메뉴 건너뛰기




Volumn 114, Issue 4, 2017, Pages 675-680

Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork

Author keywords

Clamp loader; DNA polymerase; PCNA; Replication; Replisome

Indexed keywords

DNA POLYMERASE; REPLICATION FACTOR C; CYCLINE; DNA DIRECTED DNA POLYMERASE ALPHA; DNA DIRECTED DNA POLYMERASE GAMMA; MINICHROMOSOME MAINTENANCE PROTEIN; RNA DIRECTED RNA POLYMERASE; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 85010710979     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1619748114     Document Type: Article
Times cited : (45)

References (44)
  • 1
    • 0003890119 scopus 로고    scopus 로고
    • (University Science Books, Herndon, VA), 2nd Ed
    • Kornberg A, Baker TA (2005) DNA Replication (University Science Books, Herndon, VA), 2nd Ed.
    • (2005) DNA Replication
    • Kornberg, A.1    Baker, T.A.2
  • 3
    • 42949142111 scopus 로고    scopus 로고
    • DNA polymerases at the replication fork in eukaryotes
    • Stillman B (2008) DNA polymerases at the replication fork in eukaryotes. Mol Cell 30(3):259-260.
    • (2008) Mol Cell , vol.30 , Issue.3 , pp. 259-260
    • Stillman, B.1
  • 4
    • 84879750259 scopus 로고    scopus 로고
    • Principles and concepts of DNA replication in bacteria, archaea, and eukarya
    • O'Donnell M, Langston L, Stillman B (2013) Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harb Perspect Biol 5(7):a010108.
    • (2013) Cold Spring Harb Perspect Biol , vol.5 , Issue.7
    • O'Donnell, M.1    Langston, L.2    Stillman, B.3
  • 5
    • 33745925880 scopus 로고    scopus 로고
    • Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase
    • Moyer SE, Lewis PW, Botchan MR (2006) Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci USA 103(27):10236-10241.
    • (2006) Proc Natl Acad Sci USA , vol.103 , Issue.27 , pp. 10236-10241
    • Moyer, S.E.1    Lewis, P.W.2    Botchan, M.R.3
  • 6
    • 74749095240 scopus 로고    scopus 로고
    • Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins
    • Ilves I, Petojevic T, Pesavento JJ, Botchan MR (2010) Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 37(2):247-258.
    • (2010) Mol Cell , vol.37 , Issue.2 , pp. 247-258
    • Ilves, I.1    Petojevic, T.2    Pesavento, J.J.3    Botchan, M.R.4
  • 7
    • 84856768293 scopus 로고    scopus 로고
    • The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes
    • Makarova KS, Koonin EV, Kelman Z (2012) The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes. Biol Direct 7:7.
    • (2012) Biol Direct , vol.7 , pp. 7
    • Makarova, K.S.1    Koonin, E.V.2    Kelman, Z.3
  • 8
    • 84873118328 scopus 로고    scopus 로고
    • The RFC clamp loader: Structure and function
    • Yao NY, O'Donnell M (2012) The RFC clamp loader: Structure and function. Subcell Biochem 62:259-279.
    • (2012) Subcell Biochem , vol.62 , pp. 259-279
    • Yao, N.Y.1    O'Donnell, M.2
  • 9
    • 84906101503 scopus 로고    scopus 로고
    • Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork
    • Georgescu RE, et al. (2014) Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork. Nat Struct Mol Biol 21(8):664-670.
    • (2014) Nat Struct Mol Biol , vol.21 , Issue.8 , pp. 664-670
    • Georgescu, R.E.1
  • 10
    • 84928139350 scopus 로고    scopus 로고
    • Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation
    • Georgescu RE, et al. (2015) Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. eLife 4:e04988.
    • (2015) eLife , vol.4
    • Georgescu, R.E.1
  • 11
    • 84908271207 scopus 로고    scopus 로고
    • CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication
    • Langston LD, et al. (2014) CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication. Proc Natl Acad Sci USA 111(43):15390-15395.
    • (2014) Proc Natl Acad Sci USA , vol.111 , Issue.43 , pp. 15390-15395
    • Langston, L.D.1
  • 12
    • 36248991353 scopus 로고    scopus 로고
    • The eukaryotic leading and lagging strand DNA polymerases are loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of PCNA
    • Chilkova O, et al. (2007) The eukaryotic leading and lagging strand DNA polymerases are loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of PCNA. Nucleic Acids Res 35(19):6588-6597.
    • (2007) Nucleic Acids Res , vol.35 , Issue.19 , pp. 6588-6597
    • Chilkova, O.1
  • 13
    • 57649139149 scopus 로고    scopus 로고
    • DNA polymerase δ is highly processive with proliferating cell nuclear antigen and undergoes collision release upon completing DNA
    • Langston LD, O'Donnell M (2008) DNA polymerase δ is highly processive with proliferating cell nuclear antigen and undergoes collision release upon completing DNA. J Biol Chem 283(43):29522-29531.
    • (2008) J Biol Chem , vol.283 , Issue.43 , pp. 29522-29531
    • Langston, L.D.1    O'Donnell, M.2
  • 14
    • 34447336941 scopus 로고    scopus 로고
    • Yeast DNA polymerase epsilon participates in leading-strand DNA replication
    • Pursell ZF, Isoz I, Lundström E-B, Johansson E, Kunkel TA (2007) Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317(5834):127-130.
    • (2007) Science , vol.317 , Issue.5834 , pp. 127-130
    • Pursell, Z.F.1    Isoz, I.2    Lundström, E.-B.3    Johansson, E.4    Kunkel, T.A.5
  • 15
    • 54249092768 scopus 로고    scopus 로고
    • Dividing the workload at a eukaryotic replication fork
    • Kunkel TA, Burgers PM (2008) Dividing the workload at a eukaryotic replication fork. Trends Cell Biol 18(11):521-527.
    • (2008) Trends Cell Biol , vol.18 , Issue.11 , pp. 521-527
    • Kunkel, T.A.1    Burgers, P.M.2
  • 17
    • 84855267435 scopus 로고    scopus 로고
    • The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved
    • Miyabe I, Kunkel TA, Carr AM (2011) The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLoS Genet 7(12):e1002407, 10.1371/journal.pgen.1002407.
    • (2011) PLoS Genet , vol.7 , Issue.12
    • Miyabe, I.1    Kunkel, T.A.2    Carr, A.M.3
  • 18
    • 84912091104 scopus 로고    scopus 로고
    • Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall
    • Yu C, et al. (2014) Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Mol Cell 56(4):551-563.
    • (2014) Mol Cell , vol.56 , Issue.4 , pp. 551-563
    • Yu, C.1
  • 19
    • 0034723152 scopus 로고    scopus 로고
    • DNA polymerase switching: I. Replication factor C displaces DNA polymerase α prior to PCNA loading
    • Maga G, Stucki M, Spadari S, Hübscher U (2000) DNA polymerase switching: I. Replication factor C displaces DNA polymerase α prior to PCNA loading. J Mol Biol 295(4):791-801.
    • (2000) J Mol Biol , vol.295 , Issue.4 , pp. 791-801
    • Maga, G.1    Stucki, M.2    Spadari, S.3    Hübscher, U.4
  • 20
    • 0037033020 scopus 로고    scopus 로고
    • On the specificity of interaction between the Saccharomyces cerevisiae clamp loader replication factor C and primed DNA templates during DNA replication
    • Hingorani MM, Coman MM (2002) On the specificity of interaction between the Saccharomyces cerevisiae clamp loader replication factor C and primed DNA templates during DNA replication. J Biol Chem 277(49):47213-47224.
    • (2002) J Biol Chem , vol.277 , Issue.49 , pp. 47213-47224
    • Hingorani, M.M.1    Coman, M.M.2
  • 21
    • 0142215475 scopus 로고    scopus 로고
    • Global analysis of protein expression in yeast
    • Ghaemmaghami S, et al. (2003) Global analysis of protein expression in yeast. Nature 425(6959):737-741.
    • (2003) Nature , vol.425 , Issue.6959 , pp. 737-741
    • Ghaemmaghami, S.1
  • 22
    • 34548511797 scopus 로고    scopus 로고
    • The size of the nucleus increases as yeast cells grow
    • Jorgensen P, et al. (2007) The size of the nucleus increases as yeast cells grow. Mol Biol Cell 18(9):3523-3532.
    • (2007) Mol Biol Cell , vol.18 , Issue.9 , pp. 3523-3532
    • Jorgensen, P.1
  • 23
    • 0033230401 scopus 로고    scopus 로고
    • Multiple competition reactions for RPA order the assembly of the DNA polymerase delta holoenzyme
    • Yuzhakov A, Kelman Z, Hurwitz J, O'Donnell M (1999) Multiple competition reactions for RPA order the assembly of the DNA polymerase delta holoenzyme. EMBO J 18(21):6189-6199.
    • (1999) EMBO J , vol.18 , Issue.21 , pp. 6189-6199
    • Yuzhakov, A.1    Kelman, Z.2    Hurwitz, J.3    O'Donnell, M.4
  • 24
    • 84949535090 scopus 로고    scopus 로고
    • The architecture of a eukaryotic replisome
    • Sun J, et al. (2015) The architecture of a eukaryotic replisome. Nat Struct Mol Biol 22(12):976-982.
    • (2015) Nat Struct Mol Biol , vol.22 , Issue.12 , pp. 976-982
    • Sun, J.1
  • 25
    • 84962167085 scopus 로고    scopus 로고
    • Stability of the human polymerase δ holoenzyme and its implications in lagging strand DNA synthesis
    • Hedglin M, Pandey B, Benkovic SJ (2016) Stability of the human polymerase δ holoenzyme and its implications in lagging strand DNA synthesis. Proc Natl Acad Sci USA 113(13):E1777-E1786.
    • (2016) Proc Natl Acad Sci USA , vol.113 , Issue.13 , pp. E1777-E1786
    • Hedglin, M.1    Pandey, B.2    Benkovic, S.J.3
  • 26
    • 0023646086 scopus 로고
    • Accessory proteins bind a primed template and mediate rapid cycling of DNA polymerase III holoenzyme from Escherichia coli
    • O'Donnell ME (1987) Accessory proteins bind a primed template and mediate rapid cycling of DNA polymerase III holoenzyme from Escherichia coli. J Biol Chem 262(34):16558-16565.
    • (1987) J Biol Chem , vol.262 , Issue.34 , pp. 16558-16565
    • O'Donnell, M.E.1
  • 27
    • 0028093437 scopus 로고
    • An explanation for lagging strand replication: Polymerase hopping among DNA sliding clamps
    • Stukenberg PT, Turner J, O'Donnell M (1994) An explanation for lagging strand replication: Polymerase hopping among DNA sliding clamps. Cell 78(5):877-887.
    • (1994) Cell , vol.78 , Issue.5 , pp. 877-887
    • Stukenberg, P.T.1    Turner, J.2    O'Donnell, M.3
  • 28
    • 0022347158 scopus 로고
    • Dynamics of DNA polymerase III holoenzyme of Escherichia coli in replication of a multiprimed template
    • O'Donnell ME, Kornberg A (1985) Dynamics of DNA polymerase III holoenzyme of Escherichia coli in replication of a multiprimed template. J Biol Chem 260(23):12875-12883.
    • (1985) J Biol Chem , vol.260 , Issue.23 , pp. 12875-12883
    • O'Donnell, M.E.1    Kornberg, A.2
  • 29
    • 84963616075 scopus 로고    scopus 로고
    • Resolving individual steps of Okazaki-fragment maturation at a millisecond timescale
    • Stodola JL, Burgers PM (2016) Resolving individual steps of Okazaki-fragment maturation at a millisecond timescale. Nat Struct Mol Biol 23(5):402-408.
    • (2016) Nat Struct Mol Biol , vol.23 , Issue.5 , pp. 402-408
    • Stodola, J.L.1    Burgers, P.M.2
  • 30
    • 77949368063 scopus 로고    scopus 로고
    • GINS motion reveals replication fork progression is remarkably uniform throughout the yeast genome
    • Sekedat MD, et al. (2010) GINS motion reveals replication fork progression is remarkably uniform throughout the yeast genome. Mol Syst Biol 6:353.
    • (2010) Mol Syst Biol , vol.6 , pp. 353
    • Sekedat, M.D.1
  • 31
    • 84937413584 scopus 로고    scopus 로고
    • A major role of DNA polymerase δ in replication of both the leading and lagging DNA strands
    • Johnson RE, Klassen R, Prakash L, Prakash S (2015) A major role of DNA polymerase δ in replication of both the leading and lagging DNA strands. Mol Cell 59(2):163-175.
    • (2015) Mol Cell , vol.59 , Issue.2 , pp. 163-175
    • Johnson, R.E.1    Klassen, R.2    Prakash, L.3    Prakash, S.4
  • 32
    • 0033529497 scopus 로고    scopus 로고
    • Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain
    • Dua R, Levy DL, Campbell JL (1999) Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain. J Biol Chem 274(32):22283-22288.
    • (1999) J Biol Chem , vol.274 , Issue.32 , pp. 22283-22288
    • Dua, R.1    Levy, D.L.2    Campbell, J.L.3
  • 33
    • 0032587610 scopus 로고    scopus 로고
    • DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability
    • Kesti T, Flick K, Keränen S, Syväoja JE, Wittenberg C (1999) DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol Cell 3(5):679-685.
    • (1999) Mol Cell , vol.3 , Issue.5 , pp. 679-685
    • Kesti, T.1    Flick, K.2    Keränen, S.3    Syväoja, J.E.4    Wittenberg, C.5
  • 34
    • 84958619916 scopus 로고    scopus 로고
    • Who is leading the replication fork, Pol ε or Pol δ?
    • Burgers PMJ, Gordenin D, Kunkel TA (2016) Who is leading the replication fork, Pol ε or Pol δ? Mol Cell 61(4):492-493.
    • (2016) Mol Cell , vol.61 , Issue.4 , pp. 492-493
    • Burgers, P.M.J.1    Gordenin, D.2    Kunkel, T.A.3
  • 35
    • 0025328320 scopus 로고
    • Sequential initiation of lagging and leading strand synthesis by two different polymerase complexes at the SV40 DNA replication origin
    • Tsurimoto T, Melendy T, Stillman B (1990) Sequential initiation of lagging and leading strand synthesis by two different polymerase complexes at the SV40 DNA replication origin. Nature 346(6284):534-539.
    • (1990) Nature , vol.346 , Issue.6284 , pp. 534-539
    • Tsurimoto, T.1    Melendy, T.2    Stillman, B.3
  • 36
    • 84963804607 scopus 로고    scopus 로고
    • The eukaryotic replication machine
    • Zhang D, O'Donnell M (2016) The eukaryotic replication machine. Enzymes 39:191-229.
    • (2016) Enzymes , vol.39 , pp. 191-229
    • Zhang, D.1    O'Donnell, M.2
  • 37
    • 0031663505 scopus 로고    scopus 로고
    • The DNA replication fork in eukaryotic cells
    • Waga S, Stillman B (1998) The DNA replication fork in eukaryotic cells. Annu Rev Biochem 67:721-751.
    • (1998) Annu Rev Biochem , vol.67 , pp. 721-751
    • Waga, S.1    Stillman, B.2
  • 38
    • 33749354956 scopus 로고    scopus 로고
    • S. cerevisiae replication protein A (scRPA) binds to single-stranded DNA in multiple salt-dependent modes
    • Kumaran S, Kozlov AG, Lohman TM (2006) S. cerevisiae replication protein A (scRPA) binds to single-stranded DNA in multiple salt-dependent modes. Biochemistry (Moscow) 45(39):11958-11973.
    • (2006) Biochemistry (Moscow) , vol.45 , Issue.39 , pp. 11958-11973
    • Kumaran, S.1    Kozlov, A.G.2    Lohman, T.M.3
  • 39
    • 0028175289 scopus 로고
    • Co-operative binding of Escherichia coli SSB tetramers to single-stranded DNA in the (SSB)35 binding mode
    • Ferrari ME, Bujalowski W, Lohman TM (1994) Co-operative binding of Escherichia coli SSB tetramers to single-stranded DNA in the (SSB)35 binding mode. J Mol Biol 236(1):106-123.
    • (1994) J Mol Biol , vol.236 , Issue.1 , pp. 106-123
    • Ferrari, M.E.1    Bujalowski, W.2    Lohman, T.M.3
  • 40
    • 83655212423 scopus 로고    scopus 로고
    • Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes
    • Netz DJA, et al. (2011) Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat Chem Biol 8(1):125-132.
    • (2011) Nat Chem Biol , vol.8 , Issue.1 , pp. 125-132
    • Netz, D.J.A.1
  • 41
    • 33845917564 scopus 로고    scopus 로고
    • Why molecules move along a temperature gradient
    • Duhr S, Braun D (2006) Why molecules move along a temperature gradient. Proc Natl Acad Sci USA 103(52):19678-19682.
    • (2006) Proc Natl Acad Sci USA , vol.103 , Issue.52 , pp. 19678-19682
    • Duhr, S.1    Braun, D.2
  • 42
    • 0028936571 scopus 로고
    • An exact mathematical expression for describing competitive binding of two different ligands to a protein molecule
    • Wang Z-X (1995) An exact mathematical expression for describing competitive binding of two different ligands to a protein molecule. FEBS Lett 360(2):111-114.
    • (1995) FEBS Lett , vol.360 , Issue.2 , pp. 111-114
    • Wang, Z.-X.1
  • 43
    • 0035861492 scopus 로고    scopus 로고
    • Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: High-resolution mapping of replication origins
    • Wyrick JJ, et al. (2001) Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: High-resolution mapping of replication origins. Science 294(5550):2357-2360.
    • (2001) Science , vol.294 , Issue.5550 , pp. 2357-2360
    • Wyrick, J.J.1
  • 44
    • 84895538371 scopus 로고    scopus 로고
    • Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells
    • Kulak NA, Pichler G, Paron I, Nagaraj N, Mann M (2014) Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods 11(3):319-324.
    • (2014) Nat Methods , vol.11 , Issue.3 , pp. 319-324
    • Kulak, N.A.1    Pichler, G.2    Paron, I.3    Nagaraj, N.4    Mann, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.