-
1
-
-
84888868810
-
Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors
-
[1] Wang, Z.L., Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7 (2013), 9533–9557.
-
(2013)
ACS Nano
, vol.7
, pp. 9533-9557
-
-
Wang, Z.L.1
-
2
-
-
84938385576
-
Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
-
[2] Wang, Z.L., Chen, J., Lin, L., Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8 (2015), 2250–2282.
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 2250-2282
-
-
Wang, Z.L.1
Chen, J.2
Lin, L.3
-
3
-
-
84953792301
-
Flexible nanogenerators for energy harvesting and self-powered electronics
-
[3] Fan, F.R., Tang, W., Wang, Z.L., Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28 (2016), 4283–4305.
-
(2016)
Adv. Mater.
, vol.28
, pp. 4283-4305
-
-
Fan, F.R.1
Tang, W.2
Wang, Z.L.3
-
4
-
-
84900475725
-
Broadband vibrational energy harvesting based on a triboelectric nanogenerator
-
[4] Yang, J., Chen, J., Yang, Y., Zhang, H., Yang, W., Bai, P., Su, Y., Wang, Z.L., Broadband vibrational energy harvesting based on a triboelectric nanogenerator. Adv. Energy Mater., 4, 2014, 1301322.
-
(2014)
Adv. Energy Mater.
, vol.4
, pp. 1301322
-
-
Yang, J.1
Chen, J.2
Yang, Y.3
Zhang, H.4
Yang, W.5
Bai, P.6
Su, Y.7
Wang, Z.L.8
-
5
-
-
84979894381
-
Wearable electricity generators fabricated utilizing transparent electronic textiles based on polyester/Ag nanowires/graphene core-shell nanocomposites
-
[5] Wu, C., Kim, T.W., Li, F., Guo, T., Wearable electricity generators fabricated utilizing transparent electronic textiles based on polyester/Ag nanowires/graphene core-shell nanocomposites. ACS Nano 10 (2016), 6449–6457.
-
(2016)
ACS Nano
, vol.10
, pp. 6449-6457
-
-
Wu, C.1
Kim, T.W.2
Li, F.3
Guo, T.4
-
6
-
-
84983420692
-
Nanopillar arrayed triboelectric nanogenerator as a self-powered sensitive sensor for a sleep monitoring system
-
[6] Song, W., Gan, B., Jiang, T., Zhang, Y., Yu, A., Yuan, H., Chen, N., Sun, C., Wang, Z.L., Nanopillar arrayed triboelectric nanogenerator as a self-powered sensitive sensor for a sleep monitoring system. ACS Nano 10 (2016), 8097–8103.
-
(2016)
ACS Nano
, vol.10
, pp. 8097-8103
-
-
Song, W.1
Gan, B.2
Jiang, T.3
Zhang, Y.4
Yu, A.5
Yuan, H.6
Chen, N.7
Sun, C.8
Wang, Z.L.9
-
7
-
-
84949604267
-
A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics
-
[7] Niu, S., Wang, X., Yi, F., Zhou, Y.S., Wang, Z.L., A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun., 6, 2015, 8975.
-
(2015)
Nat. Commun.
, vol.6
, pp. 8975
-
-
Niu, S.1
Wang, X.2
Yi, F.3
Zhou, Y.S.4
Wang, Z.L.5
-
8
-
-
84930225348
-
Motion-driven electrochromic reactions for self-powered smart window system
-
[8] Yeh, M.H., Lin, L., Yang, P.K., Wang, Z.L., Motion-driven electrochromic reactions for self-powered smart window system. ACS Nano 9 (2015), 4757–4765.
-
(2015)
ACS Nano
, vol.9
, pp. 4757-4765
-
-
Yeh, M.H.1
Lin, L.2
Yang, P.K.3
Wang, Z.L.4
-
9
-
-
84976541411
-
Efficient scavenging of solar and wind energies in a smart city
-
[9] Wang, S., Wang, X., Wang, Z.L., Yang, Y., Efficient scavenging of solar and wind energies in a smart city. ACS Nano 10 (2016), 5696–5700.
-
(2016)
ACS Nano
, vol.10
, pp. 5696-5700
-
-
Wang, S.1
Wang, X.2
Wang, Z.L.3
Yang, Y.4
-
10
-
-
84951827631
-
Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy
-
[10] Wang, X., Niu, S., Yin, Y., Yi, F., You, Z., Zhong, L.W., Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater., 5, 2015, 1501467.
-
(2015)
Adv. Energy Mater.
, vol.5
, pp. 1501467
-
-
Wang, X.1
Niu, S.2
Yin, Y.3
Yi, F.4
You, Z.5
Zhong, L.W.6
-
11
-
-
84979955928
-
Harvesting broad frequency band blue energy by a triboelectric-electromagnetic hybrid nanogenerator
-
[11] Wen, Z., Guo, H., Zi, Y., Yeh, M.H., Wang, X., Deng, J., Wang, J., Li, S., Hu, C., Zhu, L., Wang, Z.L., Harvesting broad frequency band blue energy by a triboelectric-electromagnetic hybrid nanogenerator. ACS Nano 10 (2016), 6526–6534.
-
(2016)
ACS Nano
, vol.10
, pp. 6526-6534
-
-
Wen, Z.1
Guo, H.2
Zi, Y.3
Yeh, M.H.4
Wang, X.5
Deng, J.6
Wang, J.7
Li, S.8
Hu, C.9
Zhu, L.10
Wang, Z.L.11
-
12
-
-
84934766637
-
Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer
-
[12] Wen, Z., Chen, J., Yeh, M.H., Guo, H., Li, Z., Fan, X., Zhang, T., Zhu, L., Wang, Z.L., Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy 16 (2015), 38–46.
-
(2015)
Nano Energy
, vol.16
, pp. 38-46
-
-
Wen, Z.1
Chen, J.2
Yeh, M.H.3
Guo, H.4
Li, Z.5
Fan, X.6
Zhang, T.7
Zhu, L.8
Wang, Z.L.9
-
13
-
-
84938154154
-
Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states
-
[13] Li, S., Wang, S., Zi, Y., Wen, Z., Lin, L., Zhang, G., Wang, Z.L., Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states. ACS Nano 7 (2015), 7479–7487.
-
(2015)
ACS Nano
, vol.7
, pp. 7479-7487
-
-
Li, S.1
Wang, S.2
Zi, Y.3
Wen, Z.4
Lin, L.5
Zhang, G.6
Wang, Z.L.7
-
14
-
-
84948409309
-
Shape memory polymer-based self-healing triboelectric nanogenerator
-
[14] Lee, J.H., Hinchet, R., Kim, S.K., Kim, S., Kim, S.W., Shape memory polymer-based self-healing triboelectric nanogenerator. Energy Environ. Sci. 8 (2015), 3605–3613.
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 3605-3613
-
-
Lee, J.H.1
Hinchet, R.2
Kim, S.K.3
Kim, S.4
Kim, S.W.5
-
15
-
-
84952311904
-
Automatic mode transition enabled robust triboelectric nanogenerators
-
[15] Chen, J., Yang, J., Guo, H., Li, Z., Zheng, L., Su, Y., Wen, Z., Fan, X., Wang, Z.L., Automatic mode transition enabled robust triboelectric nanogenerators. ACS Nano 9 (2015), 12334–12343.
-
(2015)
ACS Nano
, vol.9
, pp. 12334-12343
-
-
Chen, J.1
Yang, J.2
Guo, H.3
Li, Z.4
Zheng, L.5
Su, Y.6
Wen, Z.7
Fan, X.8
Wang, Z.L.9
-
16
-
-
84902203625
-
Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy
-
[16] Zhang, C., Tang, W., Han, C., Fan, F., Wang, Z.L., Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 26 (2014), 3580–3591.
-
(2014)
Adv. Mater.
, vol.26
, pp. 3580-3591
-
-
Zhang, C.1
Tang, W.2
Han, C.3
Fan, F.4
Wang, Z.L.5
-
17
-
-
0041967172
-
Charge generation on dielectric surfaces
-
[17] Davies, D.K., Charge generation on dielectric surfaces. J. Phys. D: Appl. Phys. 2 (1969), 1533–1537.
-
(1969)
J. Phys. D: Appl. Phys.
, vol.2
, pp. 1533-1537
-
-
Davies, D.K.1
-
18
-
-
84964725424
-
Silk nanofiber-networked bio-triboelectric generator: silk bio-TEG
-
[18] Kim, H.J., Kim, J.H., Jun, K.W., Kim, J.H., Seung, W.C., Kwon, O.H., Park, J.Y., Kim, S.W., Oh, I.K., Silk nanofiber-networked bio-triboelectric generator: silk bio-TEG. Adv. Energy Mater., 6, 2016, 1502329.
-
(2016)
Adv. Energy Mater.
, vol.6
, pp. 1502329
-
-
Kim, H.J.1
Kim, J.H.2
Jun, K.W.3
Kim, J.H.4
Seung, W.C.5
Kwon, O.H.6
Park, J.Y.7
Kim, S.W.8
Oh, I.K.9
-
19
-
-
84959910502
-
High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator
-
[19] Li, Z., Chen, J., Zhou, J., Zheng, L., Pradel, K.C., Fan, X., Guo, H., Wen, Z., Yeh, M.H., Yu, C., Wang, Z.L., High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator. Nano Energy 22 (2016), 548–557.
-
(2016)
Nano Energy
, vol.22
, pp. 548-557
-
-
Li, Z.1
Chen, J.2
Zhou, J.3
Zheng, L.4
Pradel, K.C.5
Fan, X.6
Guo, H.7
Wen, Z.8
Yeh, M.H.9
Yu, C.10
Wang, Z.L.11
-
20
-
-
84959569932
-
Self-powered electrochemical synthesis of polypyrrole from the pulsed output of a triboelectric nanogenerator as a sustainable energy system
-
[20] Wang, J., Wen, Z., Zi, Y., Lin, L., Wu, C., Guo, H., Xi, Y., Xu, Y., Wang, Z.L., Self-powered electrochemical synthesis of polypyrrole from the pulsed output of a triboelectric nanogenerator as a sustainable energy system. Adv. Funct. Mater. 26 (2016), 3542–3548.
-
(2016)
Adv. Funct. Mater.
, vol.26
, pp. 3542-3548
-
-
Wang, J.1
Wen, Z.2
Zi, Y.3
Lin, L.4
Wu, C.5
Guo, H.6
Xi, Y.7
Xu, Y.8
Wang, Z.L.9
-
21
-
-
84874967575
-
Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems
-
[21] Zhang, X.S., Han, M.D., Wang, R.X., Zhu, F.Y., Li, Z.H., Wang, W., Zhang, H.X., Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 13 (2013), 1168–1172.
-
(2013)
Nano Lett.
, vol.13
, pp. 1168-1172
-
-
Zhang, X.S.1
Han, M.D.2
Wang, R.X.3
Zhu, F.Y.4
Li, Z.H.5
Wang, W.6
Zhang, H.X.7
-
22
-
-
84942155012
-
Enhanced power output of a triboelectric nanogenerator composed of electrospun nanofiber mats doped with graphene oxide
-
[22] Huang, T., Lu, M., Yu, H., Zhang, Q., Wang, H., Zhu, M., Enhanced power output of a triboelectric nanogenerator composed of electrospun nanofiber mats doped with graphene oxide. Sci. Rep., 52, 2015, 13942.
-
(2015)
Sci. Rep.
, vol.52
, pp. 13942
-
-
Huang, T.1
Lu, M.2
Yu, H.3
Zhang, Q.4
Wang, H.5
Zhu, M.6
-
23
-
-
84879092885
-
Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy
-
[23] Lin, L., Wang, S., Xie, Y., Jing, Q., Niu, S., Hu, Y., Wang, Z.L., Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 13 (2013), 2916–2923.
-
(2013)
Nano Lett.
, vol.13
, pp. 2916-2923
-
-
Lin, L.1
Wang, S.2
Xie, Y.3
Jing, Q.4
Niu, S.5
Hu, Y.6
Wang, Z.L.7
-
24
-
-
84873676798
-
Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator
-
[24] Zhu, G., Lin, Z.H., Jing, Q., Bai, P., Pan, C., Yang, Y., Zhou, Y., Wang, Z.L., Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 13 (2013), 847–853.
-
(2013)
Nano Lett.
, vol.13
, pp. 847-853
-
-
Zhu, G.1
Lin, Z.H.2
Jing, Q.3
Bai, P.4
Pan, C.5
Yang, Y.6
Zhou, Y.7
Wang, Z.L.8
-
25
-
-
85027923006
-
Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding
-
[25] Wang, S., Xie, Y., Niu, S., Lin, L., Liu, C., Zhou, Y.S., Wang, Z.L., Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding. Adv. Mater. 26 (2014), 6720–6728.
-
(2014)
Adv. Mater.
, vol.26
, pp. 6720-6728
-
-
Wang, S.1
Xie, Y.2
Niu, S.3
Lin, L.4
Liu, C.5
Zhou, Y.S.6
Wang, Z.L.7
-
26
-
-
84904199302
-
3D stack integrated triboelectric nanogenerator for harvesting vibration energy
-
[26] Yang, W., Chen, J., Jing, Q., Yang, J., Wen, X., Su, Y., Zhu, G., Bai, P., Wang, Z.L., 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 24 (2014), 4090–4096.
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 4090-4096
-
-
Yang, W.1
Chen, J.2
Jing, Q.3
Yang, J.4
Wen, X.5
Su, Y.6
Zhu, G.7
Bai, P.8
Wang, Z.L.9
-
27
-
-
84876541745
-
Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions
-
[27] Bai, P., Zhu, G., Lin, Z.H., Jing, Q., Chen, J., Zhang, G., Ma, J., Wang, Z.L., Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 7 (2013), 3713–3719.
-
(2013)
ACS Nano
, vol.7
, pp. 3713-3719
-
-
Bai, P.1
Zhu, G.2
Lin, Z.H.3
Jing, Q.4
Chen, J.5
Zhang, G.6
Ma, J.7
Wang, Z.L.8
-
28
-
-
84941051519
-
Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency
-
[28] Xie, Y., Wang, S., Niu, S., Lin, L., Jing, Q., Yang, J., Wu, Z., Wang, Z.L., Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 26 (2014), 6599–6607.
-
(2014)
Adv. Mater.
, vol.26
, pp. 6599-6607
-
-
Xie, Y.1
Wang, S.2
Niu, S.3
Lin, L.4
Jing, Q.5
Yang, J.6
Wu, Z.7
Wang, Z.L.8
-
29
-
-
84921796194
-
Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼55%
-
[29] Lin, L., Xie, Y., Niu, S., Wang, S., Yang, P.K., Wang, Z.L., Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼55%. ACS Nano 9 (2015), 922–930.
-
(2015)
ACS Nano
, vol.9
, pp. 922-930
-
-
Lin, L.1
Xie, Y.2
Niu, S.3
Wang, S.4
Yang, P.K.5
Wang, Z.L.6
-
30
-
-
84895830368
-
Radial-arrayed rotary electrification for high performance triboelectric generator
-
[30] Zhu, G., Chen, J., Zhang, T., Jing, Q., Wang, Z.L., Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun., 5, 2014, 3426.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3426
-
-
Zhu, G.1
Chen, J.2
Zhang, T.3
Jing, Q.4
Wang, Z.L.5
-
31
-
-
84976567342
-
Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator
-
[31] Cui, N., Gu, L., Lei, Y., Liu, J., Qin, Y., Ma, X., Hao, Y., Wang, Z.L., Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator. ACS Nano 10 (2016), 6131–6138.
-
(2016)
ACS Nano
, vol.10
, pp. 6131-6138
-
-
Cui, N.1
Gu, L.2
Lei, Y.3
Liu, J.4
Qin, Y.5
Ma, X.6
Hao, Y.7
Wang, Z.L.8
-
32
-
-
0000137774
-
Structure of graphite oxide revisited
-
[32] Lerf, A., He, H., Forster, M., Klinowski, J., Structure of graphite oxide revisited. J. Phys. Chem. B 102 (1998), 4477–4482.
-
(1998)
J. Phys. Chem. B
, vol.102
, pp. 4477-4482
-
-
Lerf, A.1
He, H.2
Forster, M.3
Klinowski, J.4
-
33
-
-
79961057442
-
Highly reproducible memory effect of organic multilevel resistive-switch device utilizing graphene oxide sheets/polyimide hybrid nanocomposite
-
[33] Wu, C., Li, F., Zhang, Y., Guo, T., Chen, T., Highly reproducible memory effect of organic multilevel resistive-switch device utilizing graphene oxide sheets/polyimide hybrid nanocomposite. Appl. Phys. Lett., 99, 2011, 042108.
-
(2011)
Appl. Phys. Lett.
, vol.99
, pp. 042108
-
-
Wu, C.1
Li, F.2
Zhang, Y.3
Guo, T.4
Chen, T.5
-
34
-
-
84933532365
-
Multilevel characteristics and operating mechanisms of nonvolatile memory devices based on a floating gate of graphene oxide sheets sandwiched between two polystyrene layers
-
[34] Kim, Y.N., Lee, N.H., Yun, D.Y., Kim, T.W., Multilevel characteristics and operating mechanisms of nonvolatile memory devices based on a floating gate of graphene oxide sheets sandwiched between two polystyrene layers. Org. Electron. 25 (2015), 165–169.
-
(2015)
Org. Electron.
, vol.25
, pp. 165-169
-
-
Kim, Y.N.1
Lee, N.H.2
Yun, D.Y.3
Kim, T.W.4
-
35
-
-
82155199397
-
Controlling memory effects of three-layer structured hybrid bistable devices based on graphene sheets sandwiched between two laminated polymer layers
-
[35] Wu, C., Li, F., Guo, T., Kim, T.W., Controlling memory effects of three-layer structured hybrid bistable devices based on graphene sheets sandwiched between two laminated polymer layers. Org. Electron. 25 (2012), 178–183.
-
(2012)
Org. Electron.
, vol.25
, pp. 178-183
-
-
Wu, C.1
Li, F.2
Guo, T.3
Kim, T.W.4
-
36
-
-
0027680561
-
Photophysical processes in aromatic polyimides. Studies with model compounds
-
[36] Hasegawa, M., Shindo, Y., Sugimura, T., Ohshima, S., Horie, K., Kochi, M., Yokota, R., Mita, I., Photophysical processes in aromatic polyimides. Studies with model compounds. J. Polym. Sci., Part B: Polym. Phys. 31 (1993), 1617–1625.
-
(1993)
J. Polym. Sci., Part B: Polym. Phys.
, vol.31
, pp. 1617-1625
-
-
Hasegawa, M.1
Shindo, Y.2
Sugimura, T.3
Ohshima, S.4
Horie, K.5
Kochi, M.6
Yokota, R.7
Mita, I.8
-
37
-
-
0035279233
-
Photophysics, photochemistry, and optical properties of polyimides
-
[37] Hasegawa, M., Horie, K., Photophysics, photochemistry, and optical properties of polyimides. Prog. Polym. Sci. 26 (2001), 259–335.
-
(2001)
Prog. Polym. Sci.
, vol.26
, pp. 259-335
-
-
Hasegawa, M.1
Horie, K.2
-
38
-
-
70449580919
-
Molecular design, synthesis, and properties of highly fluorescent polyimides
-
[38] Wakita, J., Sekino, H., Sakai, K., Urano, Y., Ando, S., Molecular design, synthesis, and properties of highly fluorescent polyimides. J. Phys. Chem. B 113 (2009), 15212–15224.
-
(2009)
J. Phys. Chem. B
, vol.113
, pp. 15212-15224
-
-
Wakita, J.1
Sekino, H.2
Sakai, K.3
Urano, Y.4
Ando, S.5
-
39
-
-
0346961341
-
Quantum confinement energy in nanocrystalline silicon dots from high-frequency conductance measurement
-
[39] Huang, S., Banerjee, S., Tung, R.T., Oda, S., Quantum confinement energy in nanocrystalline silicon dots from high-frequency conductance measurement. J. Appl. Phys. 94 (2003), 7261–7265.
-
(2003)
J. Appl. Phys.
, vol.94
, pp. 7261-7265
-
-
Huang, S.1
Banerjee, S.2
Tung, R.T.3
Oda, S.4
-
41
-
-
84887919979
-
Theoretical study of contact-mode triboelectric nanogenerators as an effective power source.
-
[41] Niu, S., Wang, S., Lin, L., Liu, Y., Zhou, Y.S., Hu, Y., Wang, Z.L., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6 (2013), 3576–3583.
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 3576-3583
-
-
Niu, S.1
Wang, S.2
Lin, L.3
Liu, Y.4
Zhou, Y.S.5
Hu, Y.6
Wang, Z.L.7
-
42
-
-
84877248750
-
Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism
-
[42] Wang, S., Lin, L., Xie, Y., Jing, Q., Niu, S., Wang, Z.L., Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 13 (2013), 2226–2233.
-
(2013)
Nano Lett.
, vol.13
, pp. 2226-2233
-
-
Wang, S.1
Lin, L.2
Xie, Y.3
Jing, Q.4
Niu, S.5
Wang, Z.L.6
-
43
-
-
84877283238
-
Linear-grating triboelectric generator based on sliding electrification
-
[43] Zhu, G., Chen, J., Liu, Y., Bai, P., Zhou, Y.S., Jing, Q., Pan, C., Wang, Z.L., Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 13 (2013), 2282–2289.
-
(2013)
Nano Lett.
, vol.13
, pp. 2282-2289
-
-
Zhu, G.1
Chen, J.2
Liu, Y.3
Bai, P.4
Zhou, Y.S.5
Jing, Q.6
Pan, C.7
Wang, Z.L.8
-
44
-
-
84983375358
-
Self-powered triboelectric micro liquid/gas flow sensor for microfluidics
-
[44] Chen, J., Guo, H., Zheng, J., Huang, Y., Liu, G., Hu, C., Wang, Z.L., Self-powered triboelectric micro liquid/gas flow sensor for microfluidics. ACS Nano 10 (2016), 8104–8112.
-
(2016)
ACS Nano
, vol.10
, pp. 8104-8112
-
-
Chen, J.1
Guo, H.2
Zheng, J.3
Huang, Y.4
Liu, G.5
Hu, C.6
Wang, Z.L.7
-
45
-
-
84884973039
-
Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging
-
[45] Lin, L., Xie, Y., Wang, S., Wu, W., Niu, S., Wen, X., Wang, Z.L., Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 7 (2013), 8266–8274.
-
(2013)
ACS Nano
, vol.7
, pp. 8266-8274
-
-
Lin, L.1
Xie, Y.2
Wang, S.3
Wu, W.4
Niu, S.5
Wen, X.6
Wang, Z.L.7
|