메뉴 건너뛰기




Volumn 75, Issue 7, 2016, Pages

A comparative study for estimation of wave height using traditional and hybrid soft-computing methods

Author keywords

Buoy data; Firefly algorithm; Hybrid methods; Support vector machine; Wave prediction

Indexed keywords

BIOLUMINESCENCE; FLOOD CONTROL; FORECASTING; GENETIC ALGORITHMS; GENETIC PROGRAMMING; LEARNING ALGORITHMS; SOFT COMPUTING; SUPPORT VECTOR MACHINES; WATER WAVES;

EID: 85007552706     PISSN: 18666280     EISSN: 18666299     Source Type: Journal    
DOI: 10.1007/s12665-015-5221-x     Document Type: Article
Times cited : (18)

References (60)
  • 1
    • 84865725890 scopus 로고    scopus 로고
    • Wave height prediction using the rough set theory
    • Abed-Elmdoust A, Kerachian R (2012) Wave height prediction using the rough set theory. Ocean Eng 54:244-250
    • (2012) Ocean Eng. , vol.54 , pp. 244-250
    • Abed-Elmdoust, A.1    Kerachian, R.2
  • 2
    • 84937002395 scopus 로고    scopus 로고
    • A hybrid genetic algorithm—extreme learning machine approach for accurate significant wave height reconstruction
    • Alexandre E, Cuadra L, Nieto-Borge J, Candil-García G, del Pino M, Salcedo-Sanz S (2015) A hybrid genetic algorithm—extreme learning machine approach for accurate significant wave height reconstruction. Ocean Model 92:115-123
    • (2015) Ocean Model , vol.92 , pp. 115-123
    • Alexandre, E.1    Cuadra, L.2    Nieto-Borge, J.3    Candil-García, G.4    Del Pino, M.5    Salcedo-Sanz, S.6
  • 3
    • 80255131412 scopus 로고    scopus 로고
    • Estimation of significant wave height in shallow lakes using the expert system techniques
    • Altunkaynak A, Wang K-H (2012) Estimation of significant wave height in shallow lakes using the expert system techniques. Expert Syst Appl 39:2549-2559. doi:10.1016/j.eswa.2011.08.106
    • (2012) Expert Syst Appl , vol.39 , pp. 2549-2559
    • Altunkaynak, A.1    Wang, K.-H.2
  • 4
    • 31044438334 scopus 로고    scopus 로고
    • Multi-time scale stream flow predictions: The support vector machines approach
    • Asefa T, Kemblowski M, McKee M, Khalil A (2006) Multi-time scale stream flow predictions: the support vector machines approach. J Hydrol 318:7-16
    • (2006) J Hydrol , vol.318 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.2    McKee, M.3    Khalil, A.4
  • 5
    • 78649815601 scopus 로고    scopus 로고
    • Application of PSO (Particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran
    • Assareh E, Behrang M, Assari M, Ghanbarzadeh A (2010) Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran. Energy 35:5223-5229
    • (2010) Energy , vol.35 , pp. 5223-5229
    • Assareh, E.1    Behrang, M.2    Assari, M.3    Ghanbarzadeh, A.4
  • 6
    • 84890490801 scopus 로고    scopus 로고
    • Optimal siting of offshore wind-power combined with wave energy through a marine spatial planning approach
    • Azzellino A, Ferrante V, Kofoed JP, Lanfredi C, Vicinanza D (2013) Optimal siting of offshore wind-power combined with wave energy through a marine spatial planning approach. Int J Mar Energy 3:e11-e25
    • (2013) Int J Mar Energy , vol.3 , pp. e11-e25
    • Azzellino, A.1    Ferrante, V.2    Kofoed, J.P.3    Lanfredi, C.4    Vicinanza, D.5
  • 7
    • 0036997582 scopus 로고    scopus 로고
    • Rainfall Runoff Modelling Based on Genetic Programming
    • Babovic V, Keijzer M (2002) Rainfall Runoff Modelling Based on Genetic Programming. Hydrol Res 33(5):331-346. http://hr.iwaponline.com/content/33/5/331
    • (2002) Hydrol Res , vol.33 , Issue.5 , pp. 331-346
    • Babovic, V.1    Keijzer, M.2
  • 9
    • 27144489164 scopus 로고    scopus 로고
    • A Tutorial on Support Vector Machines for Pattern Recognition
    • Burges CJC (1998) A Tutorial on Support Vector Machines for Pattern Recognition. Data Min Knowl Discov 2(2):121-167. doi:10.1023/A:1009715923555
    • (1998) Data Min Knowl Discov , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.1
  • 10
    • 84893812050 scopus 로고    scopus 로고
    • A support vector machine-firefly algorithm based forecasting model to determine malaria transmission
    • Ch S et al (2014) A support vector machine-firefly algorithm based forecasting model to determine malaria transmission. Neurocomputing 129:279-288
    • (2014) Neurocomputing , vol.129 , pp. 279-288
    • Ch, S.1
  • 11
    • 0141430928 scopus 로고    scopus 로고
    • Radius margin bounds for support vector machines with the RBF kernel
    • Chung K-M, Kao W-C, Sun C-L, Wang L-L, Lin C-J (2003) Radius margin bounds for support vector machines with the RBF kernel. Neural Comput 15:2643-2681
    • (2003) Neural Comput , vol.15 , pp. 2643-2681
    • Chung, K.-M.1    Kao, W.-C.2    Sun, C.-L.3    Wang, L.-L.4    Lin, C.-J.5
  • 12
    • 0003554988 scopus 로고    scopus 로고
    • Institut Dalle Molle d’Intelligence Artificelle Perceptive (IDIAP), Martigny, Switzerland, Tech Rep IDIAP-RR-00-17
    • Collobert R, Bengio S (2000) Support vector machines for large-scale regression problems. Institut Dalle Molle d’Intelligence Artificelle Perceptive (IDIAP), Martigny, Switzerland, Tech Rep IDIAP-RR-00-17
    • (2000) Support Vector Machines for Large-Scale Regression Problems
    • Collobert, R.1    Bengio, S.2
  • 13
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273-297. doi:10.1007/BF00994018
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 15
    • 84889888048 scopus 로고    scopus 로고
    • A comprehensive review of firefly algorithms
    • Fister I, Yang X-S, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34-46
    • (2013) Swarm Evol Comput , vol.13 , pp. 34-46
    • Fister, I.1    Yang, X.-S.2    Brest, J.3
  • 16
    • 15844394276 scopus 로고    scopus 로고
    • Evolutionary tuning of multiple SVM parameters
    • Friedrichs F, Igel C (2005) Evolutionary tuning of multiple SVM parameters. Neurocomputing 64:107-117
    • (2005) Neurocomputing , vol.64 , pp. 107-117
    • Friedrichs, F.1    Igel, C.2
  • 18
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • Govindaraju RS (2000) Artificial neural networks in hydrology. I: preliminary concepts. J Hydrol Eng 5:115-123
    • (2000) J Hydrol Eng , vol.5 , pp. 115-123
    • Govindaraju, R.S.1
  • 19
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • Huang C, Davis L, Townshend J (2002) An assessment of support vector machines for land cover classification. Int J Remote Sens 23:725-749
    • (2002) Int J Remote Sens , vol.23 , pp. 725-749
    • Huang, C.1    Davis, L.2    Townshend, J.3
  • 20
    • 67349229243 scopus 로고    scopus 로고
    • Supervised machine learning algorithms for protein structure classification
    • Jain P, Garibaldi JM, Hirst JD (2009) Supervised machine learning algorithms for protein structure classification. Comput Biol Chem 33:216-223
    • (2009) Comput Biol Chem , vol.33 , pp. 216-223
    • Jain, P.1    Garibaldi, J.M.2    Hirst, J.D.3
  • 21
    • 77950409182 scopus 로고    scopus 로고
    • Built at sea: Marine management and the construction of marine spatial planning
    • Jay S (2010) Built at sea: Marine management and the construction of marine spatial planning. Town Plann Rev 81:173-192
    • (2010) Town Plann Rev , vol.81 , pp. 173-192
    • Jay, S.1
  • 22
    • 84870238942 scopus 로고    scopus 로고
    • Multitask multiclass support vector machines: Model and experiments
    • Ji Y, Sun S (2013) Multitask multiclass support vector machines: model and experiments. Pattern Recognit 46:914-924
    • (2013) Pattern Recognit , vol.46 , pp. 914-924
    • Ji, Y.1    Sun, S.2
  • 23
    • 84929959505 scopus 로고    scopus 로고
    • Quantitative evaluation of mining geo-environmental quality in Northeast China: Comprehensive index method and support vector machine models
    • Jiang X, Lu W, Zhao H, Yang Q, Chen M (2014) Quantitative evaluation of mining geo-environmental quality in Northeast China: comprehensive index method and support vector machine models. Environ Earth Sci 73(12):7945-7955. doi:10.1007/s12665-014-3953-7
    • (2014) Environ Earth Sci , vol.73 , Issue.12 , pp. 7945-7955
    • Jiang, X.1    Lu, W.2    Zhao, H.3    Yang, Q.4    Chen, M.5
  • 24
    • 84899488578 scopus 로고    scopus 로고
    • Impacts of wave energy and littoral currents on shoreline erosion/accretion along the south-west coast of Kanyakumari, Tamil Nadu using DSAS and geospatial technology
    • Kaliraj S, Chandrasekar N, Magesh N (2014) Impacts of wave energy and littoral currents on shoreline erosion/accretion along the south-west coast of Kanyakumari, Tamil Nadu using DSAS and geospatial technology. Environ Earth Sci 71:4523-4542
    • (2014) Environ Earth Sci , vol.71 , pp. 4523-4542
    • Kaliraj, S.1    Chandrasekar, N.2    Magesh, N.3
  • 26
  • 27
    • 84941236999 scopus 로고    scopus 로고
    • A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm
    • Kisi O, Shiri J, Karimi S, Shamshirband S, Motamedi S, Petkovic D, Hashim R (2015) A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm. Appl Math Comput 270:731-743. doi:10.1016/j.amc.2015.08.085
    • (2015) Appl Math Comput , vol.270 , pp. 731-743
    • Kisi, O.1    Shiri, J.2    Karimi, S.3    Shamshirband, S.4    Motamedi, S.5    Petkovic, D.6    Hashim, R.7
  • 29
    • 84977625358 scopus 로고    scopus 로고
    • Support vector machines for computer vision and pattern recognition
    • Lee S-W, Verri A (2003) Support vector machines for computer vision and pattern recognition. World Scientific
    • (2003) World Scientific
    • Lee, S.-W.1    Verri, A.2
  • 30
    • 84920251426 scopus 로고    scopus 로고
    • Extraction algorithm of mining subsidence information on water area based on support vector machine
    • Li L, Wu K, Zhou D-W (2014) Extraction algorithm of mining subsidence information on water area based on support vector machine. Environ Earth Sci 72:3991-4000
    • (2014) Environ Earth Sci , vol.72 , pp. 3991-4000
    • Li, L.1    Wu, K.2    Zhou, D.-W.3
  • 31
    • 56549085451 scopus 로고    scopus 로고
    • Evolutionary tuning of SVM parameter values in multiclass problems
    • Lorena AC, De Carvalho AC (2008) Evolutionary tuning of SVM parameter values in multiclass problems. Neurocomputing 71:3326-3334
    • (2008) Neurocomputing , vol.71 , pp. 3326-3334
    • Lorena, A.C.1    de Carvalho, A.C.2
  • 32
    • 15544389367 scopus 로고    scopus 로고
    • Potential assessment of the “support vector machine” method in forecasting ambient air pollutant trends
    • Lu W-Z, Wang W-J (2005) Potential assessment of the “support vector machine” method in forecasting ambient air pollutant trends. Chemosphere 59:693-701
    • (2005) Chemosphere , vol.59 , pp. 693-701
    • Lu, W.-Z.1    Wang, W.-J.2
  • 33
    • 63649164524 scopus 로고    scopus 로고
    • Prediction of significant wave height using regressive support vector machines
    • Mahjoobi J, Adeli Mosabbeb E (2009) Prediction of significant wave height using regressive support vector machines. Ocean Eng 36:339-347. doi:10.1016/j.oceaneng.2009.01.001
    • (2009) Ocean Eng , vol.36 , pp. 339-347
    • Mahjoobi, J.1    Adeli Mosabbeb, E.2
  • 34
    • 50649091344 scopus 로고    scopus 로고
    • Hindcasting of wave parameters using different soft computing methods
    • Mahjoobi J, Etemad-Shahidi A, Kazeminezhad MH (2008) Hindcasting of wave parameters using different soft computing methods. Appl Ocean Res 30:28-36. doi:10.1016/j.apor.2008.03.002
    • (2008) Appl Ocean Res , vol.30 , pp. 28-36
    • Mahjoobi, J.1    Etemad-Shahidi, A.2    Kazeminezhad, M.H.3
  • 35
    • 1842843640 scopus 로고    scopus 로고
    • Improving wave predictions with artificial neural networks
    • Makarynskyy O (2004) Improving wave predictions with artificial neural networks. Ocean Eng 31:709-724. doi:10.1016/j.oceaneng.2003.05.003
    • (2004) Ocean Eng , vol.31 , pp. 709-724
    • Makarynskyy, O.1
  • 38
    • 78049281871 scopus 로고    scopus 로고
    • Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data
    • Ornella L, Tapia E (2010) Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data. Comput Electron Agric 74:250-257. doi:10.1016/j.compag.2010.08.013
    • (2010) Comput Electron Agric , vol.74 , pp. 250-257
    • Ornella, L.1    Tapia, E.2
  • 39
    • 77957260567 scopus 로고    scopus 로고
    • Significant wave height forecasting using wavelet fuzzy logic approach
    • Özger M (2010) Significant wave height forecasting using wavelet fuzzy logic approach. Ocean Eng 37:1443-1451. doi:10.1016/j.oceaneng.2010.07.009
    • (2010) Ocean Eng , vol.37 , pp. 1443-1451
    • Özger, M.1
  • 40
    • 84891848026 scopus 로고    scopus 로고
    • Comparative study of firefly algorithm and particle swarm optimization for noisy non-linear optimization problems
    • Pal SK, Rai C, Singh AP (2012) Comparative study of firefly algorithm and particle swarm optimization for noisy non-linear optimization problems. Int J Intell Syst Appl (IJISA) 4:50
    • (2012) Int J Intell Syst Appl (IJISA) , vol.4 , pp. 50
    • Pal, S.K.1    Rai, C.2    Singh, A.P.3
  • 41
    • 54549091989 scopus 로고    scopus 로고
    • Support vector regression methodology for storm surge predictions
    • Rajasekaran S, Gayathri S, Lee T-L (2008) Support vector regression methodology for storm surge predictions. Ocean Eng 35:1578-1587
    • (2008) Ocean Eng , vol.35 , pp. 1578-1587
    • Rajasekaran, S.1    Gayathri, S.2    Lee, T.-L.3
  • 42
    • 84925461359 scopus 로고    scopus 로고
    • Application of wavelet analysis and a particle swarm-optimized support vector machine to predict the displacement of the Shuping landslide in the Three Gorges
    • Ren F, Wu X, Zhang K, Niu R (2015) Application of wavelet analysis and a particle swarm-optimized support vector machine to predict the displacement of the Shuping landslide in the Three Gorges. China Environ Earth Sci 73:4791-4804
    • (2015) China Environ Earth Sci , vol.73 , pp. 4791-4804
    • Ren, F.1    Wu, X.2    Zhang, K.3    Niu, R.4
  • 43
    • 84896505175 scopus 로고    scopus 로고
    • Wind turbine power coefficient estimation by soft computing methodologies: Comparative study
    • Shamshirband S et al (2014) Wind turbine power coefficient estimation by soft computing methodologies: comparative study. Energy Convers Manag 81:520-526
    • (2014) Energy Convers Manag , vol.81 , pp. 520-526
    • Shamshirband, S.1
  • 45
    • 84893850117 scopus 로고    scopus 로고
    • Appraisal of land use/land cover of mangrove forest ecosystem using support vector machine
    • Singh SK, Srivastava PK, Gupta M, Thakur JK, Mukherjee S (2014) Appraisal of land use/land cover of mangrove forest ecosystem using support vector machine. Environ Earth Sci 71:2245-2255
    • (2014) Environ Earth Sci , vol.71 , pp. 2245-2255
    • Singh, S.K.1    Srivastava, P.K.2    Gupta, M.3    Thakur, J.K.4    Mukherjee, S.5
  • 46
    • 84880751652 scopus 로고    scopus 로고
    • Sensitivity assessment of wave heights to surface forcing in Cook Inlet
    • Singhal G, Panchang VG, Nelson JA (2013) Sensitivity assessment of wave heights to surface forcing in Cook Inlet. Alaska Cont Shelf Res 63:S50-S62
    • (2013) Alaska Cont Shelf Res , vol.63 , pp. S50-S62
    • Singhal, G.1    Panchang, V.G.2    Nelson, J.A.3
  • 47
    • 84887452388 scopus 로고    scopus 로고
    • A survey of multi-view machine learning
    • Sun S (2013) A survey of multi-view machine learning. Neural Comput Appl 23:2031-2038
    • (2013) Neural Comput Appl , vol.23 , pp. 2031-2038
    • Sun, S.1
  • 48
    • 84943383590 scopus 로고    scopus 로고
    • Identifying important features for intrusion detection using support vector machines and neural networks
    • Sung AH, Mukkamala S (2003) Identifying important features for intrusion detection using support vector machines and neural networks. In: Proceedings. 2003 Symposium on, IEEE Applications and the Internet, 2003, pp 209-216
    • (2003) Proceedings. 2003 Symposium On, IEEE Applications and the Internet , pp. 209-216
    • Sung, A.H.1    Mukkamala, S.2
  • 49
    • 0034174356 scopus 로고    scopus 로고
    • Hydrological forecasting using neural networks
    • Thirumalaiah K, Deo MC (2000) Hydrological forecasting using neural networks. J Hydrol Eng 5:180-189
    • (2000) J Hydrol Eng , vol.5 , pp. 180-189
    • Thirumalaiah, K.1    Deo, M.C.2
  • 52
    • 0025477595 scopus 로고
    • Genetic algorithms and neural networks: Optimizing connections and connectivity
    • Whitley D, Starkweather T, Bogart C (1990) Genetic algorithms and neural networks: optimizing connections and connectivity. Parallel Comput 14(3):347-361. doi:10.1016/0167-8191(90)90086-O
    • (1990) Parallel Comput , vol.14 , Issue.3 , pp. 347-361
    • Whitley, D.1    Starkweather, T.2    Bogart, C.3
  • 53
    • 58249083168 scopus 로고    scopus 로고
    • Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space
    • Wu K-P, Wang S-D (2009) Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space. Pattern Recognit 42:710-717
    • (2009) Pattern Recognit , vol.42 , pp. 710-717
    • Wu, K.-P.1    Wang, S.-D.2
  • 54
    • 84899943944 scopus 로고    scopus 로고
    • Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the Three Gorges of China
    • Wu X, Ren F, Niu R (2014) Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the Three Gorges of China. Environ Earth Sci 71:4725-4738
    • (2014) Environ Earth Sci , vol.71 , pp. 4725-4738
    • Wu, X.1    Ren, F.2    Niu, R.3
  • 55
    • 84892443164 scopus 로고    scopus 로고
    • Identification of algal blooms based on support vector machine classification in Haizhou Bay
    • Xu Y, Cheng C, Zhang Y, Zhang D (2014) Identification of algal blooms based on support vector machine classification in Haizhou Bay. East China Sea Environ Earth Sci 71:475-482
    • (2014) East China Sea Environ Earth Sci , vol.71 , pp. 475-482
    • Xu, Y.1    Cheng, C.2    Zhang, Y.3    Zhang, D.4
  • 56
    • 77957863557 scopus 로고    scopus 로고
    • Stochastic Algorithms: Foundations and Applications
    • Watanabe O, Zeugmann T (eds), Sapporo, Japan, October 2009. Proceedings, Springer Berlin Heidelberg
    • Yang XS (2009) Stochastic Algorithms: Foundations and Applications: In: Watanabe O, Zeugmann T (eds) 5th International Symposium, Sapporo, Japan, October 2009. Proceedings, Springer Berlin Heidelberg, pp 169-178. http://doi.org/10.1007/978-3-642-04944-6_14
    • (2009) 5Th International Symposium , pp. 169-178
    • Yang, X.S.1
  • 57
    • 80055043441 scopus 로고    scopus 로고
    • Research and Development in Intelligent Systems XXVI
    • Bramer M, Ellis R, Petridis M (eds), Springer London
    • Yang XS (2010) Research and Development in Intelligent Systems XXVI. In: Bramer M, Ellis R, Petridis M (eds) Incorporating Applications and Innovations in Intelligent Systems XVII, Springer London, pp 209-218 doi:10.1007/978-1-84882-983-1_15
    • (2010) Incorporating Applications and Innovations in Intelligent Systems XVII , pp. 209-218
    • Yang, X.S.1
  • 58
    • 84880515221 scopus 로고    scopus 로고
    • Multiobjective firefly algorithm for continuous optimization
    • Yang X-S (2013) Multiobjective firefly algorithm for continuous optimization. Eng Comput 29:175-184
    • (2013) Eng Comput , vol.29 , pp. 175-184
    • Yang, X.-S.1
  • 59
    • 84891856416 scopus 로고    scopus 로고
    • Cuckoo search: Recent advances and applications
    • Yang X-S, Deb S (2014) Cuckoo search: recent advances and applications. Neural Comput Appl 24:169-174
    • (2014) Neural Comput Appl. , vol.24 , pp. 169-174
    • Yang, X.-S.1    Deb, S.2
  • 60
    • 67349170327 scopus 로고    scopus 로고
    • Localized support vector regression for time series prediction
    • Yang H, Huang K, King I, Lyu MR (2009) Localized support vector regression for time series prediction. Neurocomputing 72:2659-2669
    • (2009) Neurocomputing , vol.72 , pp. 2659-2669
    • Yang, H.1    Huang, K.2    King, I.3    Lyu, M.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.