메뉴 건너뛰기




Volumn 8, Issue 1, 2017, Pages

Predicting PM2.5 concentrations at a regional background station using second order self-organizing fuzzy neural network

Author keywords

Dominating factors; PM2.5; Predicting; Principal component analysis; SOG SASOFNN

Indexed keywords

ATMOSPHERIC AEROSOLS; FORECASTING; FUZZY INFERENCE; FUZZY LOGIC; FUZZY NEURAL NETWORKS; SENSITIVITY ANALYSIS; WIND;

EID: 85011060295     PISSN: None     EISSN: 20734433     Source Type: Journal    
DOI: 10.3390/atmos8010010     Document Type: Article
Times cited : (18)

References (42)
  • 2
    • 84968830269 scopus 로고    scopus 로고
    • 2.5 distributions derived from the fusion of ground-level measurements with aerosol optical depth observations, a case study in north China
    • 2.5 distributions derived from the fusion of ground-level measurements with aerosol optical depth observations, a case study in north China. Environ. Sci. Technol. 2016, 50, 4752-4759.
    • (2016) Environ. Sci. Technol , vol.50 , pp. 4752-4759
    • Lv, B.L.1    Hu, Y.T.2    Chang, H.H.3    Russell, A.G.4    Bai, Y.Q.5
  • 3
    • 80054846071 scopus 로고    scopus 로고
    • Health effects of fine particulate air pollution: Lines that connect
    • Pope, C.A., III; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. 2006, 56, 709-742.
    • (2006) J. Air Waste Manag , vol.56 , pp. 709-742
    • Pope, C.A.1    Dockery, D.W.2
  • 4
    • 84864138783 scopus 로고    scopus 로고
    • Chronic exposure to fine particles and mortality: An extended follow-up of the Harvard Six Cities study from 1974 to Environ
    • Lepeule, J.; Laden, F.; Dockery, D.; Schwartz, J. Chronic exposure to fine particles and mortality: An extended follow-up of the Harvard Six Cities study from 1974 to 2009. Environ. Health Perspect. 2012, 120, 965-970.
    • (2009) Health Perspect. 2012 , vol.120 , pp. 965-970
    • Lepeule, J.1    Laden, F.2    Dockery, D.3    Schwartz, J.4
  • 8
    • 79960139277 scopus 로고    scopus 로고
    • Long-term visibility trends and characteristics in the region of Beijing, Tianjin, and Hebei, China
    • Zhao, P.S.; Zhang, X.L.; Xu, X.F.; Zhao, X.J. Long-term visibility trends and characteristics in the region of Beijing, Tianjin, and Hebei, China. Atmos. Res. 2011, 101, 711-718.
    • (2011) Atmos. Res , vol.101 , pp. 711-718
    • Zhao, P.S.1    Zhang, X.L.2    Xu, X.F.3    Zhao, X.J.4
  • 9
    • 84938960617 scopus 로고    scopus 로고
    • Circulation-type classification derived on a climatic basis to study air quality dynamics over the Iberian Peninsula
    • Valverde, V.; Pay, M.T.; Baldasano, J.M. Circulation-type classification derived on a climatic basis to study air quality dynamics over the Iberian Peninsula. Int. J. Climatol. 2015, 35, 2877-2897.
    • (2015) Int. J. Climatol , vol.35 , pp. 2877-2897
    • Valverde, V.1    Pay, M.T.2    Baldasano, J.M.3
  • 10
    • 0030303191 scopus 로고    scopus 로고
    • On the nature of air pollution dynamics in Mexico City-I
    • Raga, G.B.; Moyne, L.L. On the nature of air pollution dynamics in Mexico City-I. Nonlinear analysis. Atmos. Environ. 1996, 30, 3987-3993.
    • (1996) Nonlinear analysis. Atmos. Environ , vol.30 , pp. 3987-3993
    • Raga, G.B.1    Moyne, L.L.2
  • 17
    • 27844608945 scopus 로고    scopus 로고
    • Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions
    • Nagendra, S.M.S.; Khare, M. Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions. Ecol. Model. 2006, 190, 99-115.
    • (2006) Ecol. Model , vol.190 , pp. 99-115
    • Nagendra, S.M.S.1    Khare, M.2
  • 18
    • 17644370689 scopus 로고    scopus 로고
    • Air quality prediction in Milan: Feed-forward neural networks, pruned neural networks and lazy learning
    • Corani, G. Air quality prediction in Milan: Feed-forward neural networks, pruned neural networks and lazy learning. Ecol. Model. 2005, 185, 513-529.
    • (2005) Ecol. Model , vol.185 , pp. 513-529
    • Corani, G.1
  • 19
    • 0141483644 scopus 로고    scopus 로고
    • Neural network and multiple regression models for PM10 prediction in Athens: A comparative assessment
    • Chaloulakou, A.; Grivas, G.; Spyrellis, N. Neural network and multiple regression models for PM10 prediction in Athens: A comparative assessment. J. Air Waste Manage. 2003, 53, 1183-1190.
    • (2003) J. Air Waste Manage , vol.53 , pp. 1183-1190
    • Chaloulakou, A.1    Grivas, G.2    Spyrellis, N.3
  • 21
    • 50149108595 scopus 로고    scopus 로고
    • An efficient immune-based symbiotic particle swarm optimization learning algorithm for TSK-type neuro-fuzzy networks design
    • Lin, C.J. An efficient immune-based symbiotic particle swarm optimization learning algorithm for TSK-type neuro-fuzzy networks design. Fuzzy Sets Syst. 2008, 159, 2890-2909.
    • (2008) Fuzzy Sets Syst , vol.159 , pp. 2890-2909
    • Lin, C.J.1
  • 22
    • 84874751001 scopus 로고    scopus 로고
    • Indoor air quality in a metropolitan area metro using fuzzy logic assessment system
    • Assimakopoulos, M.N.; Dounis, A.; Spanou, A.; Santamouris, M. Indoor air quality in a metropolitan area metro using fuzzy logic assessment system. Sci. Total Environ. 2013, 449, 461-469.
    • (2013) Sci. Total Environ , vol.449 , pp. 461-469
    • Assimakopoulos, M.N.1    Dounis, A.2    Spanou, A.3    Santamouris, M.4
  • 23
    • 84952802515 scopus 로고    scopus 로고
    • Neuro-fuzzy approach to forecast NO2 pollutants addressed to air quality dispersion model over Delhi, India
    • Mishra, D.; Goyal, P. Neuro-fuzzy approach to forecast NO2 pollutants addressed to air quality dispersion model over Delhi, India. Aerosol Air Qual. Res. 2016, 16, 166-174.
    • (2016) Aerosol Air Qual. Res , vol.16 , pp. 166-174
    • Mishra, D.1    Goyal, P.2
  • 24
    • 84916608707 scopus 로고    scopus 로고
    • 2.5 during haze episodes: A case study of Delhi, India
    • 2.5 during haze episodes: A case study of Delhi, India. Atmos. Environ. 2015, 102, 239-248.
    • (2015) Atmos. Environ , vol.102 , pp. 239-248
    • Mishra, D.1    Goyal, P.2    Upadhyay, A.3
  • 25
    • 0035415951 scopus 로고    scopus 로고
    • A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks
    • Wu, S.Q.; Er, M.J.; Gao, Y. A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks. IEEE Trans. Fuzzy Syst. 2001, 9, 578-594.
    • (2001) IEEE Trans. Fuzzy Syst , vol.9 , pp. 578-594
    • Wu, S.Q.1    Er, M.J.2    Gao, Y.3
  • 26
    • 0033692531 scopus 로고    scopus 로고
    • Dynamic fuzzy neural networks-a novel approach to function approximation
    • Wu, S.Q.; Er, M.J. Dynamic fuzzy neural networks-a novel approach to function approximation. IEEE Trans. Syst. Man. Cybern. B. Cybern. 2000, 30, 358-364.
    • (2000) IEEE Trans. Syst. Man. Cybern. B. Cybern , vol.30 , pp. 358-364
    • Wu, S.Q.1    Er, M.J.2
  • 27
    • 33645067635 scopus 로고    scopus 로고
    • Application of fuzzy set and neural network techniques in determining food process control set points
    • Kupongsak, S.; Tan, J. Application of fuzzy set and neural network techniques in determining food process control set points. Fuzzy Sets Syst. 2006, 157, 1169-1178.
    • (2006) Fuzzy Sets Syst , vol.157 , pp. 1169-1178
    • Kupongsak, S.1    Tan, J.2
  • 28
    • 33947282595 scopus 로고    scopus 로고
    • Design for self-organizing fuzzy neural networks based on genetic algorithms
    • Leng, G.; McGinnity, T.M.; Prasad, G. Design for self-organizing fuzzy neural networks based on genetic algorithms. IEEE Trans. Fuzzy Syst. 2006, 14, 755-766.
    • (2006) IEEE Trans. Fuzzy Syst , vol.14 , pp. 755-766
    • Leng, G.1    McGinnity, T.M.2    Prasad, G.3
  • 29
    • 84922196430 scopus 로고    scopus 로고
    • Self-generated fuzzy systems design using artificial bee colony optimization
    • Habbi, H.; Boudouaoui, Y.; Karaboga, D.; Ozturk, C. Self-generated fuzzy systems design using artificial bee colony optimization. Inf. Sci. 2015, 295, 145-159.
    • (2015) Inf. Sci , vol.295 , pp. 145-159
    • Habbi, H.1    Boudouaoui, Y.2    Karaboga, D.3    Ozturk, C.4
  • 30
    • 78649732347 scopus 로고    scopus 로고
    • A self-organizing fuzzy neural network based on a growing-and-pruning algorithm
    • Han, H.G.; Qiao, J.F. A self-organizing fuzzy neural network based on a growing-and-pruning algorithm. IEEE Trans. Fuzzy Syst. 2010, 18, 1129-1143.
    • (2010) IEEE Trans. Fuzzy Syst , vol.18 , pp. 1129-1143
    • Han, H.G.1    Qiao, J.F.2
  • 31
    • 77953120155 scopus 로고    scopus 로고
    • Improved computation for Levenberg-Marquardt training
    • Wilamowski, B.M.; Yu, H. Improved computation for Levenberg-Marquardt training. IEEE Trans. Neural Netw. 2010, 21, 930-937.
    • (2010) IEEE Trans. Neural Netw , vol.21 , pp. 930-937
    • Wilamowski, B.M.1    Yu, H.2
  • 34
    • 54249107541 scopus 로고    scopus 로고
    • Contributions of pollutants from North China Plain to surface ozone at the Shangdianzi GAW Station
    • Lin,W.; Xu, X.; Zhang, X.; Tang, J. Contributions of pollutants from North China Plain to surface ozone at the Shangdianzi GAW Station. Atmos. Chem. Phys. 2008, 8, 5889-5898.
    • (2008) Atmos. Chem. Phys , vol.8 , pp. 5889-5898
    • Lin, W.1    Xu, X.2    Zhang, X.3    Tang, J.4
  • 36
    • 84887197034 scopus 로고    scopus 로고
    • Analysis of a winter regional haze event and its formation mechanism in the North China Plain
    • Zhao, X.J.; Zhao, P.S.; Xu, J.; Meng, W.; Pu, W.W.; Dong, F.; He, D.; Shi, Q.F. Analysis of a winter regional haze event and its formation mechanism in the North China Plain. Atmos. Chem. Phys. 2013, 13, 5685-5696.
    • (2013) Atmos. Chem. Phys , vol.13 , pp. 5685-5696
    • Zhao, X.J.1    Zhao, P.S.2    Xu, J.3    Meng, W.4    Pu, W.W.5    Dong, F.6    He, D.7    Shi, Q.F.8
  • 37
    • 73249116245 scopus 로고    scopus 로고
    • PCA- and PMF-based methodology for air pollution sources identification and apportionment
    • Chavent, M.; Guegan, H.; Kuentz, V.; Patouille, B.; Saracco, J. PCA- and PMF-based methodology for air pollution sources identification and apportionment. Environmetrics 2009, 20, 928-942.
    • (2009) Environmetrics , vol.20 , pp. 928-942
    • Chavent, M.1    Guegan, H.2    Kuentz, V.3    Patouille, B.4    Saracco, J.5
  • 38
    • 33751217711 scopus 로고    scopus 로고
    • Identification of PM sources by principal component analysis (PCA) coupled with wind direction data
    • Viana, M.; Querol, X.; Alastuey, A.; Gil, J.I.; Menendez, M. Identification of PM sources by principal component analysis (PCA) coupled with wind direction data. Chemosphere 2006, 65, 2411-2418.
    • (2006) Chemosphere , vol.65 , pp. 2411-2418
    • Viana, M.1    Querol, X.2    Alastuey, A.3    Gil, J.I.4    Menendez, M.5
  • 39
    • 84855561999 scopus 로고    scopus 로고
    • Openair-an R package for air quality data analysis
    • Carslaw, D.C.; Ropkins, K. Openair-an R package for air quality data analysis. Environ. Model. Softw. 2012, 27, 52-61.
    • (2012) Environ. Model. Softw , vol.27 , pp. 52-61
    • Carslaw, D.C.1    Ropkins, K.2
  • 41
    • 33644884686 scopus 로고    scopus 로고
    • A node pruning algorithm based on a Fourier amplitude sensitivity test method
    • Lauret, P.; Fock, E.; Mara, T.A. A node pruning algorithm based on a Fourier amplitude sensitivity test method. IEEE Trans. Neural Netw. 2006, 17, 273-293.
    • (2006) IEEE Trans. Neural Netw , vol.17 , pp. 273-293
    • Lauret, P.1    Fock, E.2    Mara, T.A.3
  • 42
    • 84867891849 scopus 로고    scopus 로고
    • A structure optimisation algorithm for feedforward neural network construction
    • Han, H.G.; Qiao, J.F. A structure optimisation algorithm for feedforward neural network construction. Neurocomput 2013, 99, 347-357.
    • (2013) Neurocomput , vol.99 , pp. 347-357
    • Han, H.G.1    Qiao, J.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.