메뉴 건너뛰기




Volumn 11, Issue , 2017, Pages 365-374

The decay of Redox-stress Response Capacity is a substantive characteristic of aging: Revising the redox theory of aging

Author keywords

Aging; Oxidative stress; Redox; Redox stress Response Capacity; RRC

Indexed keywords

CATALASE; GLUTATHIONE PEROXIDASE; GLUTATHIONE TRANSFERASE P1; HEME OXYGENASE 1; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; MITOGEN ACTIVATED PROTEIN KINASE; PROTEASOME; PROTEIN KINASE B; REACTIVE OXYGEN METABOLITE; SUPEROXIDE DISMUTASE; TRANSCRIPTION FACTOR NRF2; AMP-ACTIVATED PROTEIN KINASE KINASE; ISOENZYME; PARAQUAT; PROTEIN KINASE;

EID: 85007473666     PISSN: 22132317     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.redox.2016.12.026     Document Type: Article
Times cited : (83)

References (56)
  • 1
    • 34248549251 scopus 로고    scopus 로고
    • Theories of ageing
    • [1] Vina, J., Borras, C., Miquel, J., Theories of ageing. IUBMB Life 59:4–5 (2007), 249–254.
    • (2007) IUBMB Life , vol.59 , Issue.4-5 , pp. 249-254
    • Vina, J.1    Borras, C.2    Miquel, J.3
  • 2
    • 77049308856 scopus 로고
    • Aging: a theory based on free radical and radiation chemistry
    • [2] Harman, D., Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11:3 (1956), 298–300.
    • (1956) J. Gerontol. , vol.11 , Issue.3 , pp. 298-300
    • Harman, D.1
  • 3
    • 0035853552 scopus 로고    scopus 로고
    • Regulation of longevity and stress resistance by Sch9 in yeast
    • [3] Fabrizio, P., et al. Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:5515 (2001), 288–290.
    • (2001) Science , vol.292 , Issue.5515 , pp. 288-290
    • Fabrizio, P.1
  • 4
    • 0027515616 scopus 로고
    • Aging and resistance to oxidative damage in Caenorhabditis elegans
    • [4] Larsen, P.L., Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 90:19 (1993), 8905–8909.
    • (1993) Proc. Natl. Acad. Sci. USA , vol.90 , Issue.19 , pp. 8905-8909
    • Larsen, P.L.1
  • 5
    • 0032582489 scopus 로고    scopus 로고
    • Extended life-span and stress resistance in the Drosophila mutant methuselah
    • [5] Lin, Y.J., Seroude, L., Benzer, S., Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282:5390 (1998), 943–946.
    • (1998) Science , vol.282 , Issue.5390 , pp. 943-946
    • Lin, Y.J.1    Seroude, L.2    Benzer, S.3
  • 6
    • 0033581704 scopus 로고    scopus 로고
    • The p66shc adaptor protein controls oxidative stress response and life span in mammals
    • [6] Migliaccio, E., et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:6759 (1999), 309–313.
    • (1999) Nature , vol.402 , Issue.6759 , pp. 309-313
    • Migliaccio, E.1
  • 7
    • 59049086591 scopus 로고    scopus 로고
    • The overexpression of major antioxidant enzymes does not extend the lifespan of mice
    • [7] Perez, V.I., et al. The overexpression of major antioxidant enzymes does not extend the lifespan of mice. Aging Cell 8:1 (2009), 73–75.
    • (2009) Aging Cell , vol.8 , Issue.1 , pp. 73-75
    • Perez, V.I.1
  • 8
    • 79959350253 scopus 로고    scopus 로고
    • Extending life span by increasing oxidative stress
    • [8] Ristow, M., Schmeisser, S., Extending life span by increasing oxidative stress. Free Radic. Biol. Med. 51:2 (2011), 327–336.
    • (2011) Free Radic. Biol. Med. , vol.51 , Issue.2 , pp. 327-336
    • Ristow, M.1    Schmeisser, S.2
  • 9
    • 84878864199 scopus 로고    scopus 로고
    • The hallmarks of aging
    • [9] Lopez-Otin, C., et al. The hallmarks of aging. Cell 153:6 (2013), 1194–1217.
    • (2013) Cell , vol.153 , Issue.6 , pp. 1194-1217
    • Lopez-Otin, C.1
  • 10
    • 84857116578 scopus 로고    scopus 로고
    • Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling
    • [10] Ray, P.D., Huang, B.W., Tsuji, Y., Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:5 (2012), 981–990.
    • (2012) Cell Signal , vol.24 , Issue.5 , pp. 981-990
    • Ray, P.D.1    Huang, B.W.2    Tsuji, Y.3
  • 11
    • 51749088156 scopus 로고    scopus 로고
    • Redox regulation of cell survival
    • [11] Trachootham, D., et al. Redox regulation of cell survival. Antioxid. Redox Signal 10:8 (2008), 1343–1374.
    • (2008) Antioxid. Redox Signal , vol.10 , Issue.8 , pp. 1343-1374
    • Trachootham, D.1
  • 12
    • 78650169712 scopus 로고    scopus 로고
    • Expression of multiple copies of mitochondrially targeted catalase or genomic Mn superoxide dismutase transgenes does not extend the life span of Drosophila melanogaster
    • [12] Mockett, R.J., Sohal, B.H., Sohal, R.S., Expression of multiple copies of mitochondrially targeted catalase or genomic Mn superoxide dismutase transgenes does not extend the life span of Drosophila melanogaster. Free Radic. Biol. Med. 49:12 (2010), 2028–2031.
    • (2010) Free Radic. Biol. Med. , vol.49 , Issue.12 , pp. 2028-2031
    • Mockett, R.J.1    Sohal, B.H.2    Sohal, R.S.3
  • 13
    • 61449184625 scopus 로고    scopus 로고
    • Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans
    • [13] Van Raamsdonk, J.M., Hekimi, S., Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet., 5(2), 2009, e1000361.
    • (2009) PLoS Genet. , vol.5 , Issue.2 , pp. e1000361
    • Van Raamsdonk, J.M.1    Hekimi, S.2
  • 14
    • 34748850786 scopus 로고    scopus 로고
    • Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress
    • [14] Schulz, T.J., et al. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 6:4 (2007), 280–293.
    • (2007) Cell Metab. , vol.6 , Issue.4 , pp. 280-293
    • Schulz, T.J.1
  • 15
    • 84859475161 scopus 로고    scopus 로고
    • Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal
    • [15] Zarse, K., et al. Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell Metab. 15:4 (2012), 451–465.
    • (2012) Cell Metab. , vol.15 , Issue.4 , pp. 451-465
    • Zarse, K.1
  • 16
    • 34547914798 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia
    • [16] Bell, E.L., et al. Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia. Mol. Cell Biol. 27:16 (2007), 5737–5745.
    • (2007) Mol. Cell Biol. , vol.27 , Issue.16 , pp. 5737-5745
    • Bell, E.L.1
  • 17
    • 84859575436 scopus 로고    scopus 로고
    • Superoxide dismutase is dispensable for normal animal lifespan
    • [17] Van Raamsdonk, J.M., Hekimi, S., Superoxide dismutase is dispensable for normal animal lifespan. Proc. Natl. Acad. Sci. USA 109:15 (2012), 5785–5790.
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , Issue.15 , pp. 5785-5790
    • Van Raamsdonk, J.M.1    Hekimi, S.2
  • 18
    • 0028904871 scopus 로고
    • Transient adaptation of oxidative stress in mammalian cells
    • [18] Wiese, A.G., Pacifici, R.E., Davies, K.J., Transient adaptation of oxidative stress in mammalian cells. Arch. Biochem Biophys. 318:1 (1995), 231–240.
    • (1995) Arch. Biochem Biophys. , vol.318 , Issue.1 , pp. 231-240
    • Wiese, A.G.1    Pacifici, R.E.2    Davies, K.J.3
  • 19
    • 0034456207 scopus 로고    scopus 로고
    • Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems
    • [19] Davies, K.J., Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50:4–5 (2000), 279–289.
    • (2000) IUBMB Life , vol.50 , Issue.4-5 , pp. 279-289
    • Davies, K.J.1
  • 20
    • 84923340794 scopus 로고    scopus 로고
    • Guidelines for monitoring autophagy in Caenorhabditis elegans
    • [20] Zhang, H., et al. Guidelines for monitoring autophagy in Caenorhabditis elegans. Autophagy 11:1 (2015), 9–27.
    • (2015) Autophagy , vol.11 , Issue.1 , pp. 9-27
    • Zhang, H.1
  • 21
    • 0037011917 scopus 로고    scopus 로고
    • IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA
    • [21] Calfon, M., et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:6867 (2002), 92–96.
    • (2002) Nature , vol.415 , Issue.6867 , pp. 92-96
    • Calfon, M.1
  • 22
    • 4944234936 scopus 로고    scopus 로고
    • Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones
    • [22] Yoneda, T., et al. Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J. Cell Sci. 117:Pt 18 (2004), 4055–4066.
    • (2004) J. Cell Sci. , vol.117 , pp. 4055-4066
    • Yoneda, T.1
  • 23
    • 2342419515 scopus 로고    scopus 로고
    • Telomere measurement by quantitative PCR
    • [23] Cawthon, R.M., Telomere measurement by quantitative PCR. Nucleic Acids Res., 30(10), 2002, e47.
    • (2002) Nucleic Acids Res. , vol.30 , Issue.10 , pp. e47
    • Cawthon, R.M.1
  • 24
    • 33750909999 scopus 로고    scopus 로고
    • Reactive oxygen species-induced activation of the MAP kinase signaling pathways
    • [24] McCubrey, J.A., Lahair, M.M., Franklin, R.A., Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid. Redox Signal. 8:9–10 (2006), 1775–1789.
    • (2006) Antioxid. Redox Signal. , vol.8 , Issue.9-10 , pp. 1775-1789
    • McCubrey, J.A.1    Lahair, M.M.2    Franklin, R.A.3
  • 25
    • 14044265068 scopus 로고    scopus 로고
    • Stress-responsive protein kinases in redox-regulated apoptosis signaling
    • [25] Matsuzawa, A., Ichijo, H., Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxid. Redox Signal. 7:3–4 (2005), 472–481.
    • (2005) Antioxid. Redox Signal. , vol.7 , Issue.3-4 , pp. 472-481
    • Matsuzawa, A.1    Ichijo, H.2
  • 26
    • 33750906556 scopus 로고    scopus 로고
    • The redox regulation of PI 3-kinase-dependent signaling
    • [26] Leslie, N.R., The redox regulation of PI 3-kinase-dependent signaling. Antioxid. Redox Signal. 8:9–10 (2006), 1765–1774.
    • (2006) Antioxid. Redox Signal. , vol.8 , Issue.9-10 , pp. 1765-1774
    • Leslie, N.R.1
  • 27
    • 70349973869 scopus 로고    scopus 로고
    • Expanding roles for AMP-activated protein kinase in neuronal survival and autophagy
    • [27] Poels, J., et al. Expanding roles for AMP-activated protein kinase in neuronal survival and autophagy. Bioessays 31:9 (2009), 944–952.
    • (2009) Bioessays , vol.31 , Issue.9 , pp. 944-952
    • Poels, J.1
  • 28
    • 34648828532 scopus 로고    scopus 로고
    • AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy
    • [28] Hardie, D.G., AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 8:10 (2007), 774–785.
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , Issue.10 , pp. 774-785
    • Hardie, D.G.1
  • 29
    • 0033953974 scopus 로고    scopus 로고
    • Protein folding in vivo: the importance of molecular chaperones
    • [29] Feldman, D.E., Frydman, J., Protein folding in vivo: the importance of molecular chaperones. Curr. Opin. Struct. Biol. 10:1 (2000), 26–33.
    • (2000) Curr. Opin. Struct. Biol. , vol.10 , Issue.1 , pp. 26-33
    • Feldman, D.E.1    Frydman, J.2
  • 30
    • 84907025107 scopus 로고    scopus 로고
    • The critical roles of HSC70 in physiological and pathological processes
    • [30] Liao, Y., Tang, L., The critical roles of HSC70 in physiological and pathological processes. Curr. Pharm. Des. 20:1 (2014), 101–107.
    • (2014) Curr. Pharm. Des. , vol.20 , Issue.1 , pp. 101-107
    • Liao, Y.1    Tang, L.2
  • 31
    • 84928963751 scopus 로고    scopus 로고
    • Widespread proteome remodeling and aggregation in aging C. elegans
    • [31] Walther, D.M., et al. Widespread proteome remodeling and aggregation in aging C. elegans. Cell 161:4 (2015), 919–932.
    • (2015) Cell , vol.161 , Issue.4 , pp. 919-932
    • Walther, D.M.1
  • 32
    • 63049095076 scopus 로고    scopus 로고
    • Mitochondrial Lon protease is a human stress protein
    • [32] Ngo, J.K., Davies, K.J., Mitochondrial Lon protease is a human stress protein. Free Radic. Biol. Med 46:8 (2009), 1042–1048.
    • (2009) Free Radic. Biol. Med , vol.46 , Issue.8 , pp. 1042-1048
    • Ngo, J.K.1    Davies, K.J.2
  • 33
    • 80054933045 scopus 로고    scopus 로고
    • Impairment of lon-induced protection against the accumulation of oxidized proteins in senescent wi-38 fibroblasts
    • [33] Ngo, J.K., et al. Impairment of lon-induced protection against the accumulation of oxidized proteins in senescent wi-38 fibroblasts. J. Gerontol. A Biol. Sci. Med Sci. 66:11 (2011), 1178–1185.
    • (2011) J. Gerontol. A Biol. Sci. Med Sci. , vol.66 , Issue.11 , pp. 1178-1185
    • Ngo, J.K.1
  • 34
    • 80052303130 scopus 로고    scopus 로고
    • Autophagy and aging
    • [34] Rubinsztein, D.C., Marino, G., Kroemer, G., Autophagy and aging. Cell 146:5 (2011), 682–695.
    • (2011) Cell , vol.146 , Issue.5 , pp. 682-695
    • Rubinsztein, D.C.1    Marino, G.2    Kroemer, G.3
  • 35
    • 34548077575 scopus 로고    scopus 로고
    • Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
    • [35] Kimura, S., Noda, T., Yoshimori, T., Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3:5 (2007), 452–460.
    • (2007) Autophagy , vol.3 , Issue.5 , pp. 452-460
    • Kimura, S.1    Noda, T.2    Yoshimori, T.3
  • 36
    • 84908680637 scopus 로고    scopus 로고
    • Transient overexpression of Werner protein rescues starvation induced autophagy in Werner syndrome cells
    • [36] Maity, J., et al. Transient overexpression of Werner protein rescues starvation induced autophagy in Werner syndrome cells. Biochim. Biophys. Acta 1842:12 Pt A (2014), 2387–2394.
    • (2014) Biochim. Biophys. Acta , vol.1842 , Issue.12 , pp. 2387-2394
    • Maity, J.1
  • 37
    • 84858972249 scopus 로고    scopus 로고
    • Nrf2-dependent induction of proteasome and Pa28alphabeta regulator are required for adaptation to oxidative stress
    • [37] Pickering, A.M., et al. Nrf2-dependent induction of proteasome and Pa28alphabeta regulator are required for adaptation to oxidative stress. J. Biol. Chem. 287:13 (2012), 10021–10031.
    • (2012) J. Biol. Chem. , vol.287 , Issue.13 , pp. 10021-10031
    • Pickering, A.M.1
  • 38
    • 78649848069 scopus 로고    scopus 로고
    • The immunoproteasome, the 20S proteasome and the PA28alphabeta proteasome regulator are oxidative-stress-adaptive proteolytic complexes
    • [38] Pickering, A.M., et al. The immunoproteasome, the 20S proteasome and the PA28alphabeta proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochem. J. 432:3 (2010), 585–594.
    • (2010) Biochem. J. , vol.432 , Issue.3 , pp. 585-594
    • Pickering, A.M.1
  • 39
    • 84861869794 scopus 로고    scopus 로고
    • Differential roles of proteasome and immunoproteasome regulators Pa28alphabeta, Pa28gamma and Pa200 in the degradation of oxidized proteins
    • [39] Pickering, A.M., Davies, K.J., Differential roles of proteasome and immunoproteasome regulators Pa28alphabeta, Pa28gamma and Pa200 in the degradation of oxidized proteins. Arch. Biochem. Biophys. 523:2 (2012), 181–190.
    • (2012) Arch. Biochem. Biophys. , vol.523 , Issue.2 , pp. 181-190
    • Pickering, A.M.1    Davies, K.J.2
  • 40
    • 84871706015 scopus 로고    scopus 로고
    • Oxidative stress adaptation with acute, chronic, and repeated stress
    • [40] Pickering, A.M., et al. Oxidative stress adaptation with acute, chronic, and repeated stress. Free Radic. Biol. Med 55 (2013), 109–118.
    • (2013) Free Radic. Biol. Med , vol.55 , pp. 109-118
    • Pickering, A.M.1
  • 41
    • 67349276677 scopus 로고    scopus 로고
    • Increased age reduces DAF-16 and SKN-1 signaling and the hormetic response of Caenorhabditis elegans to the xenobiotic juglone
    • [41] Przybysz, A.J., et al. Increased age reduces DAF-16 and SKN-1 signaling and the hormetic response of Caenorhabditis elegans to the xenobiotic juglone. Mech. Ageing Dev. 130:6 (2009), 357–369.
    • (2009) Mech. Ageing Dev. , vol.130 , Issue.6 , pp. 357-369
    • Przybysz, A.J.1
  • 42
    • 78650945994 scopus 로고    scopus 로고
    • Mitochondrial stress signals revise an old aging theory
    • [42] Woo, D.K., Shadel, G.S., Mitochondrial stress signals revise an old aging theory. Cell 144:1 (2011), 11–12.
    • (2011) Cell , vol.144 , Issue.1 , pp. 11-12
    • Woo, D.K.1    Shadel, G.S.2
  • 43
    • 84964621692 scopus 로고    scopus 로고
    • Adaptive homeostasis
    • [43] Davies, K.J., Adaptive homeostasis. Mol. Asp. Med 49 (2016), 1–7.
    • (2016) Mol. Asp. Med , vol.49 , pp. 1-7
    • Davies, K.J.1
  • 44
    • 84919668883 scopus 로고    scopus 로고
    • Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells
    • [44] Fedyaeva, A.V., et al. Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells. Biochemistry (Mosc.) 79:11 (2014), 1202–1210.
    • (2014) Biochemistry (Mosc.) , vol.79 , Issue.11 , pp. 1202-1210
    • Fedyaeva, A.V.1
  • 45
    • 84882749784 scopus 로고    scopus 로고
    • A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF
    • [45] Kawarazaki, T., et al. A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF. Biochim. Biophys. Acta 1833:12 (2013), 2775–2780.
    • (2013) Biochim. Biophys. Acta , vol.1833 , Issue.12 , pp. 2775-2780
    • Kawarazaki, T.1
  • 46
    • 84867602835 scopus 로고    scopus 로고
    • Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation
    • [46] Li, L., Chen, Y., Gibson, S.B., Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell Signal 25:1 (2013), 50–65.
    • (2013) Cell Signal , vol.25 , Issue.1 , pp. 50-65
    • Li, L.1    Chen, Y.2    Gibson, S.B.3
  • 47
    • 84866146958 scopus 로고    scopus 로고
    • Lung oxidative damage by hypoxia
    • [47] Araneda, O.F., Tuesta, M., Lung oxidative damage by hypoxia. Oxid. Med. Cell Longev., 2012, 2012, 856918.
    • (2012) Oxid. Med. Cell Longev. , vol.2012 , pp. 856918
    • Araneda, O.F.1    Tuesta, M.2
  • 48
    • 84901052694 scopus 로고    scopus 로고
    • ROS function in redox signaling and oxidative stress
    • [48] Schieber, M., Chandel, N.S., ROS function in redox signaling and oxidative stress. Curr. Biol. 24:10 (2014), R453–R462.
    • (2014) Curr. Biol. , vol.24 , Issue.10 , pp. R453-R462
    • Schieber, M.1    Chandel, N.S.2
  • 49
    • 84897444272 scopus 로고    scopus 로고
    • Role of metabolic H2O2 generation: redox signaling and oxidative stress
    • [49] Sies, H., Role of metabolic H2O2 generation: redox signaling and oxidative stress. J. Biol. Chem. 289:13 (2014), 8735–8741.
    • (2014) J. Biol. Chem. , vol.289 , Issue.13 , pp. 8735-8741
    • Sies, H.1
  • 50
    • 77956186783 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes
    • [50] Hamanaka, R.B., Chandel, N.S., Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 35:9 (2010), 505–513.
    • (2010) Trends Biochem. Sci. , vol.35 , Issue.9 , pp. 505-513
    • Hamanaka, R.B.1    Chandel, N.S.2
  • 51
    • 77952548782 scopus 로고    scopus 로고
    • How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis)
    • [51] Ristow, M., Zarse, K., How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp. Gerontol. 45:6 (2010), 410–418.
    • (2010) Exp. Gerontol. , vol.45 , Issue.6 , pp. 410-418
    • Ristow, M.1    Zarse, K.2
  • 52
    • 84907993113 scopus 로고    scopus 로고
    • TOR signaling couples oxygen sensing to lifespan in C. elegans
    • [52] Schieber, M., Chandel, N.S., TOR signaling couples oxygen sensing to lifespan in C. elegans. Cell Rep. 9:1 (2014), 9–15.
    • (2014) Cell Rep. , vol.9 , Issue.1 , pp. 9-15
    • Schieber, M.1    Chandel, N.S.2
  • 53
    • 84969780661 scopus 로고    scopus 로고
    • Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans
    • [53] Wei, Y., Kenyon, C., Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 113:20 (2016), 2832–2841.
    • (2016) Proc. Natl. Acad. Sci. USA , vol.113 , Issue.20 , pp. 2832-2841
    • Wei, Y.1    Kenyon, C.2
  • 54
    • 84874041072 scopus 로고    scopus 로고
    • Bacterial nitric oxide extends the lifespan of C. elegans
    • [54] Gusarov, I., et al. Bacterial nitric oxide extends the lifespan of C. elegans. Cell 152:4 (2013), 818–830.
    • (2013) Cell , vol.152 , Issue.4 , pp. 818-830
    • Gusarov, I.1
  • 55
    • 84994877104 scopus 로고    scopus 로고
    • A new role for oxidative stress in aging: the accelerated aging phenotype in Sod1-/- mice is correlated to increased cellular senescence
    • [55] Zhang, Y., et al. A new role for oxidative stress in aging: the accelerated aging phenotype in Sod1-/- mice is correlated to increased cellular senescence. Redox Biol. 11 (2016), 30–37.
    • (2016) Redox Biol. , vol.11 , pp. 30-37
    • Zhang, Y.1
  • 56
    • 57749095081 scopus 로고    scopus 로고
    • Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans
    • [56] Doonan, R., et al. Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev. 22:23 (2008), 3236–3241.
    • (2008) Genes Dev. , vol.22 , Issue.23 , pp. 3236-3241
    • Doonan, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.