메뉴 건너뛰기




Volumn 81, Issue , 2014, Pages 520-526

Retraction notice to Wind turbine power coefficient estimation by soft computing methodologies: comparative study [ECM (2014) 520 - 526](S0196890414001745)(10.1016/j.enconman.2014.02.055);Wind turbine power coefficient estimation by soft computing methodologies: Comparative study

Author keywords

Blade pitch angle; Power coefficient; Soft computing; Support vector regression; Wind turbine

Indexed keywords

ENERGY CONVERSION; FOSSIL FUELS; SOFT COMPUTING; WIND; WIND POWER; WIND TURBINES; RADIAL BASIS FUNCTION NETWORKS; TURBOMACHINE BLADES;

EID: 84896505175     PISSN: 01968904     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enconman.2018.02.020     Document Type: Erratum
Times cited : (63)

References (56)
  • 2
    • 84881400382 scopus 로고    scopus 로고
    • An active power control system for wind turbines capable of primary and secondary frequency control for supporting grid reliability
    • Grapevine, TX, Jan
    • Aho J, Buckspan A, Pao L, Fleming P. An active power control system for wind turbines capable of primary and secondary frequency control for supporting grid reliability. In: 2012 AIAA/ASME wind symposium, Grapevine, TX, Jan. 2013.
    • (2013) 2012 AIAA/ASME Wind Symposium
    • Aho, J.1    Buckspan, A.2    Pao, L.3    Fleming, P.4
  • 3
    • 71549130448 scopus 로고    scopus 로고
    • Dynamic control of wind turbines
    • A. Kusiak, W. Li, and Z. Song Dynamic control of wind turbines Renew Energy 35 2010 456 463
    • (2010) Renew Energy , vol.35 , pp. 456-463
    • Kusiak, A.1    Li, W.2    Song, Z.3
  • 4
    • 84872772513 scopus 로고    scopus 로고
    • Prediction of optimum section pitch angle distribution along wind turbine blades
    • A. Sharifi, and M.R.H. Nobari Prediction of optimum section pitch angle distribution along wind turbine blades Energy Convers Manage 67 2013 342 350
    • (2013) Energy Convers Manage , vol.67 , pp. 342-350
    • Sharifi, A.1    Nobari, M.R.H.2
  • 5
    • 79957484055 scopus 로고    scopus 로고
    • A novel pitch control system for a wind turbine driven by a variable-speed pump-controlled hydraulic servo system
    • M.-H. Chiang A novel pitch control system for a wind turbine driven by a variable-speed pump-controlled hydraulic servo system Mechatronics 21 2011 753 761
    • (2011) Mechatronics , vol.21 , pp. 753-761
    • Chiang, M.-H.1
  • 6
    • 79952834358 scopus 로고    scopus 로고
    • Variable speed wind turbine generator system with current controlled voltage source inverter
    • S.M. Muyeen, Ahmed Al-Durra, and J. Tamura Variable speed wind turbine generator system with current controlled voltage source inverter Energy Convers Manage 52 2011 2688 2694
    • (2011) Energy Convers Manage , vol.52 , pp. 2688-2694
    • Muyeen, S.M.1    Al-Durra, A.2    Tamura, J.3
  • 7
    • 58949102910 scopus 로고    scopus 로고
    • Equivalent models of wind farms by using aggregated wind turbines and equivalent winds
    • L.M. Fernández, C.A. García, J.R. Saenz, and F. Jurado Equivalent models of wind farms by using aggregated wind turbines and equivalent winds Energy Convers Manage 50 2009 691 704
    • (2009) Energy Convers Manage , vol.50 , pp. 691-704
    • Fernández, L.M.1    García, C.A.2    Saenz, J.R.3    Jurado, F.4
  • 8
    • 84883125260 scopus 로고    scopus 로고
    • Smooth transition between controllers for floating wind turbines
    • E. Lindeberga, H.G. Svendsenb, and K. Uhlenc Smooth transition between controllers for floating wind turbines Energy Procedia 24 2012 83 98
    • (2012) Energy Procedia , vol.24 , pp. 83-98
    • Lindeberga, E.1    Svendsenb, H.G.2    Uhlenc, K.3
  • 9
    • 66149182711 scopus 로고    scopus 로고
    • Modeling, control, and simulation of dual rotor wind turbine generator system
    • T.S. No, J.-E. Kim, J.H. Moon, and S.J. Kim Modeling, control, and simulation of dual rotor wind turbine generator system Renew Energy 34 2009 2124 2132
    • (2009) Renew Energy , vol.34 , pp. 2124-2132
    • No, T.S.1    Kim, J.-E.2    Moon, J.H.3    Kim, S.J.4
  • 10
    • 79751513924 scopus 로고    scopus 로고
    • A sensorless control for a variable speed wind turbine operating at partial load
    • R. Rocha A sensorless control for a variable speed wind turbine operating at partial load Renew Energy 36 2011 132 141
    • (2011) Renew Energy , vol.36 , pp. 132-141
    • Rocha, R.1
  • 11
  • 12
    • 84883070001 scopus 로고    scopus 로고
    • The application of fuzzy PID control in pitch wind turbine
    • Y. Qi, and Q. Meng The application of fuzzy PID control in pitch wind turbine Energy Procedia 16 2012 1635 1641
    • (2012) Energy Procedia , vol.16 , pp. 1635-1641
    • Qi, Y.1    Meng, Q.2
  • 13
    • 79961129572 scopus 로고    scopus 로고
    • Fuzzy model based multivariable predictive control of a variable speed wind turbine: LMI approach
    • S. Bououden, M. Chadli, S. Filali, and A. El Hajjaji Fuzzy model based multivariable predictive control of a variable speed wind turbine: LMI approach Renew Energy 37 2012 434 439
    • (2012) Renew Energy , vol.37 , pp. 434-439
    • Bououden, S.1    Chadli, M.2    Filali, S.3    El Hajjaji, A.4
  • 14
    • 79251588431 scopus 로고    scopus 로고
    • Expert security system in wireless sensor networks based on fuzzy discussion multi-agent systems
    • S. Shamshirband, S. Kalantari, Z.S. Daliri, and L.S. Ng Expert security system in wireless sensor networks based on fuzzy discussion multi-agent systems Sci Res Essays 5 24 2010 3840 3849
    • (2010) Sci Res Essays , vol.5 , Issue.24 , pp. 3840-3849
    • Shamshirband, S.1    Kalantari, S.2    Daliri, Z.S.3    Ng, L.S.4
  • 15
    • 84870254661 scopus 로고    scopus 로고
    • Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system
    • S. Wua, Y. Wanga, and S. Cheng Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system Neurocomputing 102 2013 163 175
    • (2013) Neurocomputing , vol.102 , pp. 163-175
    • Wua, S.1    Wanga, Y.2    Cheng, S.3
  • 16
    • 64049096918 scopus 로고    scopus 로고
    • Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks
    • A.S. Yilmaz, and Z. Özer Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks Expert Syst Appl 36 2009 9767 9775
    • (2009) Expert Syst Appl , vol.36 , pp. 9767-9775
    • Yilmaz, A.S.1    Özer, Z.2
  • 17
    • 79959826777 scopus 로고    scopus 로고
    • Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)
    • Mohandes M, Rehman S, Rahman SM. Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS). Appl Energy, http://dx.doi.org/ 10.1016/j.apenergy.2011.04.015.
    • Appl Energy.
    • Mohandes, M.1    Rehman, S.2    Rahman, S.M.3
  • 18
    • 77955446140 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system to improve the power quality of variable-speed wind power generation system
    • 10.3906/elk-0907-11
    • Y. Oguz, and I. Guney Adaptive neuro-fuzzy inference system to improve the power quality of variable-speed wind power generation system Turk J Electr Eng Comput Sci 18 4 2010 10.3906/elk-0907-11
    • (2010) Turk J Electr Eng Comput Sci , vol.18 , Issue.4
    • Oguz, Y.1    Guney, I.2
  • 19
    • 79951581465 scopus 로고    scopus 로고
    • A variable speed wind generator maximum power tracking based on adaptative neuro-fuzzy inference system
    • A. Meharrar, M. Tioursi, M. Hatti, and A. Boudghène Stambouli A variable speed wind generator maximum power tracking based on adaptative neuro-fuzzy inference system Expert Syst Appl 38 2011 7659 7664
    • (2011) Expert Syst Appl , vol.38 , pp. 7659-7664
    • Meharrar, A.1    Tioursi, M.2    Hatti, M.3    Boudghène Stambouli, A.4
  • 20
    • 84891491511 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy maximal power extraction of wind turbine with continuously variable transmission
    • Dalibor Petković, Z. Ćojbašić, Vlasta Nikolić, Shahaboddin Shamshirband, Miss Laiha Mat Kiah, and Nor Badrul Anuar et al. Adaptive neuro-fuzzy maximal power extraction of wind turbine with continuously variable transmission Energy 64 2014 868 874
    • (2014) Energy , vol.64 , pp. 868-874
    • Petković, D.1    Ćojbašić, Z.2    Nikolić, V.3    Shamshirband, S.4    Mat Kiah, M.L.5    Anuar, N.B.6
  • 21
    • 77950298459 scopus 로고    scopus 로고
    • An adaptive neuro-fuzzy inference system approach for prediction of tip speed ratio in wind turbines
    • R. Ata, Y. Kocyigit, and Y. Kocyigit An adaptive neuro-fuzzy inference system approach for prediction of tip speed ratio in wind turbines Expert Syst Appl 37 2010 5454 5460
    • (2010) Expert Syst Appl , vol.37 , pp. 5454-5460
    • Ata, R.1    Kocyigit, Y.2    Kocyigit, Y.3
  • 23
    • 32044458124 scopus 로고    scopus 로고
    • An algorithm for semi-supervised learning in image retrieval
    • DOI 10.1016/j.patcog.2005.11.009, PII S0031320305004358, Graph-Based Representations
    • K. Lu, J. Zhao, and D. Cai An algorithm for semi-supervised learning in image retrieval Pattern Recogn 39 2006 717 720 (Pubitemid 43199468)
    • (2006) Pattern Recognition , vol.39 , Issue.4 , pp. 717-720
    • Lu, K.1    Zhao, J.2    Cai, D.3
  • 24
    • 84875758815 scopus 로고    scopus 로고
    • Combining active learning and semi-supervised learning to construct SVM classifier
    • Y. Leng, X. Xu, and G. Qi Combining active learning and semi-supervised learning to construct SVM classifier Knowl-Based Syst 44 2013 121 131
    • (2013) Knowl-Based Syst , vol.44 , pp. 121-131
    • Leng, Y.1    Xu, X.2    Qi, G.3
  • 25
    • 79957480232 scopus 로고    scopus 로고
    • Help-training for semi-supervised support vector machines
    • M.M. Adankon, and M. Cheriet Help-training for semi-supervised support vector machines Pattern Recogn 44 2011 2220 2230
    • (2011) Pattern Recogn , vol.44 , pp. 2220-2230
    • Adankon, M.M.1    Cheriet, M.2
  • 26
    • 84856360384 scopus 로고    scopus 로고
    • Adaptive PID control of wind energy conversion systems using RASP1 mother wavelet basis function networks
    • February 2008, ISSN 1307-6884
    • Sedighizadeh M, Rezazadeh A. Adaptive PID control of wind energy conversion systems using RASP1 mother wavelet basis function networks. In: Proceedings of world academy of science, engineering and technology, vol. 27, February 2008, ISSN 1307-6884.
    • Proceedings of World Academy of Science, Engineering and Technology , vol.27
    • Sedighizadeh, M.1    Rezazadeh, A.2
  • 27
    • 84883131816 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation
    • D. Petković, Z. Ćojbašić, and V. Nikolić Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation Renew Sustain Energy Rev 28 2013 191 195
    • (2013) Renew Sustain Energy Rev , vol.28 , pp. 191-195
    • Petković, D.1    Ćojbašić, Z.2    Nikolić, V.3
  • 28
    • 27744492112 scopus 로고    scopus 로고
    • Application of neural network controller for maximum power extraction of a grid-connected wind turbine system
    • T.K. Barlas, and G.A.M. van Kuik Application of neural network controller for maximum power extraction of a grid-connected wind turbine system Electr Eng 88 2005 45 53
    • (2005) Electr Eng , vol.88 , pp. 45-53
    • Barlas, T.K.1    Van Kuik, G.A.M.2
  • 29
    • 29244466901 scopus 로고    scopus 로고
    • Neural-network-based sensorless maximum wind energy capture with compensated power coefficient
    • DOI 10.1109/TIA.2005.858282
    • Li H, Shi KL, McLaren P. Neural network based sensorless maximum wind energy capture with compensated power coefficient. In: IEEE transactions on industry applications, vol. 41(6); 2005. p. 1548-56. (Pubitemid 41824645)
    • (2005) IEEE Transactions on Industry Applications , vol.41 , Issue.6 , pp. 1548-1556
    • Li, H.1    Shi, K.L.2    McLaren, P.G.3
  • 30
    • 84888388073 scopus 로고    scopus 로고
    • An appraisal and design of a multi-agent system based cooperative wireless intrusion detection computational intelligence technique
    • S. Shamshirband, N.B. Anuar, M.L. Mat Kiah, and A. Patel An appraisal and design of a multi-agent system based cooperative wireless intrusion detection computational intelligence technique Eng Appl Artif Intell 26 9 2013 2105 2127
    • (2013) Eng Appl Artif Intell , vol.26 , Issue.9 , pp. 2105-2127
    • Shamshirband, S.1    Anuar, N.B.2    Mat Kiah, M.L.3    Patel, A.4
  • 31
    • 78049281871 scopus 로고    scopus 로고
    • Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data
    • L. Ornella, and E. Tapia Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data Comput Electron Agric 74 2010 250 257
    • (2010) Comput Electron Agric , vol.74 , pp. 250-257
    • Ornella, L.1    Tapia, E.2
  • 32
    • 67349229243 scopus 로고    scopus 로고
    • Supervised machine learning algorithms for protein structure classification
    • P. Jain, J.M. Garibaldib, and J.D. Hirst Supervised machine learning algorithms for protein structure classification Comput Biol Chem 33 2009 216 223
    • (2009) Comput Biol Chem , vol.33 , pp. 216-223
    • Jain, P.1    Garibaldib, J.M.2    Hirst, J.D.3
  • 33
    • 84883884444 scopus 로고    scopus 로고
    • Quality prediction in interlinked manufacturing processes based on supervised & unsupervised machine learning
    • D.L. Lieber, M. Stolpe, B. Konrad, J. Deuse, and K. Morik Quality prediction in interlinked manufacturing processes based on supervised & unsupervised machine learning Procedia CIRP 7 2013 193 198
    • (2013) Procedia CIRP , vol.7 , pp. 193-198
    • Lieber, D.L.1    Stolpe, M.2    Konrad, B.3    Deuse, J.4    Morik, K.5
  • 34
    • 84893553584 scopus 로고    scopus 로고
    • Cost-sensitive support vector machine for semi-supervised learning
    • Z. Qi, Y. Tian, Y. Shi, and X. Yu Cost-sensitive support vector machine for semi-supervised learning Procedia Comput Sci 18 2013 1684 1689
    • (2013) Procedia Comput Sci , vol.18 , pp. 1684-1689
    • Qi, Z.1    Tian, Y.2    Shi, Y.3    Yu, X.4
  • 35
    • 84870240528 scopus 로고    scopus 로고
    • Batch-mode semi-supervised active learning for statistical machine translation
    • S. Ananthakrishnan, R. Prasad, D. Stallard, and P. Natarajan Batch-mode semi-supervised active learning for statistical machine translation Comput Speech Lang 27 2013 397 406
    • (2013) Comput Speech Lang , vol.27 , pp. 397-406
    • Ananthakrishnan, S.1    Prasad, R.2    Stallard, D.3    Natarajan, P.4
  • 36
    • 58349091868 scopus 로고    scopus 로고
    • Sentiment classification of online reviews to travel destinations by supervised machine learning approaches
    • Q. Ye, Z. Zhang, and R. Law Sentiment classification of online reviews to travel destinations by supervised machine learning approaches Expert Syst Appl 36 2009 6527 6535
    • (2009) Expert Syst Appl , vol.36 , pp. 6527-6535
    • Ye, Q.1    Zhang, Z.2    Law, R.3
  • 37
    • 84885435300 scopus 로고    scopus 로고
    • Comparative experiments using supervised learning and machine translation for multilingual sentiment analysis
    • A. Balahura, and M. Turchi Comparative experiments using supervised learning and machine translation for multilingual sentiment analysis Computer Speech Lang 28 1 2014 56 75
    • (2014) Computer Speech Lang , vol.28 , Issue.1 , pp. 56-75
    • Balahura, A.1    Turchi, M.2
  • 38
    • 78649709873 scopus 로고    scopus 로고
    • Bayesian semi-supervised learning with support vector machine
    • S. Chakraborty Bayesian semi-supervised learning with support vector machine Stat Meth 8 2011 68 82
    • (2011) Stat Meth , vol.8 , pp. 68-82
    • Chakraborty, S.1
  • 39
    • 34547981441 scopus 로고    scopus 로고
    • Spectral feature selection for supervised and unsupervised learning
    • doi:10.1145/1273496.1273641 Corvallis, OR; 2007
    • Zhao Zheng, Liu Huan. Spectral feature selection for supervised and unsupervised learning. In: Proceedings of the 24th international conference on machine learning, Corvallis, OR; 2007, doi: http://dx.doi.org/10.1145/1273496. 1273641. p. 1151-7.
    • Proceedings of the 24th International Conference on Machine Learning , pp. 1151-1157
    • Zheng, Z.1    Liu, H.2
  • 40
    • 54549091989 scopus 로고    scopus 로고
    • Support vector regression methodology for storm surge predictions
    • S. Rajasekaran, S. Gayathri, and T.-L. Lee Support vector regression methodology for storm surge predictions Ocean Eng 35 2008 1578 1587
    • (2008) Ocean Eng , vol.35 , pp. 1578-1587
    • Rajasekaran, S.1    Gayathri, S.2    Lee, T.-L.3
  • 41
    • 67349170327 scopus 로고    scopus 로고
    • Localized support vector regression for time series prediction
    • H. Yang, K. Huang, I. King, and M.R. Lyu Localized support vector regression for time series prediction Neurocomputing 72 2009 2659 2669
    • (2009) Neurocomputing , vol.72 , pp. 2659-2669
    • Yang, H.1    Huang, K.2    King, I.3    Lyu, M.R.4
  • 42
    • 84892440133 scopus 로고    scopus 로고
    • A hybrid approach of support vector regression with genetic algorithm optimization for aquaculture water quality prediction
    • S. Liu, H. Tai, Q. Ding, D. Li, L. Xu, and Y. Wei A hybrid approach of support vector regression with genetic algorithm optimization for aquaculture water quality prediction Math Computer Model 58 2013 458 465
    • (2013) Math Computer Model , vol.58 , pp. 458-465
    • Liu, S.1    Tai, H.2    Ding, Q.3    Li, D.4    Xu, L.5    Wei, Y.6
  • 44
    • 80255123776 scopus 로고    scopus 로고
    • Grey relational grade in local support vector regression for financial time series prediction
    • H. Jiang, and W. He Grey relational grade in local support vector regression for financial time series prediction Expert Syst Appl 39 2012 2256 2262
    • (2012) Expert Syst Appl , vol.39 , pp. 2256-2262
    • Jiang, H.1    He, W.2
  • 45
    • 84055198424 scopus 로고    scopus 로고
    • Study on the support vector regression model for order's prediction
    • Q. Yan, M. Guo, and J. Jiang Study on the support vector regression model for order's prediction Adv Control Eng Inform Sci 15 2011 1471 1475
    • (2011) Adv Control Eng Inform Sci , vol.15 , pp. 1471-1475
    • Yan, Q.1    Guo, M.2    Jiang, J.3
  • 46
    • 67349286428 scopus 로고    scopus 로고
    • Prediction of silicon content in hot metal using support vector regression based on chaos particle swarm optimization
    • X. Tang, L. Zhuang, and C. Jiang Prediction of silicon content in hot metal using support vector regression based on chaos particle swarm optimization Expert Syst Appl 36 2009 11853 11857
    • (2009) Expert Syst Appl , vol.36 , pp. 11853-11857
    • Tang, X.1    Zhuang, L.2    Jiang, C.3
  • 47
    • 84879322256 scopus 로고    scopus 로고
    • A dynamic particle filter-support vector regression method for reliability prediction
    • Z. Wei, T. Tao, D. ZhuoShu, and E. Zio A dynamic particle filter-support vector regression method for reliability prediction Reliab Eng Syst Saf 119 2013 109 116
    • (2013) Reliab Eng Syst Saf , vol.119 , pp. 109-116
    • Wei, Z.1    Tao, T.2    Zhuoshu, D.3    Zio, E.4
  • 48
    • 84867884437 scopus 로고    scopus 로고
    • Iterated time series prediction with multiple support vector regression models
    • Li Zhang, W.-D. Zhou, P.-C. Chang, J.-W. Yang, and F.-Z. Li Iterated time series prediction with multiple support vector regression models Neurocomputing 99 2013 411 422
    • (2013) Neurocomputing , vol.99 , pp. 411-422
    • Zhang, L.1    Zhou, W.-D.2    Chang, P.-C.3    Yang, J.-W.4    Li, F.-Z.5
  • 50
    • 58049099887 scopus 로고    scopus 로고
    • Support vector regression for link load prediction
    • P. Bermolen, and D. Rossi Support vector regression for link load prediction Comput Netw 53 2 2009 191 201
    • (2009) Comput Netw , vol.53 , Issue.2 , pp. 191-201
    • Bermolen, P.1    Rossi, D.2
  • 52
    • 84870239179 scopus 로고    scopus 로고
    • Intelligent rotational direction control of passive robotic joint with embedded sensors
    • ISSN 0957-4174
    • D. Petković, M. Issa, N.D. Pavlović, and L. Zentner Intelligent rotational direction control of passive robotic joint with embedded sensors Expert Syst Appl 40 4 2013 1265 1273 ISSN 0957-4174
    • (2013) Expert Syst Appl , vol.40 , Issue.4 , pp. 1265-1273
    • Petković, D.1    Issa, M.2    Pavlović, N.D.3    Zentner, L.4
  • 53
    • 84876015569 scopus 로고    scopus 로고
    • Adaptive neuro fuzzy selection of heart rate variability parameters affected by autonomic nervous system
    • ISSN 0957-4174
    • D. Petković, Z. Ćojbašić, and S. Lukić Adaptive neuro fuzzy selection of heart rate variability parameters affected by autonomic nervous system Expert Syst Appl 40 11 2013 4490 4495 ISSN 0957-4174
    • (2013) Expert Syst Appl , vol.40 , Issue.11 , pp. 4490-4495
    • Petković, D.1    Ćojbašić, Z.2    Lukić, S.3
  • 54
    • 84866078432 scopus 로고    scopus 로고
    • Adaptive neuro fuzzy estimation of underactuated robotic gripper contact forces
    • ISSN 0957-4174
    • D. Petković, N.D. Pavlović, Z. Ćojbaš ić, and N.T. Pavlović Adaptive neuro fuzzy estimation of underactuated robotic gripper contact forces Expert Syst Appl 40 1 2013 281 286 ISSN 0957-4174
    • (2013) Expert Syst Appl , vol.40 , Issue.1 , pp. 281-286
    • Petković, D.1    Pavlović, N.D.2    Ćojbašić, Z.3    Pavlović, N.T.4
  • 55
    • 84867738691 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy estimation of automatic nervous system parameters effect on heart rate variability
    • D. Petković, and Z. Ćojbašić Adaptive neuro-fuzzy estimation of automatic nervous system parameters effect on heart rate variability Neural Comput Appl 21 8 2012 2065 2070
    • (2012) Neural Comput Appl , vol.21 , Issue.8 , pp. 2065-2070
    • Petković, D.1    Ćojbašić, Z.2
  • 56
    • 79956110047 scopus 로고    scopus 로고
    • Support vector regression based modeling of pier scour using field data
    • M. Pal, N.K. Singh, and N.K. Tiwari Support vector regression based modeling of pier scour using field data Eng Appl Artif Intell 24 2011 911 916
    • (2011) Eng Appl Artif Intell , vol.24 , pp. 911-916
    • Pal, M.1    Singh, N.K.2    Tiwari, N.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.