-
1
-
-
0003890119
-
-
(University Science Books, Herndon, VA), 2nd Ed
-
Kornberg A, Baker TA (2005) DNA Replication (University Science Books, Herndon, VA), 2nd Ed.
-
(2005)
DNA Replication
-
-
Kornberg, A.1
Baker, T.A.2
-
3
-
-
42949142111
-
DNA polymerases at the replication fork in eukaryotes
-
Stillman B (2008) DNA polymerases at the replication fork in eukaryotes. Mol Cell 30(3):259-260.
-
(2008)
Mol Cell
, vol.30
, Issue.3
, pp. 259-260
-
-
Stillman, B.1
-
4
-
-
84879750259
-
Principles and concepts of DNA replication in bacteria, archaea, and eukarya
-
O'Donnell M, Langston L, Stillman B (2013) Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harb Perspect Biol 5(7):a010108.
-
(2013)
Cold Spring Harb Perspect Biol
, vol.5
, Issue.7
-
-
O'Donnell, M.1
Langston, L.2
Stillman, B.3
-
5
-
-
33745925880
-
Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase
-
Moyer SE, Lewis PW, Botchan MR (2006) Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci USA 103(27):10236-10241.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, Issue.27
, pp. 10236-10241
-
-
Moyer, S.E.1
Lewis, P.W.2
Botchan, M.R.3
-
6
-
-
74749095240
-
Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins
-
Ilves I, Petojevic T, Pesavento JJ, Botchan MR (2010) Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 37(2):247-258.
-
(2010)
Mol Cell
, vol.37
, Issue.2
, pp. 247-258
-
-
Ilves, I.1
Petojevic, T.2
Pesavento, J.J.3
Botchan, M.R.4
-
7
-
-
84856768293
-
The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes
-
Makarova KS, Koonin EV, Kelman Z (2012) The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes. Biol Direct 7:7.
-
(2012)
Biol Direct
, vol.7
, pp. 7
-
-
Makarova, K.S.1
Koonin, E.V.2
Kelman, Z.3
-
8
-
-
84873118328
-
The RFC clamp loader: Structure and function
-
Yao NY, O'Donnell M (2012) The RFC clamp loader: Structure and function. Subcell Biochem 62:259-279.
-
(2012)
Subcell Biochem
, vol.62
, pp. 259-279
-
-
Yao, N.Y.1
O'Donnell, M.2
-
9
-
-
84906101503
-
Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork
-
Georgescu RE, et al. (2014) Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork. Nat Struct Mol Biol 21(8):664-670.
-
(2014)
Nat Struct Mol Biol
, vol.21
, Issue.8
, pp. 664-670
-
-
Georgescu, R.E.1
-
10
-
-
84928139350
-
Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation
-
Georgescu RE, et al. (2015) Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. eLife 4:e04988.
-
(2015)
eLife
, vol.4
-
-
Georgescu, R.E.1
-
11
-
-
84908271207
-
CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication
-
Langston LD, et al. (2014) CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication. Proc Natl Acad Sci USA 111(43):15390-15395.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, Issue.43
, pp. 15390-15395
-
-
Langston, L.D.1
-
12
-
-
36248991353
-
The eukaryotic leading and lagging strand DNA polymerases are loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of PCNA
-
Chilkova O, et al. (2007) The eukaryotic leading and lagging strand DNA polymerases are loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of PCNA. Nucleic Acids Res 35(19):6588-6597.
-
(2007)
Nucleic Acids Res
, vol.35
, Issue.19
, pp. 6588-6597
-
-
Chilkova, O.1
-
13
-
-
57649139149
-
DNA polymerase δ is highly processive with proliferating cell nuclear antigen and undergoes collision release upon completing DNA
-
Langston LD, O'Donnell M (2008) DNA polymerase δ is highly processive with proliferating cell nuclear antigen and undergoes collision release upon completing DNA. J Biol Chem 283(43):29522-29531.
-
(2008)
J Biol Chem
, vol.283
, Issue.43
, pp. 29522-29531
-
-
Langston, L.D.1
O'Donnell, M.2
-
14
-
-
34447336941
-
Yeast DNA polymerase epsilon participates in leading-strand DNA replication
-
Pursell ZF, Isoz I, Lundström E-B, Johansson E, Kunkel TA (2007) Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317(5834):127-130.
-
(2007)
Science
, vol.317
, Issue.5834
, pp. 127-130
-
-
Pursell, Z.F.1
Isoz, I.2
Lundström, E.-B.3
Johansson, E.4
Kunkel, T.A.5
-
15
-
-
54249092768
-
Dividing the workload at a eukaryotic replication fork
-
Kunkel TA, Burgers PM (2008) Dividing the workload at a eukaryotic replication fork. Trends Cell Biol 18(11):521-527.
-
(2008)
Trends Cell Biol
, vol.18
, Issue.11
, pp. 521-527
-
-
Kunkel, T.A.1
Burgers, P.M.2
-
16
-
-
42949119884
-
Division of labor at the eukaryotic replication fork
-
Nick McElhinny SA, Gordenin DA, Stith CM, Burgers PMJ, Kunkel TA (2008) Division of labor at the eukaryotic replication fork. Mol Cell 30(2):137-144.
-
(2008)
Mol Cell
, vol.30
, Issue.2
, pp. 137-144
-
-
Nick McElhinny, S.A.1
Gordenin, D.A.2
Stith, C.M.3
Burgers, P.M.J.4
Kunkel, T.A.5
-
17
-
-
84855267435
-
The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved
-
Miyabe I, Kunkel TA, Carr AM (2011) The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLoS Genet 7(12):e1002407, 10.1371/journal.pgen.1002407.
-
(2011)
PLoS Genet
, vol.7
, Issue.12
-
-
Miyabe, I.1
Kunkel, T.A.2
Carr, A.M.3
-
18
-
-
84912091104
-
Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall
-
Yu C, et al. (2014) Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Mol Cell 56(4):551-563.
-
(2014)
Mol Cell
, vol.56
, Issue.4
, pp. 551-563
-
-
Yu, C.1
-
19
-
-
0034723152
-
DNA polymerase switching: I. Replication factor C displaces DNA polymerase α prior to PCNA loading
-
Maga G, Stucki M, Spadari S, Hübscher U (2000) DNA polymerase switching: I. Replication factor C displaces DNA polymerase α prior to PCNA loading. J Mol Biol 295(4):791-801.
-
(2000)
J Mol Biol
, vol.295
, Issue.4
, pp. 791-801
-
-
Maga, G.1
Stucki, M.2
Spadari, S.3
Hübscher, U.4
-
20
-
-
0037033020
-
On the specificity of interaction between the Saccharomyces cerevisiae clamp loader replication factor C and primed DNA templates during DNA replication
-
Hingorani MM, Coman MM (2002) On the specificity of interaction between the Saccharomyces cerevisiae clamp loader replication factor C and primed DNA templates during DNA replication. J Biol Chem 277(49):47213-47224.
-
(2002)
J Biol Chem
, vol.277
, Issue.49
, pp. 47213-47224
-
-
Hingorani, M.M.1
Coman, M.M.2
-
21
-
-
0142215475
-
Global analysis of protein expression in yeast
-
Ghaemmaghami S, et al. (2003) Global analysis of protein expression in yeast. Nature 425(6959):737-741.
-
(2003)
Nature
, vol.425
, Issue.6959
, pp. 737-741
-
-
Ghaemmaghami, S.1
-
22
-
-
34548511797
-
The size of the nucleus increases as yeast cells grow
-
Jorgensen P, et al. (2007) The size of the nucleus increases as yeast cells grow. Mol Biol Cell 18(9):3523-3532.
-
(2007)
Mol Biol Cell
, vol.18
, Issue.9
, pp. 3523-3532
-
-
Jorgensen, P.1
-
23
-
-
0033230401
-
Multiple competition reactions for RPA order the assembly of the DNA polymerase delta holoenzyme
-
Yuzhakov A, Kelman Z, Hurwitz J, O'Donnell M (1999) Multiple competition reactions for RPA order the assembly of the DNA polymerase delta holoenzyme. EMBO J 18(21):6189-6199.
-
(1999)
EMBO J
, vol.18
, Issue.21
, pp. 6189-6199
-
-
Yuzhakov, A.1
Kelman, Z.2
Hurwitz, J.3
O'Donnell, M.4
-
24
-
-
84949535090
-
The architecture of a eukaryotic replisome
-
Sun J, et al. (2015) The architecture of a eukaryotic replisome. Nat Struct Mol Biol 22(12):976-982.
-
(2015)
Nat Struct Mol Biol
, vol.22
, Issue.12
, pp. 976-982
-
-
Sun, J.1
-
25
-
-
84962167085
-
Stability of the human polymerase δ holoenzyme and its implications in lagging strand DNA synthesis
-
Hedglin M, Pandey B, Benkovic SJ (2016) Stability of the human polymerase δ holoenzyme and its implications in lagging strand DNA synthesis. Proc Natl Acad Sci USA 113(13):E1777-E1786.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, Issue.13
, pp. E1777-E1786
-
-
Hedglin, M.1
Pandey, B.2
Benkovic, S.J.3
-
26
-
-
0023646086
-
Accessory proteins bind a primed template and mediate rapid cycling of DNA polymerase III holoenzyme from Escherichia coli
-
O'Donnell ME (1987) Accessory proteins bind a primed template and mediate rapid cycling of DNA polymerase III holoenzyme from Escherichia coli. J Biol Chem 262(34):16558-16565.
-
(1987)
J Biol Chem
, vol.262
, Issue.34
, pp. 16558-16565
-
-
O'Donnell, M.E.1
-
27
-
-
0028093437
-
An explanation for lagging strand replication: Polymerase hopping among DNA sliding clamps
-
Stukenberg PT, Turner J, O'Donnell M (1994) An explanation for lagging strand replication: Polymerase hopping among DNA sliding clamps. Cell 78(5):877-887.
-
(1994)
Cell
, vol.78
, Issue.5
, pp. 877-887
-
-
Stukenberg, P.T.1
Turner, J.2
O'Donnell, M.3
-
28
-
-
0022347158
-
Dynamics of DNA polymerase III holoenzyme of Escherichia coli in replication of a multiprimed template
-
O'Donnell ME, Kornberg A (1985) Dynamics of DNA polymerase III holoenzyme of Escherichia coli in replication of a multiprimed template. J Biol Chem 260(23):12875-12883.
-
(1985)
J Biol Chem
, vol.260
, Issue.23
, pp. 12875-12883
-
-
O'Donnell, M.E.1
Kornberg, A.2
-
29
-
-
84963616075
-
Resolving individual steps of Okazaki-fragment maturation at a millisecond timescale
-
Stodola JL, Burgers PM (2016) Resolving individual steps of Okazaki-fragment maturation at a millisecond timescale. Nat Struct Mol Biol 23(5):402-408.
-
(2016)
Nat Struct Mol Biol
, vol.23
, Issue.5
, pp. 402-408
-
-
Stodola, J.L.1
Burgers, P.M.2
-
30
-
-
77949368063
-
GINS motion reveals replication fork progression is remarkably uniform throughout the yeast genome
-
Sekedat MD, et al. (2010) GINS motion reveals replication fork progression is remarkably uniform throughout the yeast genome. Mol Syst Biol 6:353.
-
(2010)
Mol Syst Biol
, vol.6
, pp. 353
-
-
Sekedat, M.D.1
-
31
-
-
84937413584
-
A major role of DNA polymerase δ in replication of both the leading and lagging DNA strands
-
Johnson RE, Klassen R, Prakash L, Prakash S (2015) A major role of DNA polymerase δ in replication of both the leading and lagging DNA strands. Mol Cell 59(2):163-175.
-
(2015)
Mol Cell
, vol.59
, Issue.2
, pp. 163-175
-
-
Johnson, R.E.1
Klassen, R.2
Prakash, L.3
Prakash, S.4
-
32
-
-
0033529497
-
Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain
-
Dua R, Levy DL, Campbell JL (1999) Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain. J Biol Chem 274(32):22283-22288.
-
(1999)
J Biol Chem
, vol.274
, Issue.32
, pp. 22283-22288
-
-
Dua, R.1
Levy, D.L.2
Campbell, J.L.3
-
33
-
-
0032587610
-
DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability
-
Kesti T, Flick K, Keränen S, Syväoja JE, Wittenberg C (1999) DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol Cell 3(5):679-685.
-
(1999)
Mol Cell
, vol.3
, Issue.5
, pp. 679-685
-
-
Kesti, T.1
Flick, K.2
Keränen, S.3
Syväoja, J.E.4
Wittenberg, C.5
-
34
-
-
84958619916
-
Who is leading the replication fork, Pol ε or Pol δ?
-
Burgers PMJ, Gordenin D, Kunkel TA (2016) Who is leading the replication fork, Pol ε or Pol δ? Mol Cell 61(4):492-493.
-
(2016)
Mol Cell
, vol.61
, Issue.4
, pp. 492-493
-
-
Burgers, P.M.J.1
Gordenin, D.2
Kunkel, T.A.3
-
35
-
-
0025328320
-
Sequential initiation of lagging and leading strand synthesis by two different polymerase complexes at the SV40 DNA replication origin
-
Tsurimoto T, Melendy T, Stillman B (1990) Sequential initiation of lagging and leading strand synthesis by two different polymerase complexes at the SV40 DNA replication origin. Nature 346(6284):534-539.
-
(1990)
Nature
, vol.346
, Issue.6284
, pp. 534-539
-
-
Tsurimoto, T.1
Melendy, T.2
Stillman, B.3
-
36
-
-
84963804607
-
The eukaryotic replication machine
-
Zhang D, O'Donnell M (2016) The eukaryotic replication machine. Enzymes 39:191-229.
-
(2016)
Enzymes
, vol.39
, pp. 191-229
-
-
Zhang, D.1
O'Donnell, M.2
-
37
-
-
0031663505
-
The DNA replication fork in eukaryotic cells
-
Waga S, Stillman B (1998) The DNA replication fork in eukaryotic cells. Annu Rev Biochem 67:721-751.
-
(1998)
Annu Rev Biochem
, vol.67
, pp. 721-751
-
-
Waga, S.1
Stillman, B.2
-
38
-
-
33749354956
-
S. cerevisiae replication protein A (scRPA) binds to single-stranded DNA in multiple salt-dependent modes
-
Kumaran S, Kozlov AG, Lohman TM (2006) S. cerevisiae replication protein A (scRPA) binds to single-stranded DNA in multiple salt-dependent modes. Biochemistry (Moscow) 45(39):11958-11973.
-
(2006)
Biochemistry (Moscow)
, vol.45
, Issue.39
, pp. 11958-11973
-
-
Kumaran, S.1
Kozlov, A.G.2
Lohman, T.M.3
-
39
-
-
0028175289
-
Co-operative binding of Escherichia coli SSB tetramers to single-stranded DNA in the (SSB)35 binding mode
-
Ferrari ME, Bujalowski W, Lohman TM (1994) Co-operative binding of Escherichia coli SSB tetramers to single-stranded DNA in the (SSB)35 binding mode. J Mol Biol 236(1):106-123.
-
(1994)
J Mol Biol
, vol.236
, Issue.1
, pp. 106-123
-
-
Ferrari, M.E.1
Bujalowski, W.2
Lohman, T.M.3
-
40
-
-
83655212423
-
Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes
-
Netz DJA, et al. (2011) Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat Chem Biol 8(1):125-132.
-
(2011)
Nat Chem Biol
, vol.8
, Issue.1
, pp. 125-132
-
-
Netz, D.J.A.1
-
41
-
-
33845917564
-
Why molecules move along a temperature gradient
-
Duhr S, Braun D (2006) Why molecules move along a temperature gradient. Proc Natl Acad Sci USA 103(52):19678-19682.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, Issue.52
, pp. 19678-19682
-
-
Duhr, S.1
Braun, D.2
-
42
-
-
0028936571
-
An exact mathematical expression for describing competitive binding of two different ligands to a protein molecule
-
Wang Z-X (1995) An exact mathematical expression for describing competitive binding of two different ligands to a protein molecule. FEBS Lett 360(2):111-114.
-
(1995)
FEBS Lett
, vol.360
, Issue.2
, pp. 111-114
-
-
Wang, Z.-X.1
-
43
-
-
0035861492
-
Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: High-resolution mapping of replication origins
-
Wyrick JJ, et al. (2001) Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: High-resolution mapping of replication origins. Science 294(5550):2357-2360.
-
(2001)
Science
, vol.294
, Issue.5550
, pp. 2357-2360
-
-
Wyrick, J.J.1
-
44
-
-
84895538371
-
Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells
-
Kulak NA, Pichler G, Paron I, Nagaraj N, Mann M (2014) Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods 11(3):319-324.
-
(2014)
Nat Methods
, vol.11
, Issue.3
, pp. 319-324
-
-
Kulak, N.A.1
Pichler, G.2
Paron, I.3
Nagaraj, N.4
Mann, M.5
|