-
1
-
-
34248549251
-
Theories of ageing
-
[1] Vina, J., Borras, C., Miquel, J., Theories of ageing. IUBMB Life 59:4–5 (2007), 249–254.
-
(2007)
IUBMB Life
, vol.59
, Issue.4-5
, pp. 249-254
-
-
Vina, J.1
Borras, C.2
Miquel, J.3
-
2
-
-
77049308856
-
Aging: a theory based on free radical and radiation chemistry
-
[2] Harman, D., Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11:3 (1956), 298–300.
-
(1956)
J. Gerontol.
, vol.11
, Issue.3
, pp. 298-300
-
-
Harman, D.1
-
3
-
-
0035853552
-
Regulation of longevity and stress resistance by Sch9 in yeast
-
[3] Fabrizio, P., et al. Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:5515 (2001), 288–290.
-
(2001)
Science
, vol.292
, Issue.5515
, pp. 288-290
-
-
Fabrizio, P.1
-
4
-
-
0027515616
-
Aging and resistance to oxidative damage in Caenorhabditis elegans
-
[4] Larsen, P.L., Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 90:19 (1993), 8905–8909.
-
(1993)
Proc. Natl. Acad. Sci. USA
, vol.90
, Issue.19
, pp. 8905-8909
-
-
Larsen, P.L.1
-
5
-
-
0032582489
-
Extended life-span and stress resistance in the Drosophila mutant methuselah
-
[5] Lin, Y.J., Seroude, L., Benzer, S., Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282:5390 (1998), 943–946.
-
(1998)
Science
, vol.282
, Issue.5390
, pp. 943-946
-
-
Lin, Y.J.1
Seroude, L.2
Benzer, S.3
-
6
-
-
0033581704
-
The p66shc adaptor protein controls oxidative stress response and life span in mammals
-
[6] Migliaccio, E., et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:6759 (1999), 309–313.
-
(1999)
Nature
, vol.402
, Issue.6759
, pp. 309-313
-
-
Migliaccio, E.1
-
7
-
-
59049086591
-
The overexpression of major antioxidant enzymes does not extend the lifespan of mice
-
[7] Perez, V.I., et al. The overexpression of major antioxidant enzymes does not extend the lifespan of mice. Aging Cell 8:1 (2009), 73–75.
-
(2009)
Aging Cell
, vol.8
, Issue.1
, pp. 73-75
-
-
Perez, V.I.1
-
8
-
-
79959350253
-
Extending life span by increasing oxidative stress
-
[8] Ristow, M., Schmeisser, S., Extending life span by increasing oxidative stress. Free Radic. Biol. Med. 51:2 (2011), 327–336.
-
(2011)
Free Radic. Biol. Med.
, vol.51
, Issue.2
, pp. 327-336
-
-
Ristow, M.1
Schmeisser, S.2
-
9
-
-
84878864199
-
The hallmarks of aging
-
[9] Lopez-Otin, C., et al. The hallmarks of aging. Cell 153:6 (2013), 1194–1217.
-
(2013)
Cell
, vol.153
, Issue.6
, pp. 1194-1217
-
-
Lopez-Otin, C.1
-
10
-
-
84857116578
-
Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling
-
[10] Ray, P.D., Huang, B.W., Tsuji, Y., Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:5 (2012), 981–990.
-
(2012)
Cell Signal
, vol.24
, Issue.5
, pp. 981-990
-
-
Ray, P.D.1
Huang, B.W.2
Tsuji, Y.3
-
11
-
-
51749088156
-
Redox regulation of cell survival
-
[11] Trachootham, D., et al. Redox regulation of cell survival. Antioxid. Redox Signal 10:8 (2008), 1343–1374.
-
(2008)
Antioxid. Redox Signal
, vol.10
, Issue.8
, pp. 1343-1374
-
-
Trachootham, D.1
-
12
-
-
78650169712
-
Expression of multiple copies of mitochondrially targeted catalase or genomic Mn superoxide dismutase transgenes does not extend the life span of Drosophila melanogaster
-
[12] Mockett, R.J., Sohal, B.H., Sohal, R.S., Expression of multiple copies of mitochondrially targeted catalase or genomic Mn superoxide dismutase transgenes does not extend the life span of Drosophila melanogaster. Free Radic. Biol. Med. 49:12 (2010), 2028–2031.
-
(2010)
Free Radic. Biol. Med.
, vol.49
, Issue.12
, pp. 2028-2031
-
-
Mockett, R.J.1
Sohal, B.H.2
Sohal, R.S.3
-
13
-
-
61449184625
-
Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans
-
[13] Van Raamsdonk, J.M., Hekimi, S., Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet., 5(2), 2009, e1000361.
-
(2009)
PLoS Genet.
, vol.5
, Issue.2
, pp. e1000361
-
-
Van Raamsdonk, J.M.1
Hekimi, S.2
-
14
-
-
34748850786
-
Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress
-
[14] Schulz, T.J., et al. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 6:4 (2007), 280–293.
-
(2007)
Cell Metab.
, vol.6
, Issue.4
, pp. 280-293
-
-
Schulz, T.J.1
-
15
-
-
84859475161
-
Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal
-
[15] Zarse, K., et al. Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell Metab. 15:4 (2012), 451–465.
-
(2012)
Cell Metab.
, vol.15
, Issue.4
, pp. 451-465
-
-
Zarse, K.1
-
16
-
-
34547914798
-
Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia
-
[16] Bell, E.L., et al. Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia. Mol. Cell Biol. 27:16 (2007), 5737–5745.
-
(2007)
Mol. Cell Biol.
, vol.27
, Issue.16
, pp. 5737-5745
-
-
Bell, E.L.1
-
17
-
-
84859575436
-
Superoxide dismutase is dispensable for normal animal lifespan
-
[17] Van Raamsdonk, J.M., Hekimi, S., Superoxide dismutase is dispensable for normal animal lifespan. Proc. Natl. Acad. Sci. USA 109:15 (2012), 5785–5790.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, Issue.15
, pp. 5785-5790
-
-
Van Raamsdonk, J.M.1
Hekimi, S.2
-
18
-
-
0028904871
-
Transient adaptation of oxidative stress in mammalian cells
-
[18] Wiese, A.G., Pacifici, R.E., Davies, K.J., Transient adaptation of oxidative stress in mammalian cells. Arch. Biochem Biophys. 318:1 (1995), 231–240.
-
(1995)
Arch. Biochem Biophys.
, vol.318
, Issue.1
, pp. 231-240
-
-
Wiese, A.G.1
Pacifici, R.E.2
Davies, K.J.3
-
19
-
-
0034456207
-
Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems
-
[19] Davies, K.J., Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50:4–5 (2000), 279–289.
-
(2000)
IUBMB Life
, vol.50
, Issue.4-5
, pp. 279-289
-
-
Davies, K.J.1
-
20
-
-
84923340794
-
Guidelines for monitoring autophagy in Caenorhabditis elegans
-
[20] Zhang, H., et al. Guidelines for monitoring autophagy in Caenorhabditis elegans. Autophagy 11:1 (2015), 9–27.
-
(2015)
Autophagy
, vol.11
, Issue.1
, pp. 9-27
-
-
Zhang, H.1
-
21
-
-
0037011917
-
IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA
-
[21] Calfon, M., et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:6867 (2002), 92–96.
-
(2002)
Nature
, vol.415
, Issue.6867
, pp. 92-96
-
-
Calfon, M.1
-
22
-
-
4944234936
-
Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones
-
[22] Yoneda, T., et al. Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J. Cell Sci. 117:Pt 18 (2004), 4055–4066.
-
(2004)
J. Cell Sci.
, vol.117
, pp. 4055-4066
-
-
Yoneda, T.1
-
23
-
-
2342419515
-
Telomere measurement by quantitative PCR
-
[23] Cawthon, R.M., Telomere measurement by quantitative PCR. Nucleic Acids Res., 30(10), 2002, e47.
-
(2002)
Nucleic Acids Res.
, vol.30
, Issue.10
, pp. e47
-
-
Cawthon, R.M.1
-
24
-
-
33750909999
-
Reactive oxygen species-induced activation of the MAP kinase signaling pathways
-
[24] McCubrey, J.A., Lahair, M.M., Franklin, R.A., Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid. Redox Signal. 8:9–10 (2006), 1775–1789.
-
(2006)
Antioxid. Redox Signal.
, vol.8
, Issue.9-10
, pp. 1775-1789
-
-
McCubrey, J.A.1
Lahair, M.M.2
Franklin, R.A.3
-
25
-
-
14044265068
-
Stress-responsive protein kinases in redox-regulated apoptosis signaling
-
[25] Matsuzawa, A., Ichijo, H., Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxid. Redox Signal. 7:3–4 (2005), 472–481.
-
(2005)
Antioxid. Redox Signal.
, vol.7
, Issue.3-4
, pp. 472-481
-
-
Matsuzawa, A.1
Ichijo, H.2
-
26
-
-
33750906556
-
The redox regulation of PI 3-kinase-dependent signaling
-
[26] Leslie, N.R., The redox regulation of PI 3-kinase-dependent signaling. Antioxid. Redox Signal. 8:9–10 (2006), 1765–1774.
-
(2006)
Antioxid. Redox Signal.
, vol.8
, Issue.9-10
, pp. 1765-1774
-
-
Leslie, N.R.1
-
27
-
-
70349973869
-
Expanding roles for AMP-activated protein kinase in neuronal survival and autophagy
-
[27] Poels, J., et al. Expanding roles for AMP-activated protein kinase in neuronal survival and autophagy. Bioessays 31:9 (2009), 944–952.
-
(2009)
Bioessays
, vol.31
, Issue.9
, pp. 944-952
-
-
Poels, J.1
-
28
-
-
34648828532
-
AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy
-
[28] Hardie, D.G., AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 8:10 (2007), 774–785.
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, Issue.10
, pp. 774-785
-
-
Hardie, D.G.1
-
29
-
-
0033953974
-
Protein folding in vivo: the importance of molecular chaperones
-
[29] Feldman, D.E., Frydman, J., Protein folding in vivo: the importance of molecular chaperones. Curr. Opin. Struct. Biol. 10:1 (2000), 26–33.
-
(2000)
Curr. Opin. Struct. Biol.
, vol.10
, Issue.1
, pp. 26-33
-
-
Feldman, D.E.1
Frydman, J.2
-
30
-
-
84907025107
-
The critical roles of HSC70 in physiological and pathological processes
-
[30] Liao, Y., Tang, L., The critical roles of HSC70 in physiological and pathological processes. Curr. Pharm. Des. 20:1 (2014), 101–107.
-
(2014)
Curr. Pharm. Des.
, vol.20
, Issue.1
, pp. 101-107
-
-
Liao, Y.1
Tang, L.2
-
31
-
-
84928963751
-
Widespread proteome remodeling and aggregation in aging C. elegans
-
[31] Walther, D.M., et al. Widespread proteome remodeling and aggregation in aging C. elegans. Cell 161:4 (2015), 919–932.
-
(2015)
Cell
, vol.161
, Issue.4
, pp. 919-932
-
-
Walther, D.M.1
-
32
-
-
63049095076
-
Mitochondrial Lon protease is a human stress protein
-
[32] Ngo, J.K., Davies, K.J., Mitochondrial Lon protease is a human stress protein. Free Radic. Biol. Med 46:8 (2009), 1042–1048.
-
(2009)
Free Radic. Biol. Med
, vol.46
, Issue.8
, pp. 1042-1048
-
-
Ngo, J.K.1
Davies, K.J.2
-
33
-
-
80054933045
-
Impairment of lon-induced protection against the accumulation of oxidized proteins in senescent wi-38 fibroblasts
-
[33] Ngo, J.K., et al. Impairment of lon-induced protection against the accumulation of oxidized proteins in senescent wi-38 fibroblasts. J. Gerontol. A Biol. Sci. Med Sci. 66:11 (2011), 1178–1185.
-
(2011)
J. Gerontol. A Biol. Sci. Med Sci.
, vol.66
, Issue.11
, pp. 1178-1185
-
-
Ngo, J.K.1
-
34
-
-
80052303130
-
Autophagy and aging
-
[34] Rubinsztein, D.C., Marino, G., Kroemer, G., Autophagy and aging. Cell 146:5 (2011), 682–695.
-
(2011)
Cell
, vol.146
, Issue.5
, pp. 682-695
-
-
Rubinsztein, D.C.1
Marino, G.2
Kroemer, G.3
-
35
-
-
34548077575
-
Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
-
[35] Kimura, S., Noda, T., Yoshimori, T., Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3:5 (2007), 452–460.
-
(2007)
Autophagy
, vol.3
, Issue.5
, pp. 452-460
-
-
Kimura, S.1
Noda, T.2
Yoshimori, T.3
-
36
-
-
84908680637
-
Transient overexpression of Werner protein rescues starvation induced autophagy in Werner syndrome cells
-
[36] Maity, J., et al. Transient overexpression of Werner protein rescues starvation induced autophagy in Werner syndrome cells. Biochim. Biophys. Acta 1842:12 Pt A (2014), 2387–2394.
-
(2014)
Biochim. Biophys. Acta
, vol.1842
, Issue.12
, pp. 2387-2394
-
-
Maity, J.1
-
37
-
-
84858972249
-
Nrf2-dependent induction of proteasome and Pa28alphabeta regulator are required for adaptation to oxidative stress
-
[37] Pickering, A.M., et al. Nrf2-dependent induction of proteasome and Pa28alphabeta regulator are required for adaptation to oxidative stress. J. Biol. Chem. 287:13 (2012), 10021–10031.
-
(2012)
J. Biol. Chem.
, vol.287
, Issue.13
, pp. 10021-10031
-
-
Pickering, A.M.1
-
38
-
-
78649848069
-
The immunoproteasome, the 20S proteasome and the PA28alphabeta proteasome regulator are oxidative-stress-adaptive proteolytic complexes
-
[38] Pickering, A.M., et al. The immunoproteasome, the 20S proteasome and the PA28alphabeta proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochem. J. 432:3 (2010), 585–594.
-
(2010)
Biochem. J.
, vol.432
, Issue.3
, pp. 585-594
-
-
Pickering, A.M.1
-
39
-
-
84861869794
-
Differential roles of proteasome and immunoproteasome regulators Pa28alphabeta, Pa28gamma and Pa200 in the degradation of oxidized proteins
-
[39] Pickering, A.M., Davies, K.J., Differential roles of proteasome and immunoproteasome regulators Pa28alphabeta, Pa28gamma and Pa200 in the degradation of oxidized proteins. Arch. Biochem. Biophys. 523:2 (2012), 181–190.
-
(2012)
Arch. Biochem. Biophys.
, vol.523
, Issue.2
, pp. 181-190
-
-
Pickering, A.M.1
Davies, K.J.2
-
40
-
-
84871706015
-
Oxidative stress adaptation with acute, chronic, and repeated stress
-
[40] Pickering, A.M., et al. Oxidative stress adaptation with acute, chronic, and repeated stress. Free Radic. Biol. Med 55 (2013), 109–118.
-
(2013)
Free Radic. Biol. Med
, vol.55
, pp. 109-118
-
-
Pickering, A.M.1
-
41
-
-
67349276677
-
Increased age reduces DAF-16 and SKN-1 signaling and the hormetic response of Caenorhabditis elegans to the xenobiotic juglone
-
[41] Przybysz, A.J., et al. Increased age reduces DAF-16 and SKN-1 signaling and the hormetic response of Caenorhabditis elegans to the xenobiotic juglone. Mech. Ageing Dev. 130:6 (2009), 357–369.
-
(2009)
Mech. Ageing Dev.
, vol.130
, Issue.6
, pp. 357-369
-
-
Przybysz, A.J.1
-
42
-
-
78650945994
-
Mitochondrial stress signals revise an old aging theory
-
[42] Woo, D.K., Shadel, G.S., Mitochondrial stress signals revise an old aging theory. Cell 144:1 (2011), 11–12.
-
(2011)
Cell
, vol.144
, Issue.1
, pp. 11-12
-
-
Woo, D.K.1
Shadel, G.S.2
-
43
-
-
84964621692
-
Adaptive homeostasis
-
[43] Davies, K.J., Adaptive homeostasis. Mol. Asp. Med 49 (2016), 1–7.
-
(2016)
Mol. Asp. Med
, vol.49
, pp. 1-7
-
-
Davies, K.J.1
-
44
-
-
84919668883
-
Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells
-
[44] Fedyaeva, A.V., et al. Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells. Biochemistry (Mosc.) 79:11 (2014), 1202–1210.
-
(2014)
Biochemistry (Mosc.)
, vol.79
, Issue.11
, pp. 1202-1210
-
-
Fedyaeva, A.V.1
-
45
-
-
84882749784
-
A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF
-
[45] Kawarazaki, T., et al. A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF. Biochim. Biophys. Acta 1833:12 (2013), 2775–2780.
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, Issue.12
, pp. 2775-2780
-
-
Kawarazaki, T.1
-
46
-
-
84867602835
-
Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation
-
[46] Li, L., Chen, Y., Gibson, S.B., Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell Signal 25:1 (2013), 50–65.
-
(2013)
Cell Signal
, vol.25
, Issue.1
, pp. 50-65
-
-
Li, L.1
Chen, Y.2
Gibson, S.B.3
-
47
-
-
84866146958
-
Lung oxidative damage by hypoxia
-
[47] Araneda, O.F., Tuesta, M., Lung oxidative damage by hypoxia. Oxid. Med. Cell Longev., 2012, 2012, 856918.
-
(2012)
Oxid. Med. Cell Longev.
, vol.2012
, pp. 856918
-
-
Araneda, O.F.1
Tuesta, M.2
-
48
-
-
84901052694
-
ROS function in redox signaling and oxidative stress
-
[48] Schieber, M., Chandel, N.S., ROS function in redox signaling and oxidative stress. Curr. Biol. 24:10 (2014), R453–R462.
-
(2014)
Curr. Biol.
, vol.24
, Issue.10
, pp. R453-R462
-
-
Schieber, M.1
Chandel, N.S.2
-
49
-
-
84897444272
-
Role of metabolic H2O2 generation: redox signaling and oxidative stress
-
[49] Sies, H., Role of metabolic H2O2 generation: redox signaling and oxidative stress. J. Biol. Chem. 289:13 (2014), 8735–8741.
-
(2014)
J. Biol. Chem.
, vol.289
, Issue.13
, pp. 8735-8741
-
-
Sies, H.1
-
50
-
-
77956186783
-
Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes
-
[50] Hamanaka, R.B., Chandel, N.S., Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 35:9 (2010), 505–513.
-
(2010)
Trends Biochem. Sci.
, vol.35
, Issue.9
, pp. 505-513
-
-
Hamanaka, R.B.1
Chandel, N.S.2
-
51
-
-
77952548782
-
How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis)
-
[51] Ristow, M., Zarse, K., How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp. Gerontol. 45:6 (2010), 410–418.
-
(2010)
Exp. Gerontol.
, vol.45
, Issue.6
, pp. 410-418
-
-
Ristow, M.1
Zarse, K.2
-
52
-
-
84907993113
-
TOR signaling couples oxygen sensing to lifespan in C. elegans
-
[52] Schieber, M., Chandel, N.S., TOR signaling couples oxygen sensing to lifespan in C. elegans. Cell Rep. 9:1 (2014), 9–15.
-
(2014)
Cell Rep.
, vol.9
, Issue.1
, pp. 9-15
-
-
Schieber, M.1
Chandel, N.S.2
-
53
-
-
84969780661
-
Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans
-
[53] Wei, Y., Kenyon, C., Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 113:20 (2016), 2832–2841.
-
(2016)
Proc. Natl. Acad. Sci. USA
, vol.113
, Issue.20
, pp. 2832-2841
-
-
Wei, Y.1
Kenyon, C.2
-
54
-
-
84874041072
-
Bacterial nitric oxide extends the lifespan of C. elegans
-
[54] Gusarov, I., et al. Bacterial nitric oxide extends the lifespan of C. elegans. Cell 152:4 (2013), 818–830.
-
(2013)
Cell
, vol.152
, Issue.4
, pp. 818-830
-
-
Gusarov, I.1
-
55
-
-
84994877104
-
A new role for oxidative stress in aging: the accelerated aging phenotype in Sod1-/- mice is correlated to increased cellular senescence
-
[55] Zhang, Y., et al. A new role for oxidative stress in aging: the accelerated aging phenotype in Sod1-/- mice is correlated to increased cellular senescence. Redox Biol. 11 (2016), 30–37.
-
(2016)
Redox Biol.
, vol.11
, pp. 30-37
-
-
Zhang, Y.1
-
56
-
-
57749095081
-
Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans
-
[56] Doonan, R., et al. Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev. 22:23 (2008), 3236–3241.
-
(2008)
Genes Dev.
, vol.22
, Issue.23
, pp. 3236-3241
-
-
Doonan, R.1
|