spinning processes for spider silk. Soft Matter 2:448-51
    • (2006) Soft Matter , vol.2 , pp. 448-451
    • Chen, X.1    Shao, Z.2    Vollrath, F.3
  • 28
    • 84869845368 scopus 로고    scopus 로고
    • Recent advances in production of recombinant spider silks
    • Chung H, Kim TY, Lee SY. 2012. Recent advances in production of recombinant spider silks. Curr. Opin. Biotechnol. 23:957-64
    • (2012) Curr. Opin. Biotechnol , vol.23 , pp. 957-964
    • Chung, H.1    Kim, T.Y.2    Lee, S.Y.3
  • 29
    • 68849117455 scopus 로고    scopus 로고
    • Comparison of Embiopteran silks reveals tensile and structural similarities across taxa
    • Collin MA, Camama E, Swanson BO, Edgerly JS, Hayashi CY. 2009. Comparison of Embiopteran silks reveals tensile and structural similarities across taxa. Biomacromolecules 10:2268-74
    • (2009) Biomacromolecules , vol.10 , pp. 2268-2274
    • Collin, M.A.1    Camama, E.2    Swanson, B.O.3    Edgerly, J.S.4    Hayashi, C.Y.5
  • 32
    • 0032911153 scopus 로고    scopus 로고
    • A comparison of the composition of silk proteins produced by spiders and insects
    • Craig CL, Hsu M, Kaplan DL, Pierce ME. 1999. A comparison of the composition of silk proteins produced by spiders and insects. Int. J. Biol. Macromol. 24:109-18
    • (1999) Int. J. Biol. Macromol , vol.24 , pp. 109-118
    • Craig, C.L.1    Hsu, M.2    Kaplan, D.L.3    Pierce, M.E.4
  • 36
    • 84880934389 scopus 로고    scopus 로고
    • Structure and function of the major ampullate spinning duct of the golden orbweaver, Nephila edulis
    • Davies GJG, Knight DP, Vollrath F. 2013. Structure and function of the major ampullate spinning duct of the golden orbweaver, Nephila edulis. Tiss. Cell 45:306-11
    • (2013) Tiss. Cell , vol.45 , pp. 306-311
    • Davies, G.J.G.1    Knight, D.P.2    Vollrath, F.3
  • 37
    • 8344220569 scopus 로고    scopus 로고
    • Transition to a β-sheet-rich structure in spidroin in vitro: The effects of pH and cations
    • Dicko C, Kennedy JM, Knight DP, Vollrath F. 2004. Transition to a β-sheet-rich structure in spidroin in vitro: the effects of pH and cations. Biochemistry 43:14080-87
    • (2004) Biochemistry , vol.43 , pp. 14080-14087
    • Dicko, C.1    Kennedy, J.M.2    Knight, D.P.3    Vollrath, F.4
  • 38
  • 39
    • 77951974343 scopus 로고    scopus 로고
    • The role of salt and shear on the storage and assembly of spider silk proteins
    • Eisoldt L,Hardy JG, Heim M, Scheibel TR. 2010. The role of salt and shear on the storage and assembly of spider silk proteins. J. Struct. Biol. 170:413-19
    • (2010) J. Struct. Biol. , vol.170 , pp. 413-419
    • Eisoldt, L.1    Hardy, J.G.2    Heim, M.3    Scheibel, T.R.4
  • 43
    • 84898421673 scopus 로고    scopus 로고
    • Spider silk: An ancient biomaterial for 21st century research
    • ed. D Penny. Manchester, UK: SIRI Scientific Press
    • Garb JE. 2013. Spider silk: an ancient biomaterial for 21st century research. In Spider Research in the 21st Century: Trends and Perspectives, ed. D Penny, pp. 252-81. Manchester, UK: SIRI Scientific Press
    • (2013) Spider Research in the 21st Century: Trends and Perspectives , pp. 252-281
    • Garb, J.E.1
  • 44
    • 77955292367 scopus 로고    scopus 로고
    • Untangling spider silk evolution with spidroin terminal domains
    • Garb JE, Ayoub NA,Hayashi CY. 2010. Untangling spider silk evolution with spidroin terminal domains. BMC Evol. Biol. 10:243
    • (2010) BMC Evol. Biol. , vol.10 , pp. 243
    • Garb, J.E.1    Ayoub, N.A.2    Hayashi, C.Y.3
  • 45
    • 0035842367 scopus 로고    scopus 로고
    • Active control of spider silk strength: Comparison of drag line spun on vertical and horizontal surfaces
    • Garrido MA, ElicesM, Viney C, Pérez-Rigueiro J. 2002. Active control of spider silk strength: comparison of drag line spun on vertical and horizontal surfaces. Polymer 43:1537-40
    • (2002) Polymer , vol.43 , pp. 1537-1540
    • Garrido, M.A.1    Elices, M.2    Viney, C.3    Pérez-Rigueiro, J.4
  • 46
    • 0037054208 scopus 로고    scopus 로고
    • The variability and interdependence of spider drag line tensile properties
    • Garrido MA, Elices M, Viney C, Pérez-Rigueiro J. 2002. The variability and interdependence of spider drag line tensile properties. Polymer 43:4495-502
    • (2002) Polymer , vol.43 , pp. 4495-4502
    • Garrido, M.A.1    Elices, M.2    Viney, C.3    Pérez-Rigueiro, J.4
  • 47
    • 80755159083 scopus 로고    scopus 로고
    • Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness
    • GiesaT, Arslan M, PugnoNM, BuehlerMJ. 2011. Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness. Nano Lett. 11:5038-46
    • (2011) Nano Lett , vol.11 , pp. 5038-5046
    • Giesa, T.1    Arslan, M.2    Pugno, N.M.3    Buehler, M.J.4
  • 48
    • 84867479720 scopus 로고    scopus 로고
    • Natural stiffening increases flaw tolerance of biological fibers
    • Giesa T, Pugno NM, Buehler MJ. 2012. Natural stiffening increases flaw tolerance of biological fibers. Phys. Rev. E 86:041902
    • (2012) Phys. Rev. e , vol.86 , pp. 041902
    • Giesa, T.1    Pugno, N.M.2    Buehler, M.J.3
  • 49
    • 84856943369 scopus 로고    scopus 로고
    • Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers
    • Gnesa E, Hsia Y, Yarger JL, WeberW, Lin-Cereghino J, et al. 2012. Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers. Biomacromolecules 13:304-12
    • (2012) Biomacromolecules , vol.13 , pp. 304-312
    • Gnesa, E.1    Hsia, Y.2    Yarger, J.L.3    Weber, W.4    Lin-Cereghino, J.5
  • 50
    • 84882314792 scopus 로고    scopus 로고
    • Effect of sodium chloride on the structure and stability of spider silks N-terminal protein domain
    • Gronau G, Zhao Q, BuehlerMJ. 2013. Effect of sodium chloride on the structure and stability of spider silks N-terminal protein domain. Biomater. Sci. 1:276-84
    • (2013) Biomater. Sci. , vol.1 , pp. 276-284
    • Gronau, G.1    Zhao, Q.2    Buehler, M.J.3
  • 51
    • 0032935645 scopus 로고    scopus 로고
    • Molecular chain orientation in supercontracted and re-extended spider silk
    • Grubb DT, Ji G. 1999. Molecular chain orientation in supercontracted and re-extended spider silk. Int. J. Biol. Macromol. 24:203-10
    • (1999) Int. J. Biol. Macromol , vol.24 , pp. 203-210
    • Grubb, D.T.1    Ji, G.2
  • 52
    • 84861748353 scopus 로고    scopus 로고
    • Silks cope with stress by tuning their mechanical properties under load
    • Guan J, Porter D, Vollrath F. 2012. Silks cope with stress by tuning their mechanical properties under load. Polymer 53:2717-26
    • (2012) Polymer , vol.53 , pp. 2717-2726
    • Guan, J.1    Porter, D.2    Vollrath, F.3
  • 53
    • 52049111232 scopus 로고    scopus 로고
    • Environmental conditions impinge on dragline silk protein composition
    • Guehrs KH, Schlott B, Grosse F, Weisshart K. 2008. Environmental conditions impinge on dragline silk protein composition. Insect Mol. Biol. 17:553-64
    • (2008) Insect Mol. Biol. , vol.17 , pp. 553-564
    • Guehrs, K.H.1    Schlott, B.2    Grosse, F.3    Weisshart, K.4
  • 54
    • 0029925013 scopus 로고    scopus 로고
    • Silk properties determined by gland-specific expression of a spider fibroin gene family
    • Guerette PA,Gizinger DG, Weber BHF,Gosline JM. 1996. Silk properties determined by gland-specific expression of a spider fibroin gene family. Science 272:112-15
    • (1996) Science , vol.272 , pp. 112-115
    • Guerette, P.A.1    Gizinger, D.G.2    Weber, B.H.F.3    Gosline, J.M.4
  • 56
    • 84863695783 scopus 로고    scopus 로고
    • Minor ampullate silks from Nephila and Argiope spiders: Tensile properties and microstructural characterization
    • Guinea GV, ElicesM, Plaza GR, Perea GB, Daza R, et al. 2012. Minor ampullate silks from Nephila and Argiope spiders: tensile properties and microstructural characterization. Biomacromolecules 13:2087-98
    • (2012) Biomacromolecules , vol.13 , pp. 2087-2098
    • Guinea, G.V.1    Elices, M.2    Plaza, G.R.3    Perea, G.B.4    Daza, R.5
  • 57
    • 77952378056 scopus 로고    scopus 로고
    • A conserved spider silk domain acts as a molecular switch that controls fibre assembly
    • Hagn F, Eisoldt L, Hardy JG, Vanderly C, Coles M, et al. 2010. A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465:239-42
    • (2010) Nature , vol.465 , pp. 239-242
    • Hagn, F.1    Eisoldt, L.2    Hardy, J.G.3    Vanderly, C.4    Coles, M.5
  • 58
    • 78650693161 scopus 로고    scopus 로고
    • PH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk-implications for fiber formation
    • Hagn F, Thamm C, Scheibel T, Kessler H. 2011. pH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk-implications for fiber formation. Angnew. Chem. Int. Ed. 50:310-13
    • (2011) Angnew. Chem. Int. Ed , vol.50 , pp. 310-313
    • Hagn, F.1    Thamm, C.2    Scheibel, T.3    Kessler, H.4
  • 59
    • 84875098445 scopus 로고    scopus 로고
    • Analysis of a new type of major ampullate spider silk gene, MaSp1s
    • Han L, Zhang L, Zhao T, Wang Y, Nakagaki M. 2013. Analysis of a new type of major ampullate spider silk gene, MaSp1s. Int. J. Biol. Macromol. 56:156-61
    • (2013) Int. J. Biol. Macromol , vol.56 , pp. 156-161
    • Han, L.1    Zhang, L.2    Zhao, T.3    Wang, Y.4    Nakagaki, M.5
  • 60
    • 40849102539 scopus 로고    scopus 로고
    • Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: Implications for fiber formation
    • Hedhammer M, Rising A, Grip S, Saenz Martinez A, Nordling K, et al. 2008. Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: implications for fiber formation. Biochemistry 47:3407-17
    • (2008) Biochemistry , vol.47 , pp. 3407-3417
    • Hedhammer, M.1    Rising, A.2    Grip, S.3    Saenz Martinez, A.4    Nordling, K.5
  • 61
    • 77949890715 scopus 로고    scopus 로고
    • Hierarchical structures made of proteins.The complex architecture of spider webs and their constituent silk proteins
    • Heim M, RomerL, ScheibelT. 2010. Hierarchical structures made of proteins.The complex architecture of spider webs and their constituent silk proteins. Chem. Soc. Rev. 39:156-64
    • (2010) Chem. Soc. Rev , vol.39 , pp. 156-164
    • Heim, M.1    Romer, L.2    Lt, S.3
  • 62
    • 0026657815 scopus 로고
    • Isolation of a clone encoding a second dragline silk fibroin: Nephila clavipes dragline silk is a two-protein fiber
    • Hinman MB, Lewis RV. 1992. Isolation of a clone encoding a second dragline silk fibroin: Nephila clavipes dragline silk is a two-protein fiber. J. Biol. Chem. 267:19320-24
    • (1992) J. Biol. Chem. , vol.267 , pp. 19320-19324
    • Hinman, M.B.1    Lewis, R.V.2
  • 63
    • 84858861973 scopus 로고    scopus 로고
    • Direct structural and optical regimes in natural silk spinning
    • Holland C, O'Neil K, Vollrath F, Dicko C. 2012. Direct structural and optical regimes in natural silk spinning. Biopolymers 97:368-73
    • (2012) Biopolymers , vol.97 , pp. 368-373
    • Holland, C.1    O'Neil, K.2    Vollrath, F.3    Dicko, C.4
  • 64
    • 84891953703 scopus 로고    scopus 로고
    • Systematics, phylogeny, and evolution of orb-weaving spiders
    • Hormiga G, Griswald CE. 2014. Systematics, phylogeny, and evolution of orb-weaving spiders. Annu. Rev. Entomol. 59:487-512
    • (2014) Annu. Rev. Entomol , vol.59 , pp. 487-512
    • Hormiga, G.1    Griswald, C.E.2
  • 65
    • 20444367655 scopus 로고    scopus 로고
    • Egg case protein 1 A new class of silk proteins with fibroin-like properties from the spider Latrodectus Hesperus
    • Hu X, Kohler K, Falick AM, Moore AMF, Jones PR, et al. 2005. Egg case protein 1. A new class of silk proteins with fibroin-like properties from the spider Latrodectus hesperus. J. Biol. Chem. 280:21220-30
    • (2005) J. Biol. Chem. , vol.280 , pp. 21220-21230
    • Hu, X.1    Kohler, K.2    Falick, A.M.3    Moore, A.M.F.4    Jones, P.R.5
  • 66
    • 33746562390 scopus 로고    scopus 로고
    • Characterization and expression of a cDNA encoding a tubuliform silk protein of the golden web spider Nephila antipodiana
    • Huang W, Lin Z, Sin YM, Li D, Gong Z, Yang D. 2006. Characterization and expression of a cDNA encoding a tubuliform silk protein of the golden web spider Nephila antipodiana. Biochimie 88:849-58
    • (2006) Biochimie , vol.88 , pp. 849-858
    • Huang, W.1    Lin, Z.2    Sin, Y.M.3    Li, D.4    Gong, Z.5    Yang, D.6
  • 67
    • 73949115562 scopus 로고    scopus 로고
    • Structure and dynamics of aromatic residues in spider silk: 2D carbon correlation NMR of dragline fibers
    • Izdebski T, Akhenblit P, Jenkins JE, Yarger JL, Holland GP. 2010. Structure and dynamics of aromatic residues in spider silk: 2D carbon correlation NMR of dragline fibers. Biomacromolecules 11:168-74
    • (2010) Biomacromolecules , vol.11 , pp. 168-174
    • Izdebski, T.1    Akhenblit, P.2    Jenkins, J.E.3    Yarger, J.L.4    Holland, G.P.5
  • 69
    • 73949098417 scopus 로고    scopus 로고
    • Quantitative correlation between the protein primary sequences and secondary structures in spider dragline silks
    • Jenkins JE, CreagerMS, Holland GP, Lewis RV, Yarger JL. 2010. Quantitative correlation between the protein primary sequences and secondary structures in spider dragline silks. Biomacromolecules 11:192-200
    • (2010) Biomacromolecules , vol.11 , pp. 192-200
    • Jenkins, J.E.1    Creager, M.S.2    Holland, G.P.3    Lewis, R.V.4    Yarger, J.L.5
  • 70
    • 84883810552 scopus 로고    scopus 로고
    • Metabolic costs of amino acid and protein production in Escherichia coli
    • Kaleta C, Schäuble S, Rinas U, Schuster S. 2013. Metabolic costs of amino acid and protein production in Escherichia coli. Biotechnol J. 8:1105-14
    • (2013) Biotechnol J , vol.8 , pp. 1105-1114
    • Kaleta, C.1    Schäuble, S.2    Rinas, U.3    Schuster, S.4
  • 72
    • 77949943700 scopus 로고    scopus 로고
    • Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk
    • Keten S, Xu Z, IhleM, Buehler MJ. 2010. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater. 9:359-67
    • (2010) Nat. Mater , vol.9 , pp. 359-367
    • Keten, S.1    Xu, Z.2    Ihle, M.3    Buehler, M.J.4
  • 74
    • 0033531474 scopus 로고    scopus 로고
    • Liquid crystals and flow elongation in a spider's silk production line
    • Knight DP, Vollrath F. 1999. Liquid crystals and flow elongation in a spider's silk production line. Proc. R. Soc. B 266:519-23
    • (1999) Proc. R. Soc. B , vol.266 , pp. 519-523
    • Knight, D.P.1    Vollrath, F.2
  • 75
    • 0034978997 scopus 로고    scopus 로고
    • Changes in element composition along the spinning duct in a Nephila spider
    • Knight DP, Vollrath F. 2001. Changes in element composition along the spinning duct in a Nephila spider. Naturwissenschaften 88:179-82
    • (2001) Naturwissenschaften , vol.88 , pp. 179-182
    • Knight, D.P.1    Vollrath, F.2
  • 76
    • 84899630985 scopus 로고    scopus 로고
    • Sequential pH-driven dimerization and stabilization of the N-terminal domain enables rapid spider silk formation
    • Kronqvist N, Otikovs M, Chmyrov V, Chen G, AnderssonM, et al. 2014. Sequential pH-driven dimerization and stabilization of the N-terminal domain enables rapid spider silk formation. Nat. Comm. 5:3254
    • (2014) Nat. Comm , vol.5 , pp. 3254
    • Kronqvist, N.1    Otikovs, M.2    Chmyrov, V.3    Chen, G.4    Andersson, M.5
  • 77
    • 42349096609 scopus 로고    scopus 로고
    • Spider minor ampullate silk proteins are constituents of the prey wrapping silk of the cob weaver Latrodectus hesperus
    • La Mattina C, Reza R, Hu X, Falick AM, Vasanthavada K, et al. 2008. Spider minor ampullate silk proteins are constituents of the prey wrapping silk of the cob weaver Latrodectus hesperus. Biochemistry 47:4692-700
    • (2008) Biochemistry , vol.47 , pp. 4692-4700
    • La Mattina, C.1    Reza, R.2    Hu, X.3    Falick, A.M.4    Vasanthavada, K.5
  • 78
    • 84879363727 scopus 로고    scopus 로고
    • Hydrodynamical properties of recombinant spider silk proteins: Effects of pH, salts and shear, and implications for the spinning process
    • Leclerc J, Lefevre T, Gauthier M, Gagné SM, Auger M. 2013. Hydrodynamical properties of recombinant spider silk proteins: effects of pH, salts and shear, and implications for the spinning process. Biopolymers 99:582-93
    • (2013) Biopolymers , vol.99 , pp. 582-593
    • Leclerc, J.1    Lefevre, T.2    Gauthier, M.3    Gagné, S.M.4    Auger, M.5
  • 79
    • 34848895927 scopus 로고    scopus 로고
    • Molecular cloning and expression of the C-terminus of spider flagelliform silk protein from Araneus ventricosus
    • Lee KS, Kim BY, Je YH, Woo SD, Sohn HD, Jin BR. 2007. Molecular cloning and expression of the C-terminus of spider flagelliform silk protein from Araneus ventricosus. J. Biosci. 32:705-12
    • (2007) J. Biosci , vol.32 , pp. 705-712
    • Lee, K.S.1    Kim, B.Y.2    Je, Y.H.3    Woo, S.D.4    Sohn, H.D.5    Jin, B.R.6
  • 80
    • 78650419146 scopus 로고    scopus 로고
    • Diversity of molecular transformations involved in the formation of spider silks
    • Lefevre T, Boudreault S, Cloutier C, Pézolet M. 2011. Diversity of molecular transformations involved in the formation of spider silks. J. Mol. Biol. 405:238-53
    • (2011) J. Mol. Biol. , vol.405 , pp. 238-253
    • Lefevre, T.1    Boudreault, S.2    Cloutier, C.3    Pézolet, M.4
  • 81
    • 84858857170 scopus 로고    scopus 로고
    • Structure of silk by Raman spectromicroscopy: From the spinning glands to the fibers
    • Lefevre T, Paquet-Mercier F, Rioux-Dubé J-F, Pézolet M. 2011. Structure of silk by Raman spectromicroscopy: from the spinning glands to the fibers. Biopolymers 97:322-35
    • (2011) Biopolymers , vol.97 , pp. 322-335
    • Lefevre, T.1    Paquet-Mercier, F.2    Rioux-Dubé, J.-F.3    Pézolet, M.4
  • 82
    • 11944263043 scopus 로고
    • Spider silk: The unraveling of a mystery
    • Lewis RV. 1992. Spider silk: the unraveling of a mystery. Acc. Chem. Res. 25:392-98
    • (1992) Acc. Chem. Res , vol.25 , pp. 392-398
    • Lewis, R.V.1
  • 83
    • 70450253256 scopus 로고    scopus 로고
    • The effects of wind on trap structural and material properties of a sit-and-wait predator
    • Liao C-P, Chi K-J, Tso I-M. 2009. The effects of wind on trap structural and material properties of a sit-and-wait predator. Behav. Ecol. 20:1194-203
    • (2009) Behav. Ecol. , vol.20 , pp. 1194-1203
    • Liao, C.-P.1    Chi, K.-J.2    Tso, I.-M.3
  • 84
    • 20044390553 scopus 로고    scopus 로고
    • Extended wet-spinning can modify spider silk properties
    • Liu Y, Shao Z, Vollrath F. 2005. Extended wet-spinning can modify spider silk properties. Chem. Comm. 19:2489-491
    • (2005) Chem. Comm , vol.19 , pp. 2489-2491
    • Liu, Y.1    Shao, Z.2    Vollrath, F.3
  • 85
    • 33644679551 scopus 로고    scopus 로고
    • Relationships between supercontraction and mechanical properties of spider silk
    • Liu Y, Shao Z, Vollrath F. 2005. Relationships between supercontraction and mechanical properties of spider silk. Nat. Mater. 4:901-5
    • (2005) Nat. Mater , vol.4 , pp. 901-905
    • Liu, Y.1    Shao, Z.2    Vollrath, F.3
  • 88
    • 0345620786 scopus 로고    scopus 로고
    • Variability in the mechanical properties of spider silks on three levels: Interspecific, intraspecific and intraindividual
    • Madsen B, Shao ZZ, Vollrath F. 1999. Variability in the mechanical properties of spider silks on three levels: interspecific, intraspecific and intraindividual. Int. J. Biol. Macromol. 24:301-6
    • (1999) Int. J. Biol. Macromol , vol.24 , pp. 301-306
    • Madsen, B.1    Shao, Z.Z.2    Vollrath, F.3
  • 89
    • 84943302916 scopus 로고    scopus 로고
    • Persistence and variation in microstructural design during the evolution of spider silk
    • Madurga R, Blackledge TA, Perea B, Plaza GR, Riekel C, et al. 2015. Persistence and variation in microstructural design during the evolution of spider silk. Scientific Rep. 5:14820
    • (2015) Scientific Rep. , vol.5 , pp. 14820
    • Madurga, R.1    Blackledge, T.A.2    Perea, B.3    Plaza, G.R.4    Riekel, C.5
  • 90
    • 84885579774 scopus 로고    scopus 로고
    • Forced reeling of Bombyx mori silk: Separating behavior and processing conditions
    • Mortimer B, Holland C, Vollrath F. 2013. Forced reeling of Bombyx mori silk: separating behavior and processing conditions. Biomacromolecules 14:3653-59
    • (2013) Biomacromolecules , vol.14 , pp. 3653-3659
    • Mortimer, B.1    Holland, C.2    Vollrath, F.3
  • 91
    • 0031668602 scopus 로고    scopus 로고
    • Economics of spider orb webs: The benefits of producing adhesive capture threads and of recycling
    • Opell BD. 1998. Economics of spider orb webs: the benefits of producing adhesive capture threads and of recycling. Funct. Ecol. 12:613-24
    • (1998) Funct. Ecol. , vol.12 , pp. 613-624
    • Opell, B.D.1
  • 92
    • 0003162384 scopus 로고    scopus 로고
    • Changes in the mechanical properties of capture threads and the evolution of modern orb-weaving spiders
    • Opell BD, Bond JE. 2001. Changes in the mechanical properties of capture threads and the evolution of modern orb-weaving spiders. Evol. Ecol. Res. 3:567-81
    • (2001) Evol. Ecol. Res , vol.3 , pp. 567-581
    • Opell, B.D.1    Bond, J.E.2
  • 94
    • 4744360973 scopus 로고    scopus 로고
    • Ultraviolet rays mechanically strengthen spider silks
    • Osaki S. 2004. Ultraviolet rays mechanically strengthen spider silks. Polym. J. 36:657-60
    • (2004) Polym. J , vol.36 , pp. 657-660
    • Osaki, S.1
  • 95
    • 84935922107 scopus 로고    scopus 로고
    • Unexpected behavior of irradiated spider silk links conformational freedom to mechanical performance
    • Perea GB, Solanas C, Plaza GR, Guinea GV, Jorge I, et al. 2015. Unexpected behavior of irradiated spider silk links conformational freedom to mechanical performance. Soft Matter 11:4868-78
    • (2015) Soft Matter , vol.11 , pp. 4868-4878
    • Perea, G.B.1    Solanas, C.2    Plaza, G.R.3    Guinea, G.V.4    Jorge, I.5
  • 99
    • 33645137227 scopus 로고    scopus 로고
    • Thermo-hygro-mechanical behavior of spider dragline silk: Glassy and rubbery states
    • Plaza GR, Guinea GV, Pérez-Rigueiro J, ElicesM. 2006. Thermo-hygro-mechanical behavior of spider dragline silk: glassy and rubbery states. J. Polym. Sci. 44:994-99
    • (2006) J. Polym. Sci. , vol.44 , pp. 994-999
    • Plaza, G.R.1    Guinea, G.V.2    Pérez-Rigueiro, J.3    Elices, M.4
  • 100
    • 38349102440 scopus 로고    scopus 로고
    • The role of kinetics of water and amide bonding in protein stability
    • Porter D, Vollrath F. 2008. The role of kinetics of water and amide bonding in protein stability. Soft Matter 4:328-36
    • (2008) Soft Matter , vol.4 , pp. 328-336
    • Porter, D.1    Vollrath, F.2
  • 101
    • 59249109225 scopus 로고    scopus 로고
    • Silk as a biomimetic ideal for structural polymers
    • Porter D, Vollrath F. 2009. Silk as a biomimetic ideal for structural polymers. Adv. Mater. 21:487-92
    • (2009) Adv. Mater , vol.21 , pp. 487-492
    • Porter, D.1    Vollrath, F.2
  • 102
    • 84882450397 scopus 로고    scopus 로고
    • Synergetic material and structure optimization yields robust spider web anchorages
    • Pugno NM, Cranford SW, Buehler MJ. 2013. Synergetic material and structure optimization yields robust spider web anchorages. Small 9:2747-56
    • (2013) Small , vol.9 , pp. 2747-2756
    • Pugno, N.M.1    Cranford, S.W.2    Buehler, M.J.3
  • 103
    • 33846250450 scopus 로고    scopus 로고
    • Proline and glycine control protein selforganization into elastomeric or amyloid fibrils
    • Rauscher S, Baud S, Miao M, Keeley FW, Pomes R. 2006. Proline and glycine control protein selforganization into elastomeric or amyloid fibrils. Structure 14:1667-76
    • (2006) Structure , vol.14 , pp. 1667-1676
    • Rauscher, S.1    Baud, S.2    Miao, M.3    Keeley, F.W.4    Pomes, R.5
  • 105
    • 0442291670 scopus 로고    scopus 로고
    • Influence of CO2 on the micro-structural properties of spider dragline silk: X-ray microdiffraction results
    • Riekel C, Rossle M, Sapede D, Vollrath F. 2004. Influence of CO2 on the micro-structural properties of spider dragline silk: X-ray microdiffraction results. Naturwissenschaften 91:30-33
    • (2004) Naturwissenschaften , vol.91 , pp. 30-33
    • Riekel, C.1    Rossle, M.2    Sapede, D.3    Vollrath, F.4
  • 106
    • 0035935231 scopus 로고    scopus 로고
    • Spider silk fibre extrusion: Combined wide-and small-angle X-ray microdiffraction experiments
    • Riekel C, Vollrath F. 2001. Spider silk fibre extrusion: combined wide-and small-angle X-ray microdiffraction experiments. Int. J. Biol. Macromol. 29:203-10
    • (2001) Int. J. Biol. Macromol , vol.29 , pp. 203-210
    • Riekel, C.1    Vollrath, F.2
  • 107
    • 63049104932 scopus 로고    scopus 로고
    • The elaborate structure of spider silk: Structure and function of a natural high performance fiber
    • Römer L, Scheibel T. 2008. The elaborate structure of spider silk: structure and function of a natural high performance fiber. Prion 2:154-61
    • (2008) Prion , vol.2 , pp. 154-161
    • Römer, L.1    Scheibel, T.2
  • 108
    • 34247103210 scopus 로고    scopus 로고
    • Nephila clavipes spider dragline silk microstructure studied by scanning transmission X-ray microscopy
    • Rousseau ME, Hernández Cruz D, West MM, Hitchcock AP, Pézolet M. 2007. Nephila clavipes spider dragline silk microstructure studied by scanning transmission X-ray microscopy. J. Am. Chem. Soc. 129:3897-905
    • (2007) J. Am. Chem. Soc , vol.129 , pp. 3897-3905
    • Rousseau, M.E.1    Hernández, C.D.2    West, M.M.3    Hitchcock, A.P.4    Pézolet, M.5
  • 109
    • 84936965274 scopus 로고    scopus 로고
    • Prey capture adhesives produced by orbweaving spiders
    • ed. T Asakura, T Miller, . Dordrecht, Neth.: Springer
    • Sahni V, Dhinojwala A, OpellDB, BlackledgeTA. 2014. Prey capture adhesives produced by orbweaving spiders. In Biotechnology of Silk, ed. T Asakura, T Miller, pp. 203-17. Dordrecht, Neth.: Springer
    • (2014) Biotechnology of Silk , pp. 203-217
    • Sahni, V.1    Dhinojwala, A.2    Opell, D.B.3    Blackledge, T.A.4
  • 110
    • 47749135624 scopus 로고    scopus 로고
    • The role of proline in the elastic mechanism of hydrated spider silks
    • Savage KN, Gosline JM. 2008. The role of proline in the elastic mechanism of hydrated spider silks. J. Exp. Biol. 211:1948-57
    • (2008) J. Exp. Biol. , vol.211 , pp. 1948-1957
    • Savage, K.N.1    Gosline, J.M.2
  • 112
    • 84889564783 scopus 로고    scopus 로고
    • The N-terminal domains of spider silk proteins assemble ultrafast and protected from charge screening
    • Schwarze S, Zwettler FU, Johnson CM, Neuweiler H. 2013. The N-terminal domains of spider silk proteins assemble ultrafast and protected from charge screening. Nat. Comm. 4:1215
    • (2013) Nat. Comm , vol.4 , pp. 1215
    • Schwarze, S.1    Zwettler, F.U.2    Johnson, C.M.3    Neuweiler, H.4
  • 114
    • 77955933637 scopus 로고    scopus 로고
    • Behavioural and biomaterial coevolution in spider orb webs
    • Sensenig A, Agnarsson I, Blackledge TA. 2010. Behavioural and biomaterial coevolution in spider orb webs. J. Evol. Biol. 23:1839-56
    • (2010) J. Evol. Biol. , vol.23 , pp. 1839-1856
    • Sensenig, A.1    Agnarsson, I.2    Blackledge, T.A.3
  • 115
    • 80051926941 scopus 로고    scopus 로고
    • Adult spiders use tougher silk: Ontogenetic changes in web architecture and silk biomechanics in the orb-weaver spider
    • Sensenig A, Agnarsson I, Blackledge TA. 2011. Adult spiders use tougher silk: ontogenetic changes in web architecture and silk biomechanics in the orb-weaver spider. J. Zool. 285:28-38
    • (2011) J. Zool , vol.285 , pp. 28-38
    • Sensenig, A.1    Agnarsson, I.2    Blackledge, T.A.3
  • 116
    • 0033102170 scopus 로고    scopus 로고
    • The effect of solvents on the contraction and mechanical properties of spider silk
    • Shao Z, Vollrath F. 1999. The effect of solvents on the contraction and mechanical properties of spider silk. Polymer 40:1799-806
    • (1999) Polymer , vol.40 , pp. 1799-1806
    • Shao, Z.1    Vollrath, F.2
  • 117
    • 0033136870 scopus 로고    scopus 로고
    • Analysis of spider silk in native and supercontracted states using Raman spectroscopy
    • Shao Z, Vollrath F, Sirichaisit J, Young RJ. 1999. Analysis of spider silk in native and supercontracted states using Raman spectroscopy. Polymer 40:2493-500
    • (1999) Polymer , vol.40 , pp. 2493-2500
    • Shao, Z.1    Vollrath, F.2    Sirichaisit, J.3    Young, R.J.4
  • 118
    • 0032913539 scopus 로고    scopus 로고
    • The effect of solvents on spider silk studied by mechanical testing and single-fibre Raman spectroscopy
    • Shao Z, Young RJ, Vollrath F. 1999. The effect of solvents on spider silk studied by mechanical testing and single-fibre Raman spectroscopy. Int. J. Biol. Macromol. 24:295-300
    • (1999) Int. J. Biol. Macromol , vol.24 , pp. 295-300
    • Shao, Z.1    Young, R.J.2    Vollrath, F.3
  • 119
    • 84884939154 scopus 로고    scopus 로고
    • Amino acid analysis of spider dragline silk using 1HNMR
    • Shi X, Holland GP, Yarger JL. 2013. Amino acid analysis of spider dragline silk using 1HNMR. Anal. Biochem. 440:150-57
    • (2013) Anal. Biochem , vol.440 , pp. 150-157
    • Shi, X.1    Holland, G.P.2    Yarger, J.L.3
  • 120
    • 77956629695 scopus 로고    scopus 로고
    • Recombinant spider silk proteins for applications in biomaterials
    • Spiess K, Lammel A, Scheibel T. 2010. Recombinant spider silk proteins for applications in biomaterials. Macromol. Biosci. 10:998-1007
    • (2010) Macromol. Biosci , vol.10 , pp. 998-1007
    • Spiess, K.1    Lammel, A.2    Scheibel, T.3
  • 122
    • 25844467817 scopus 로고    scopus 로고
    • Differential polymerization of the two main protein components of dragline silk during fibre spinning
    • Sponner A, Unger E, Grosse F, Weisshart K. 2005. Differential polymerization of the two main protein components of dragline silk during fibre spinning. Nat. Mater. 4:772-75
    • (2005) Nat. Mater , vol.4 , pp. 772-775
    • Sponner, A.1    Unger, E.2    Grosse, F.3    Weisshart, K.4
  • 124
    • 27744474255 scopus 로고    scopus 로고
    • The conserved C-termini contribute to the properties of spider silk fibroins
    • Sponner A, Vater W, Rommerskirch W, Vollrath F, Unger E, et al. 2005. The conserved C-termini contribute to the properties of spider silk fibroins. Biophys. Res. Comm. 338:897-902
    • (2005) Biophys. Res. Comm , vol.338 , pp. 897-902
    • Sponner, A.1    Vater, W.2    Rommerskirch, W.3    Vollrath, F.4    Unger, E.5
  • 125
    • 33846876976 scopus 로고    scopus 로고
    • Spider dragline silk: Correlated and mosaic evolution in high performance biological materials
    • Swanson BO, Blackledge TA, Summers AP, Hayashi CY. 2006. Spider dragline silk: correlated and mosaic evolution in high performance biological materials. Evolution 60:2539-51
    • (2006) Evolution , vol.60 , pp. 2539-2551
    • Swanson, B.O.1    Blackledge, T.A.2    Summers, A.P.3    Hayashi, C.Y.4
  • 126
    • 84863057023 scopus 로고    scopus 로고
    • Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties
    • Teulé F, Miao Y-G, Sohn B-H, Kim Y-S, Hull JJ, et al. 2012. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. PNAS 109:923-28
    • (2012) PNAS , vol.109 , pp. 923-928
    • Teulé, F.1    Miao, Y.-G.2    Sohn, B.-H.3    Kim, Y.-S.4    Hull, J.J.5
  • 127
    • 84896393957 scopus 로고    scopus 로고
    • Structure-function-property-design interplay in biopolymers: Spider silk
    • Torakeva O, Jacobsen M, BuehlerMJ, Wong J, Kaplan DL. 2014. Structure-function-property-design interplay in biopolymers: spider silk. Acta Biomater. 10:1612-26
    • (2014) Acta Biomater , vol.10 , pp. 1612-1626
    • Torakeva, O.1    Jacobsen, M.2    Buehler, M.J.3    Wong, J.4    Kaplan, D.L.5
  • 128
    • 17144376111 scopus 로고    scopus 로고
    • Giant wood spider Nephila pilipes alters silk protein in response to prey variation
    • Tso I-M, Wu H-C, Hwang I-R. 2005. Giant wood spider Nephila pilipes alters silk protein in response to prey variation. J. Exp. Biol. 208:1053-61
    • (2005) J. Exp. Biol. , vol.208 , pp. 1053-1061
    • Tso, I.-M.1    Wu, H.-C.2    Hwang, I.-R.3
  • 129
    • 0036678028 scopus 로고    scopus 로고
    • Themolecular structure of spider dragline silk: Folding and orientation of the protein backbone
    • van Beek JD, Hess S, Vollrath F,Meier BH. 2002. Themolecular structure of spider dragline silk: folding and orientation of the protein backbone. PNAS 99:10266-271
    • (2002) PNAS , vol.99 , pp. 10266-10271
    • Van Beek, J.D.1    Hess, S.2    Vollrath, F.3    Meier, B.H.4
  • 130
    • 36849026592 scopus 로고    scopus 로고
    • Aciniform spidroin, a constituent of egg case sacs and wrapping fibres from the black widow spider Latrodectus hesperus
    • Vasathavada K, Hu X, Falick AM, La Mattina C, Moore AMF, et al. 2007. Aciniform spidroin, a constituent of egg case sacs and wrapping fibres from the black widow spider Latrodectus hesperus. J. Biol. Chem. 282:35088-97
    • (2007) J. Biol. Chem. , vol.282 , pp. 35088-35097
    • Vasathavada, K.1    Hu, X.2    Falick, A.M.3    La Mattina, C.4    Moore, A.M.F.5
  • 131
    • 37349126716 scopus 로고    scopus 로고
    • Mechanical properties of spider dragline silk: Humidity, hysteresis, and relaxation
    • Vehoff T, Glisovic A, Schollmayer H, Zippelius A, Salditt T. 2007. Mechanical properties of spider dragline silk: humidity, hysteresis, and relaxation. Biophys. J. 93:4425-32
    • (2007) Biophys. J , vol.93 , pp. 4425-4432
    • Vehoff, T.1    Glisovic, A.2    Schollmayer, H.3    Zippelius, A.4    Salditt, T.5
  • 132
    • 0034252384 scopus 로고    scopus 로고
    • Strength and structure of spider's silk
    • Vollrath F. 2000. Strength and structure of spider's silk. Rev. Mol. Biotechnol. 74:67-83
    • (2000) Rev. Mol. Biotechnol , vol.74 , pp. 67-83
    • Vollrath, F.1
  • 133
    • 84904013088 scopus 로고    scopus 로고
    • Differential Scanning Fluorimetry provides high throughput data on silk protein transitions
    • Vollrath F,Hawkins N, Porter D, Holland C, Boulet-AudetM. 2014. Differential Scanning Fluorimetry provides high throughput data on silk protein transitions. Scientific Rep. 4:5625
    • (2014) Scientific Rep. , vol.4 , pp. 5625
    • Vollrath, F.1    Hawkins, N.2    Porter, D.3    Holland, C.4    Boulet-Audet, M.5
  • 134
    • 0035967162 scopus 로고    scopus 로고
    • Liquid crystalline spinning of spider silk
    • Vollrath F, Knight DP. 2001. Liquid crystalline spinning of spider silk. Nature 410:541-48
    • (2001) Nature , vol.410 , pp. 541-548
    • Vollrath, F.1    Knight, D.P.2
  • 135
    • 0035935694 scopus 로고    scopus 로고
    • The effect of spinning conditions on the mechanics of a spider's dragline silk
    • Vollrath F, Madsen B, Shao Z. 2001. The effect of spinning conditions on the mechanics of a spider's dragline silk. Proc. R. Soc. B 268:2339-46
    • (2001) Proc. R. Soc. B , vol.268 , pp. 2339-2346
    • Vollrath, F.1    Madsen, B.2    Shao, Z.3
  • 136
    • 80053580903 scopus 로고    scopus 로고
    • There are many more lessons still to be learned from spider silks
    • Vollrath F, Porter D, Holland C. 2011. There are many more lessons still to be learned from spider silks. Soft Matter 7:9595-600
    • (2011) Soft Matter , vol.7 , pp. 9595-9600
    • Vollrath, F.1    Porter, D.2    Holland, C.3
  • 140
    • 0000677705 scopus 로고
    • A comparative study of supercontraction of major ampullate silk fibers of orb-webbuilding spiders (Araneae)
    • Work RW. 1981. A comparative study of supercontraction of major ampullate silk fibers of orb-webbuilding spiders (Araneae). J. Arachnol. 9:299-308
    • (1981) J. Arachnol , vol.9 , pp. 299-308
    • Work, R.W.1
  • 141
    • 0025008260 scopus 로고
    • Structure of a protein superfiber: Spider dragline silk
    • Xu M, Lewis RV. 1990. Structure of a protein superfiber: spider dragline silk. PNAS 87:7120-24
    • (1990) PNAS , vol.87 , pp. 7120-7124
    • Xu, M.1    Lewis, R.V.2
  • 142
    • 84903143298 scopus 로고    scopus 로고
    • Biological and bioinspired micro-and nanostructured adhesives
    • ed. A Taubert, JFMano, JC Rodríguez-Cabello.Weinheim, Ger.: Wiley-VCH Verlag GmbH and Co
    • Xue L, Steinhart M, Gorb SN. 2013. Biological and bioinspired micro-and nanostructured adhesives. In Biomaterials Surface Science, ed. A Taubert, JFMano, JC Rodríguez-Cabello.Weinheim, Ger.: Wiley-VCH Verlag GmbH and Co
    • (2013) Biomaterials Surface Science
    • Xue, L.1    Steinhart, M.2    Gorb, S.N.3
  • 143
    • 84872127433 scopus 로고    scopus 로고
    • The molecular structures of major ampullate silk proteins of the wasp spider, Argiope bruennichi: A second blueprint for synthesizing de novo silk
    • Zhang Y, Zhao A-C, Sima Y-H, Lu C, Xiang Z-H, Nakagaki M. 2013. The molecular structures of major ampullate silk proteins of the wasp spider, Argiope bruennichi: a second blueprint for synthesizing de novo silk. Comp. Biochem. Physiol. B 164:151-58
    • (2013) Comp. Biochem. Physiol. B , vol.164 , pp. 151-158
    • Zhang, Y.1    Zhao, A.-C.2    Sima, Y.-H.3    Lu, C.4    Xiang, Z.-H.5    Nakagaki, M.6
  • 144
    • 33644872787 scopus 로고    scopus 로고
    • Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi
    • Zhao A-C, Zhao T-F, Nakagaki K, Zhang Y-S, SiMa Y-H, et al. 2006. Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi. Biochemistry 45:3348-56
    • (2006) Biochemistry , vol.45 , pp. 3348-3356
    • Zhao, A.-C.1    Zhao, T.-F.2    Nakagaki, K.3    Zhang, Y.-S.4    SiMa, Y.-H.5
  • 145
    • 4444361101 scopus 로고    scopus 로고
    • Effects of pHand calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and 13C solid-state NMR
    • Zhou P, Xun X, Knight DP, Zong X-H, Deng F, YaoW-H. 2004. Effects of pHand calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and 13C solid-state NMR. Biochemistry 43:11302-11
    • (2004) Biochemistry , vol.43 , pp. 11302-11311
    • Zhou, P.1    Xun, X.2    Knight, D.P.3    Zong, X.-H.4    Deng, F.5    Yao, W.-H.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.