-
1
-
-
84949033622
-
Doxorubicin induced heart failure: phenotype and molecular mechanisms
-
[1] Mitry, M.A., Edwards, J.G., Doxorubicin induced heart failure: phenotype and molecular mechanisms. Int. J. Cardiol. Heart Vasc. 10 (2016), 17–24.
-
(2016)
Int. J. Cardiol. Heart Vasc.
, vol.10
, pp. 17-24
-
-
Mitry, M.A.1
Edwards, J.G.2
-
2
-
-
84888263688
-
Loss of angiotensin-converting enzyme 2 exacerbates myocardial injury via activation of the CTGF-fractalkine signaling pathway
-
[2] Song, B., Zhang, Z.Z., Zhong, J.C., Yu, X.Y., Oudit, G.Y., Jin, H.Y., Lu, L., Xu, Y.L., Kassiri, Z., Shen, W.F., et al. Loss of angiotensin-converting enzyme 2 exacerbates myocardial injury via activation of the CTGF-fractalkine signaling pathway. Circ. J. 77:12 (2013), 2997–3006.
-
(2013)
Circ. J.
, vol.77
, Issue.12
, pp. 2997-3006
-
-
Song, B.1
Zhang, Z.Z.2
Zhong, J.C.3
Yu, X.Y.4
Oudit, G.Y.5
Jin, H.Y.6
Lu, L.7
Xu, Y.L.8
Kassiri, Z.9
Shen, W.F.10
-
3
-
-
79958734872
-
ACE2 improves right ventricular function in a pressure overload model
-
[3] Johnson, J.A., West, J., Maynard, K.B., Hemnes, A.R., ACE2 improves right ventricular function in a pressure overload model. PLoS One, 6(6), 2011, e20828.
-
(2011)
PLoS One
, vol.6
, Issue.6
-
-
Johnson, J.A.1
West, J.2
Maynard, K.B.3
Hemnes, A.R.4
-
4
-
-
77955981900
-
Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction
-
(718 p following 728)
-
[4] Zhong, J., Basu, R., Guo, D., Chow, F.L., Byrns, S., Schuster, M., Loibner, H., Wang, X.H., Penninger, J.M., Kassiri, Z., et al. Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction. Circulation 122:7 (2010), 717–728 (718 p following 728).
-
(2010)
Circulation
, vol.122
, Issue.7
, pp. 717-728
-
-
Zhong, J.1
Basu, R.2
Guo, D.3
Chow, F.L.4
Byrns, S.5
Schuster, M.6
Loibner, H.7
Wang, X.H.8
Penninger, J.M.9
Kassiri, Z.10
-
5
-
-
33846256550
-
ACE2 of the heart: from angiotensin I to angiotensin (1–7)
-
[5] Keidar, S., Kaplan, M., Gamliel-Lazarovich, A., ACE2 of the heart: from angiotensin I to angiotensin (1–7). Cardiovasc. Res. 73:3 (2007), 463–469.
-
(2007)
Cardiovasc. Res.
, vol.73
, Issue.3
, pp. 463-469
-
-
Keidar, S.1
Kaplan, M.2
Gamliel-Lazarovich, A.3
-
6
-
-
64149124827
-
Adriamycin-induced autophagic cardiomyocyte death plays a pathogenic role in a rat model of heart failure
-
[6] Lu, L., Wu, W., Yan, J., Li, X., Yu, H., Yu, X., Adriamycin-induced autophagic cardiomyocyte death plays a pathogenic role in a rat model of heart failure. Int. J. Cardiol. 134:1 (2009), 82–90.
-
(2009)
Int. J. Cardiol.
, vol.134
, Issue.1
, pp. 82-90
-
-
Lu, L.1
Wu, W.2
Yan, J.3
Li, X.4
Yu, H.5
Yu, X.6
-
7
-
-
84930651641
-
Functions of autophagy in pathological cardiac hypertrophy
-
[7] Li, Z., Wang, J., Yang, X., Functions of autophagy in pathological cardiac hypertrophy. Int. J. Biol. Sci. 11:6 (2015), 672–678.
-
(2015)
Int. J. Biol. Sci.
, vol.11
, Issue.6
, pp. 672-678
-
-
Li, Z.1
Wang, J.2
Yang, X.3
-
8
-
-
84866146375
-
Severe acute respiratory syndrome coronavirus replication is severely impaired by MG132 due to proteasome-independent inhibition of M-calpain
-
[8] Schneider, M., Ackermann, K., Stuart, M., Wex, C., Protzer, U., Schatzl, H.M., Gilch, S., Severe acute respiratory syndrome coronavirus replication is severely impaired by MG132 due to proteasome-independent inhibition of M-calpain. J. Virol. 86:18 (2012), 10112–10122.
-
(2012)
J. Virol.
, vol.86
, Issue.18
, pp. 10112-10122
-
-
Schneider, M.1
Ackermann, K.2
Stuart, M.3
Wex, C.4
Protzer, U.5
Schatzl, H.M.6
Gilch, S.7
-
9
-
-
84930386412
-
Induction of autophagy markers is associated with attenuation of miR-133a in diabetic heart failure patients undergoing mechanical unloading
-
[9] Nandi, S.S., Duryee, M.J., Shahshahan, H.R., Thiele, G.M., Anderson, D.R., Mishra, P.K., Induction of autophagy markers is associated with attenuation of miR-133a in diabetic heart failure patients undergoing mechanical unloading. Am. J. Transl. Res. 7:4 (2015), 683–696.
-
(2015)
Am. J. Transl. Res.
, vol.7
, Issue.4
, pp. 683-696
-
-
Nandi, S.S.1
Duryee, M.J.2
Shahshahan, H.R.3
Thiele, G.M.4
Anderson, D.R.5
Mishra, P.K.6
-
10
-
-
84966919056
-
Targeting microRNAs in heart failure
-
[10] Duygu, B., de Windt, L.J., da Costa Martins, P.A., Targeting microRNAs in heart failure. Trends Cardiovasc. Med., 2015.
-
(2015)
Trends Cardiovasc. Med.
-
-
Duygu, B.1
de Windt, L.J.2
da Costa Martins, P.A.3
-
11
-
-
84897402945
-
Downregulation of the miR-30 family microRNAs contributes to endoplasmic reticulum stress in cardiac muscle and vascular smooth muscle cells
-
[11] Chen, M., Ma, G., Yue, Y., Wei, Y., Li, Q., Tong, Z., Zhang, L., Miao, G., Zhang, J., Downregulation of the miR-30 family microRNAs contributes to endoplasmic reticulum stress in cardiac muscle and vascular smooth muscle cells. Int. J. Cardiol. 173:1 (2014), 65–73.
-
(2014)
Int. J. Cardiol.
, vol.173
, Issue.1
, pp. 65-73
-
-
Chen, M.1
Ma, G.2
Yue, Y.3
Wei, Y.4
Li, Q.5
Tong, Z.6
Zhang, L.7
Miao, G.8
Zhang, J.9
-
12
-
-
59849128881
-
miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling
-
(176p following 178)
-
[12] Duisters, R.F., Tijsen, A.J., Schroen, B., Leenders, J.J., Lentink, V., van der Made, I., Herias, V., van Leeuwen, R.E., Schellings, M.W., Barenbrug, P., et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ. Res. 104:2 (2009), 170–178 (176p following 178).
-
(2009)
Circ. Res.
, vol.104
, Issue.2
, pp. 170-178
-
-
Duisters, R.F.1
Tijsen, A.J.2
Schroen, B.3
Leenders, J.J.4
Lentink, V.5
van der Made, I.6
Herias, V.7
van Leeuwen, R.E.8
Schellings, M.W.9
Barenbrug, P.10
-
13
-
-
84872240012
-
MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy
-
[13] Pan, W., Zhong, Y., Cheng, C., Liu, B., Wang, L., Li, A., Xiong, L., Liu, S., MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy. PLoS One, 8(1), 2013, e53950.
-
(2013)
PLoS One
, vol.8
, Issue.1
-
-
Pan, W.1
Zhong, Y.2
Cheng, C.3
Liu, B.4
Wang, L.5
Li, A.6
Xiong, L.7
Liu, S.8
-
14
-
-
79960926626
-
Methods in cardiomyocyte isolation, culture, and gene transfer
-
[14] Louch, W.E., Sheehan, K.A., Wolska, B.M., Methods in cardiomyocyte isolation, culture, and gene transfer. J. Mol. Cell. Cardiol. 51:3 (2011), 288–298.
-
(2011)
J. Mol. Cell. Cardiol.
, vol.51
, Issue.3
, pp. 288-298
-
-
Louch, W.E.1
Sheehan, K.A.2
Wolska, B.M.3
-
15
-
-
46249090611
-
Overexpression of ACE2 enhances plaque stability in a rabbit model of atherosclerosis
-
[15] Dong, B., Zhang, C., Feng, J.B., Zhao, Y.X., Li, S.Y., Yang, Y.P., Dong, Q.L., Deng, B.P., Zhu, L., Yu, Q.T., et al. Overexpression of ACE2 enhances plaque stability in a rabbit model of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 28:7 (2008), 1270–1276.
-
(2008)
Arterioscler. Thromb. Vasc. Biol.
, vol.28
, Issue.7
, pp. 1270-1276
-
-
Dong, B.1
Zhang, C.2
Feng, J.B.3
Zhao, Y.X.4
Li, S.Y.5
Yang, Y.P.6
Dong, Q.L.7
Deng, B.P.8
Zhu, L.9
Yu, Q.T.10
-
16
-
-
77952766891
-
Autophagy: assays and artifacts
-
[16] Barth, S., Glick, D., Macleod, K.F., Autophagy: assays and artifacts. J. Pathol. 221:2 (2010), 117–124.
-
(2010)
J. Pathol.
, vol.221
, Issue.2
, pp. 117-124
-
-
Barth, S.1
Glick, D.2
Macleod, K.F.3
-
17
-
-
85009974171
-
Fluorouracil induces autophagy-related gastric carcinoma cell death through Beclin-1 upregulation by miR-30 suppression
-
[17] Yang, C., Pan, Y., Fluorouracil induces autophagy-related gastric carcinoma cell death through Beclin-1 upregulation by miR-30 suppression. Tumour Biol., 2015.
-
(2015)
Tumour Biol.
-
-
Yang, C.1
Pan, Y.2
-
18
-
-
61349118026
-
Cardioprotective effects of granulocyte colony-stimulating factor in angiotensin II-induced cardiac remodelling
-
[18] Jia, N., Dong, P., Huang, Q., Jin, W., Zhang, J., Dai, Q., Liu, S., Cardioprotective effects of granulocyte colony-stimulating factor in angiotensin II-induced cardiac remodelling. Clin. Exp. Pharmacol. Physiol. 36:3 (2009), 262–266.
-
(2009)
Clin. Exp. Pharmacol. Physiol.
, vol.36
, Issue.3
, pp. 262-266
-
-
Jia, N.1
Dong, P.2
Huang, Q.3
Jin, W.4
Zhang, J.5
Dai, Q.6
Liu, S.7
-
19
-
-
84903292649
-
Targeting angiotensin-converting enzyme 2 as a new therapeutic target for cardiovascular diseases
-
[19] Parajuli, N., Ramprasath, T., Patel, V.B., Wang, W., Putko, B., Mori, J., Oudit, G.Y., Targeting angiotensin-converting enzyme 2 as a new therapeutic target for cardiovascular diseases. Can. J. Physiol. Pharmacol. 92:7 (2014), 558–565.
-
(2014)
Can. J. Physiol. Pharmacol.
, vol.92
, Issue.7
, pp. 558-565
-
-
Parajuli, N.1
Ramprasath, T.2
Patel, V.B.3
Wang, W.4
Putko, B.5
Mori, J.6
Oudit, G.Y.7
-
20
-
-
84928150213
-
ACE2-Ang (1–7) axis is induced in pressure overloaded rat model
-
[20] Liang, B., Li, Y., Han, Z., Xue, J., Zhang, Y., Jia, S., Wang, C., ACE2-Ang (1–7) axis is induced in pressure overloaded rat model. Int. J. Clin. Exp. Pathol. 8:2 (2015), 1443–1450.
-
(2015)
Int. J. Clin. Exp. Pathol.
, vol.8
, Issue.2
, pp. 1443-1450
-
-
Liang, B.1
Li, Y.2
Han, Z.3
Xue, J.4
Zhang, Y.5
Jia, S.6
Wang, C.7
-
21
-
-
78649337583
-
ACE2 overexpression ameliorates left ventricular remodeling and dysfunction in a rat model of myocardial infarction
-
[21] Zhao, Y.X., Yin, H.Q., Yu, Q.T., Qiao, Y., Dai, H.Y., Zhang, M.X., Zhang, L., Liu, Y.F., Wang, L.C., Liu de, S., et al. ACE2 overexpression ameliorates left ventricular remodeling and dysfunction in a rat model of myocardial infarction. Hum. Gene Ther. 21:11 (2010), 1545–1554.
-
(2010)
Hum. Gene Ther.
, vol.21
, Issue.11
, pp. 1545-1554
-
-
Zhao, Y.X.1
Yin, H.Q.2
Yu, Q.T.3
Qiao, Y.4
Dai, H.Y.5
Zhang, M.X.6
Zhang, L.7
Liu, Y.F.8
Wang, L.C.9
Liu de, S.10
-
22
-
-
85009199100
-
Angiotensin-converting enzyme-2 overexpression improves atrial remodeling and function in a canine model of atrial fibrillation
-
[22] Zhou, T., Wang, Z., Fan, J., Chen, S., Tan, Z., Yang, H., Yin, Y., Angiotensin-converting enzyme-2 overexpression improves atrial remodeling and function in a canine model of atrial fibrillation. J. Am. Heart Assoc., 4(3), 2015, e001530.
-
(2015)
J. Am. Heart Assoc.
, vol.4
, Issue.3
-
-
Zhou, T.1
Wang, Z.2
Fan, J.3
Chen, S.4
Tan, Z.5
Yang, H.6
Yin, Y.7
-
23
-
-
84918796135
-
Mitochondrial catastrophe during doxorubicin-induced cardiotoxicity: a review of the protective role of melatonin
-
[23] Govender, J., Loos, B., Marais, E., Engelbrecht, A.M., Mitochondrial catastrophe during doxorubicin-induced cardiotoxicity: a review of the protective role of melatonin. J. Pineal Res. 57:4 (2014), 367–380.
-
(2014)
J. Pineal Res.
, vol.57
, Issue.4
, pp. 367-380
-
-
Govender, J.1
Loos, B.2
Marais, E.3
Engelbrecht, A.M.4
-
24
-
-
84869452725
-
Prior starvation mitigates acute doxorubicin cardiotoxicity through restoration of autophagy in affected cardiomyocytes
-
[24] Kawaguchi, T., Takemura, G., Kanamori, H., Takeyama, T., Watanabe, T., Morishita, K., Ogino, A., Tsujimoto, A., Goto, K., Maruyama, R., et al. Prior starvation mitigates acute doxorubicin cardiotoxicity through restoration of autophagy in affected cardiomyocytes. Cardiovasc. Res. 96:3 (2012), 456–465.
-
(2012)
Cardiovasc. Res.
, vol.96
, Issue.3
, pp. 456-465
-
-
Kawaguchi, T.1
Takemura, G.2
Kanamori, H.3
Takeyama, T.4
Watanabe, T.5
Morishita, K.6
Ogino, A.7
Tsujimoto, A.8
Goto, K.9
Maruyama, R.10
-
25
-
-
84880528869
-
Doxorubicin-induced markers of myocardial autophagic signaling in sedentary and exercise trained animals
-
[25] Smuder, A.J., Kavazis, A.N., Min, K., Powers, S.K., Doxorubicin-induced markers of myocardial autophagic signaling in sedentary and exercise trained animals. J. Appl. Physiol. 115:2 (2013), 176–185.
-
(2013)
J. Appl. Physiol.
, vol.115
, Issue.2
, pp. 176-185
-
-
Smuder, A.J.1
Kavazis, A.N.2
Min, K.3
Powers, S.K.4
-
26
-
-
84897423410
-
Activating transcription factor 3 protects against pressure-overload heart failure via the autophagy molecule Beclin-1 pathway
-
[26] Lin, H., Li, H.F., Chen, H.H., Lai, P.F., Juan, S.H., Chen, J.J., Cheng, C.F., Activating transcription factor 3 protects against pressure-overload heart failure via the autophagy molecule Beclin-1 pathway. Mol. Pharmacol. 85:5 (2014), 682–691.
-
(2014)
Mol. Pharmacol.
, vol.85
, Issue.5
, pp. 682-691
-
-
Lin, H.1
Li, H.F.2
Chen, H.H.3
Lai, P.F.4
Juan, S.H.5
Chen, J.J.6
Cheng, C.F.7
|