-
1
-
-
84883076264
-
Severe sepsis and septic shock
-
[1] Angus, D.C., Van Der Poll, T., Severe sepsis and septic shock. New England J. Med. 369:9 (2013), 840–851.
-
(2013)
New England J. Med.
, vol.369
, Issue.9
, pp. 840-851
-
-
Angus, D.C.1
Van Der Poll, T.2
-
2
-
-
77953577951
-
Population trends in the incidence and outcomes of acute myocardial infarction
-
[2] Yeh, R.W., Sidney, S., Chandra, M., Sorel, M., Selby, J.V., Go, A.S., Population trends in the incidence and outcomes of acute myocardial infarction. New England J. Med. 362:23 (2010), 2155–2165.
-
(2010)
New England J. Med.
, vol.362
, Issue.23
, pp. 2155-2165
-
-
Yeh, R.W.1
Sidney, S.2
Chandra, M.3
Sorel, M.4
Selby, J.V.5
Go, A.S.6
-
3
-
-
85007463818
-
-
[3] Celeste M. Torio, Roxanne M. Andrews, National inpatient hospital costs: the most expensive conditions by payer, 2011, Agency for Health Care Policy and Research (US), 2013.
-
Torio, Roxanne M. Andrews, National inpatient hospital costs: the most expensive conditions by payer, 2011, Agency for Health Care Policy and Research (US), 2013.
-
-
Celeste, M.1
-
4
-
-
0035829842
-
Early goal-directed therapy in the treatment of severe sepsis and septic shock
-
[4] Rivers, E., Nguyen, B., Havstad, S., Ressler, J., Muzzin, A., Knoblich, B., Peterson, E., Tomlanovich, M., Early goal-directed therapy in the treatment of severe sepsis and septic shock. New England J. Med. 345:19 (2001), 1368–1377.
-
(2001)
New England J. Med.
, vol.345
, Issue.19
, pp. 1368-1377
-
-
Rivers, E.1
Nguyen, B.2
Havstad, S.3
Ressler, J.4
Muzzin, A.5
Knoblich, B.6
Peterson, E.7
Tomlanovich, M.8
-
5
-
-
84929016199
-
Predictors of patients who present to the emergency department with sepsis and progress to septic shock between 4 and 48 hours of emergency department arrival∗
-
[5] Capp, R., Horton, C.L., Takhar, S.S., Ginde, A.A., Peak, D.A., Zane, R., Marill, K.A., Predictors of patients who present to the emergency department with sepsis and progress to septic shock between 4 and 48 hours of emergency department arrival∗. Crit. Care Med. 43:5 (2015), 983–988.
-
(2015)
Crit. Care Med.
, vol.43
, Issue.5
, pp. 983-988
-
-
Capp, R.1
Horton, C.L.2
Takhar, S.S.3
Ginde, A.A.4
Peak, D.A.5
Zane, R.6
Marill, K.A.7
-
6
-
-
84938704873
-
A targeted real-time early warning score (TREWScore) for septic shock
-
299ra122-299ra122
-
[6] Henry, K.E., Hager, D.N., Pronovost, P.J., Saria, S., A targeted real-time early warning score (TREWScore) for septic shock. Sci. Trans. Med., 7(299), 2015 299ra122-299ra122.
-
(2015)
Sci. Trans. Med.
, vol.7
, Issue.299
-
-
Henry, K.E.1
Hager, D.N.2
Pronovost, P.J.3
Saria, S.4
-
7
-
-
0035829842
-
Early goal-directed therapy in the treatment of severe sepsis and septic shock
-
[7] Rivers, E., Nguyen, B., Havstad, S., Ressler, J., Muzzin, A., Knoblich, B., Peterson, E., Tomlanovich, M., Early goal-directed therapy in the treatment of severe sepsis and septic shock. New England J. Med. 345:19 (2001), 1368–1377.
-
(2001)
New England J. Med.
, vol.345
, Issue.19
, pp. 1368-1377
-
-
Rivers, E.1
Nguyen, B.2
Havstad, S.3
Ressler, J.4
Muzzin, A.5
Knoblich, B.6
Peterson, E.7
Tomlanovich, M.8
-
8
-
-
84963591486
-
Outcomes prediction via time intervals related patterns
-
IEEE November
-
[8] Moskovitch, R., Walsh, C., Wang, F., Hripcsak, G., Tatonetti, N., Outcomes prediction via time intervals related patterns. 2015 IEEE International Conference on Data Mining (ICDM), 2015, IEEE, 919–924 November.
-
(2015)
2015 IEEE International Conference on Data Mining (ICDM)
, pp. 919-924
-
-
Moskovitch, R.1
Walsh, C.2
Wang, F.3
Hripcsak, G.4
Tatonetti, N.5
-
9
-
-
84866050050
-
Mining recent temporal patterns for event detection in multivariate time series data
-
ACM
-
[9] Batal, I., Fradkin, D., Harrison, J., Moerchen, F., Hauskrecht, M., Mining recent temporal patterns for event detection in multivariate time series data. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August, 2012, ACM, 280–288.
-
(2012)
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August
, pp. 280-288
-
-
Batal, I.1
Fradkin, D.2
Harrison, J.3
Moerchen, F.4
Hauskrecht, M.5
-
10
-
-
84907032880
-
Finding progression stages in time-evolving event sequences
-
ACM April
-
[10] Yang, J., McAuley, J., Leskovec, J., LePendu, P., Shah, N., Finding progression stages in time-evolving event sequences. Proceedings of the 23rd International Conference on World Wide Web, 2014, ACM, 783–794 April.
-
(2014)
Proceedings of the 23rd International Conference on World Wide Web
, pp. 783-794
-
-
Yang, J.1
McAuley, J.2
Leskovec, J.3
LePendu, P.4
Shah, N.5
-
11
-
-
84921727487
-
Analyzing complex patients temporal histories: new frontiers in temporal data mining
-
[11] Sacchi, L., Dagliati, A., Bellazzi, R., Analyzing complex patients temporal histories: new frontiers in temporal data mining. Data Min. Clin. Med., 2015, 89–105.
-
(2015)
Data Min. Clin. Med.
, pp. 89-105
-
-
Sacchi, L.1
Dagliati, A.2
Bellazzi, R.3
-
12
-
-
34548741255
-
Discriminative frequent pattern analysis for effective classification
-
IEEE
-
[12] Cheng, H., Yan, X., Han, J., Hsu, C.W., Discriminative frequent pattern analysis for effective classification. IEEE 23rd International Conference on Data Engineering, ICDE 2007, 2007, IEEE, 716–725.
-
(2007)
IEEE 23rd International Conference on Data Engineering, ICDE 2007
, pp. 716-725
-
-
Cheng, H.1
Yan, X.2
Han, J.3
Hsu, C.W.4
-
13
-
-
85008036580
-
Sequential data mining: a comparative case study in development of atherosclerosis risk factors
-
[13] Klema, J., Novakova, L., Karel, F., Stepankova, O., Sequential data mining: a comparative case study in development of atherosclerosis risk factors. IEEE Trans. Syst. Man Cybernet. Part C: Appl. Rev. 38:1 (2008), 3–15.
-
(2008)
IEEE Trans. Syst. Man Cybernet. Part C: Appl. Rev.
, vol.38
, Issue.1
, pp. 3-15
-
-
Klema, J.1
Novakova, L.2
Karel, F.3
Stepankova, O.4
-
14
-
-
78449236594
-
Analysis of medical pathways by means of frequent closed sequences
-
[14] Baralis, E., Bruno, G., Chiusano, S., Domenici, V.C., Mahoto, N.A., Petrigni, C., Analysis of medical pathways by means of frequent closed sequences. Knowledge-Based and Intelligent Information and Engineering Systems, 2010, 418–425.
-
(2010)
Knowledge-Based and Intelligent Information and Engineering Systems
, pp. 418-425
-
-
Baralis, E.1
Bruno, G.2
Chiusano, S.3
Domenici, V.C.4
Mahoto, N.A.5
Petrigni, C.6
-
15
-
-
49549116620
-
Time-annotated sequences for medical data mining
-
IEEE
-
[15] Berlingerio, M., Bonchi, F., Giannotti, F., Turini, F., Time-annotated sequences for medical data mining. Seventh IEEE International Conference on Data Mining Workshops, 2007, IEEE, 133–138.
-
(2007)
Seventh IEEE International Conference on Data Mining Workshops
, pp. 133-138
-
-
Berlingerio, M.1
Bonchi, F.2
Giannotti, F.3
Turini, F.4
-
16
-
-
80052653856
-
Experiences with mining temporal event sequences from electronic medical records: initial successes and some challenges
-
ACM
-
[16] Patnaik, D., Butler, P., Ramakrishnan, N., Parida, L., Keller, B.J., Hanauer, D.A., Experiences with mining temporal event sequences from electronic medical records: initial successes and some challenges. Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011, ACM, 360–368.
-
(2011)
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 360-368
-
-
Patnaik, D.1
Butler, P.2
Ramakrishnan, N.3
Parida, L.4
Keller, B.J.5
Hanauer, D.A.6
-
17
-
-
34548083516
-
Data mining with temporal abstractions: learning rules from time series
-
[17] Sacchi, L., Larizza, C., Combi, C., Bellazzi, R., Data mining with temporal abstractions: learning rules from time series. Data Min. Knowl. Disc. 15:2 (2007), 217–247.
-
(2007)
Data Min. Knowl. Disc.
, vol.15
, Issue.2
, pp. 217-247
-
-
Sacchi, L.1
Larizza, C.2
Combi, C.3
Bellazzi, R.4
-
18
-
-
84930482550
-
Classification-driven temporal discretization of multivariate time series
-
[18] Moskovitch, R., Shahar, Y., Classification-driven temporal discretization of multivariate time series. Data Min. Knowl. Disc., 2014, 1–43.
-
(2014)
Data Min. Knowl. Disc.
, pp. 1-43
-
-
Moskovitch, R.1
Shahar, Y.2
-
19
-
-
84899505444
-
Temporal interval pattern languages to characterize time flow
-
[19] Hoppner, F., Peter, S., Temporal interval pattern languages to characterize time flow. Wiley Interdisc. Rev.: Data Min. Knowl. Disc. 4:3 (2014), 196–212.
-
(2014)
Wiley Interdisc. Rev.: Data Min. Knowl. Disc.
, vol.4
, Issue.3
, pp. 196-212
-
-
Hoppner, F.1
Peter, S.2
-
20
-
-
84885587994
-
A temporal pattern mining approach for classifying electronic health record data
-
[20] Batal, I., Valizadegan, H., Cooper, G.F., Hauskrecht, M., A temporal pattern mining approach for classifying electronic health record data. ACM Trans. Intell. Syst. Technol. (TIST), 4(4), 2013, 63.
-
(2013)
ACM Trans. Intell. Syst. Technol. (TIST)
, vol.4
, Issue.4
, pp. 63
-
-
Batal, I.1
Valizadegan, H.2
Cooper, G.F.3
Hauskrecht, M.4
-
21
-
-
85007419896
-
An efficient pattern mining approach for event detection in multivariate temporal data
-
[21] Batal, I., Cooper, G.F., Fradkin, D., Harrison, J. Jr, Moerchen, F., Hauskrecht, M., An efficient pattern mining approach for event detection in multivariate temporal data. Knowl. Inform. Syst., 2015, 1–36.
-
(2015)
Knowl. Inform. Syst.
, pp. 1-36
-
-
Batal, I.1
Cooper, G.F.2
Fradkin, D.3
Harrison, J.4
Moerchen, F.5
Hauskrecht, M.6
-
22
-
-
84871741964
-
A framework for mining signatures from event sequences and its applications in healthcare data
-
[22] Wang, F., Lee, N., Hu, J., Sun, J., Ebadollahi, S., Laine, A.F., A framework for mining signatures from event sequences and its applications in healthcare data. IEEE Trans. Pattern Anal. Machine Intell. 35:2 (2013), 272–285.
-
(2013)
IEEE Trans. Pattern Anal. Machine Intell.
, vol.35
, Issue.2
, pp. 272-285
-
-
Wang, F.1
Lee, N.2
Hu, J.3
Sun, J.4
Ebadollahi, S.5
Laine, A.F.6
-
23
-
-
85018098825
-
Learning sequential classifiers from long and noisy discrete-event sequences efficiently
-
[23] Dafe, G., Veloso, A., Zaki, M., Meira, W. Jr., Learning sequential classifiers from long and noisy discrete-event sequences efficiently. Data Min. Knowl. Disc., 2014, 1–24.
-
(2014)
Data Min. Knowl. Disc.
, pp. 1-24
-
-
Dafe, G.1
Veloso, A.2
Zaki, M.3
Meira, W.4
-
24
-
-
0026710191
-
Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee, American College of Chest Physicians/Society of Critical Care Medicine
-
[24] Bone, R.C., Balk, R.A., Cerra, F.B., Dellinger, R.P., Fein, A.M., Knaus, W.A., Schein, R.M., Sibbald, W.J., Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee, American College of Chest Physicians/Society of Critical Care Medicine. Chest 101:6 (1992), 1644–1655.
-
(1992)
Chest
, vol.101
, Issue.6
, pp. 1644-1655
-
-
Bone, R.C.1
Balk, R.A.2
Cerra, F.B.3
Dellinger, R.P.4
Fein, A.M.5
Knaus, W.A.6
Schein, R.M.7
Sibbald, W.J.8
-
25
-
-
79955479858
-
Multiparameter intelligent monitoring in intensive care II (MIMIC-II): a public-access intensive care unit database
-
[25] Saeed, M., Villarroel, M., Reisner, A.T., Clifford, G., Lehman, L.W., Moody, G., et al. Multiparameter intelligent monitoring in intensive care II (MIMIC-II): a public-access intensive care unit database. Crit. Care Med., 39(5), 2011, 952.
-
(2011)
Crit. Care Med.
, vol.39
, Issue.5
, pp. 952
-
-
Saeed, M.1
Villarroel, M.2
Reisner, A.T.3
Clifford, G.4
Lehman, L.W.5
Moody, G.6
-
26
-
-
77955605527
-
Motif discovery in physiological datasets: a methodology for inferring predictive elements
-
[26] Syed, Z., Stultz, C., Kellis, M., Indyk, P., Guttag, J., Motif discovery in physiological datasets: a methodology for inferring predictive elements. ACM Trans. Knowl. Disc. Data (TKDD), 4(1), 2010, 2.
-
(2010)
ACM Trans. Knowl. Disc. Data (TKDD)
, vol.4
, Issue.1
, pp. 2
-
-
Syed, Z.1
Stultz, C.2
Kellis, M.3
Indyk, P.4
Guttag, J.5
-
27
-
-
33745781710
-
A symbolic representation of time series, with implications for streaming algorithms
-
[27] Lin, J., Keogh, E., Lonardi, S., Chiu, B., A symbolic representation of time series, with implications for streaming algorithms. Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 2003, 2–11.
-
(2003)
Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery
, pp. 2-11
-
-
Lin, J.1
Keogh, E.2
Lonardi, S.3
Chiu, B.4
-
29
-
-
34147151231
-
Mining minimal distinguishing subsequence patterns with gap constraints
-
[29] Ji, X., Bailey, J., Dong, G., Mining minimal distinguishing subsequence patterns with gap constraints. Knowl. Inform. Syst. 11:3 (2007), 259–286.
-
(2007)
Knowl. Inform. Syst.
, vol.11
, Issue.3
, pp. 259-286
-
-
Ji, X.1
Bailey, J.2
Dong, G.3
-
30
-
-
0034511252
-
Estimation of coupled hidden Markov models with application to biosignal interaction modelling
-
IEEE
-
[30] Rezek, I., Roberts, S.J., Estimation of coupled hidden Markov models with application to biosignal interaction modelling. Neural Networks Signal Process Proc., vol. 2, 2000, IEEE, 804–813.
-
(2000)
Neural Networks Signal Process Proc.
, vol.2
, pp. 804-813
-
-
Rezek, I.1
Roberts, S.J.2
-
31
-
-
0024610919
-
A tutorial on hidden Markov models and selected applications in speech recognition
-
[31] Rabiner, L.R., A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77:2 (1989), 257–286.
-
(1989)
Proc. IEEE
, vol.77
, Issue.2
, pp. 257-286
-
-
Rabiner, L.R.1
-
32
-
-
84982886690
-
Bearing fault recognition method based on neighbourhood component analysis and coupled hidden Markov model
-
[32] Zhou, H., Chen, J., Dong, G., Wang, H., Yuan, H., Bearing fault recognition method based on neighbourhood component analysis and coupled hidden Markov model. Mech. Syst. Signal Process., 2015.
-
(2015)
Mech. Syst. Signal Process.
-
-
Zhou, H.1
Chen, J.2
Dong, G.3
Wang, H.4
Yuan, H.5
-
33
-
-
84893549944
-
Noisy hidden Markov models for speech recognition
-
IEEE August
-
[33] Audhkhasi, K., Osoba, O., Kosko, B., Noisy hidden Markov models for speech recognition. The 2013 International Joint Conference on Neural Networks (IJCNN), 2013, IEEE, 1–6 August.
-
(2013)
The 2013 International Joint Conference on Neural Networks (IJCNN)
, pp. 1-6
-
-
Audhkhasi, K.1
Osoba, O.2
Kosko, B.3
-
34
-
-
84863461594
-
Coupled behavior analysis with applications
-
[34] Cao, L., Ou, Y., Yu, P.S., Coupled behavior analysis with applications. IEEE Trans. Knowl. Data Eng. 24:8 (2012), 1378–1392.
-
(2012)
IEEE Trans. Knowl. Data Eng.
, vol.24
, Issue.8
, pp. 1378-1392
-
-
Cao, L.1
Ou, Y.2
Yu, P.S.3
-
35
-
-
0036079795
-
HMMs and coupled HMMs for multi-channel EEG classification
-
May, pp. 1254–1159
-
[35] Zhong, S., Ghosh, J., HMMs and coupled HMMs for multi-channel EEG classification. Proceedings of the IEEE International Joint Conference on Neural Networks, vol. 2, 2002 May, pp. 1254–1159.
-
(2002)
Proceedings of the IEEE International Joint Conference on Neural Networks
, vol.2
-
-
Zhong, S.1
Ghosh, J.2
-
36
-
-
0034509028
-
Event-coupled hidden Markov models
-
IEEE
-
[36] Kristjansson, T.T., Frey, B.J., Huang, T.S., Event-coupled hidden Markov models. IEEE International Conference on Multimedia and Expo 2000, ICME 2000, vol. 1, 2000, IEEE, 385–388.
-
(2000)
IEEE International Conference on Multimedia and Expo 2000, ICME 2000
, vol.1
, pp. 385-388
-
-
Kristjansson, T.T.1
Frey, B.J.2
Huang, T.S.3
-
37
-
-
78149313084
-
CMAR: accurate and efficient classification based on multiple class-association rules
-
IEEE
-
[37] Li, W., Han, J., Pei, J., CMAR: accurate and efficient classification based on multiple class-association rules. Proceedings IEEE International Conference on Data Mining 2001, ICDM 2001, 2001, IEEE, 369–376.
-
(2001)
Proceedings IEEE International Conference on Data Mining 2001, ICDM 2001
, pp. 369-376
-
-
Li, W.1
Han, J.2
Pei, J.3
-
38
-
-
52649163329
-
Direct discriminative pattern mining for effective classification
-
IEEE April
-
[38] Cheng, H., Yan, X., Han, J., Yu, P.S., Direct discriminative pattern mining for effective classification. IEEE 24th International Conference on Data Engineering 2008, ICDE 2008, 2008, IEEE, 169–178 April.
-
(2008)
IEEE 24th International Conference on Data Engineering 2008, ICDE 2008
, pp. 169-178
-
-
Cheng, H.1
Yan, X.2
Han, J.3
Yu, P.S.4
-
39
-
-
84944357358
-
Mining sequential patterns for classification
-
[39] Fradkin, D., Morchen, F., Mining sequential patterns for classification. Knowl. Inform. Syst., 2015, 1–19.
-
(2015)
Knowl. Inform. Syst.
, pp. 1-19
-
-
Fradkin, D.1
Morchen, F.2
-
40
-
-
0242540443
-
Sequential pattern mining using a bitmap representation
-
[40] Ayres, J., Flannick, J., Gehrke, J., Yiu, T., Sequential pattern mining using a bitmap representation. Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2002, 429–435.
-
(2002)
Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 429-435
-
-
Ayres, J.1
Flannick, J.2
Gehrke, J.3
Yiu, T.4
-
41
-
-
84943390979
-
Mining emerging substrings
-
[41] Chan, S., Kao, B., Yip, C.L., Tang, M., Mining emerging substrings. Eighth International Conference on Database Systems for Advanced Applications, 2013, 119–126.
-
(2013)
Eighth International Conference on Database Systems for Advanced Applications
, pp. 119-126
-
-
Chan, S.1
Kao, B.2
Yip, C.L.3
Tang, M.4
-
42
-
-
81055156693
-
A brief survey on sequence classification
-
[42] Xing, Z., Pei, J., Keogh, E., A brief survey on sequence classification. ACM SIGKDD Explorat. Newslett. 12:1 (2010), 40–48.
-
(2010)
ACM SIGKDD Explorat. Newslett.
, vol.12
, Issue.1
, pp. 40-48
-
-
Xing, Z.1
Pei, J.2
Keogh, E.3
-
43
-
-
84991010613
-
-
[43] S. Ghosh, M. Feng, H. Nguyen, J. Li, Hypotension risk prediction via sequential contrast patterns of ICU blood pressure, IEEE J. Biomed. Health Inform., 2015, Published 7 July 2015, doi: http://dx.doi.org/10.1109/JBHI.2015.2453478.
-
Hypotension risk prediction via sequential contrast patterns of ICU blood pressure, IEEE J. Biomed. Health Inform., 2015, Published 7 July 2015, doi:.
-
-
Ghosh, S.1
Feng, M.2
Nguyen, H.3
Li, J.4
-
44
-
-
84964316172
-
Risk prediction for acute hypotensive patients by using gap constrained sequential contrast patterns
-
American Medical Informatics Association
-
[44] Ghosh, S., Feng, M., Nguyen, H., Li, J., Risk prediction for acute hypotensive patients by using gap constrained sequential contrast patterns. AMIA Annual Symposium Proceedings, vol. 2014, 2014, American Medical Informatics Association, 1748.
-
(2014)
AMIA Annual Symposium Proceedings
, vol.2014
, pp. 1748
-
-
Ghosh, S.1
Feng, M.2
Nguyen, H.3
Li, J.4
-
45
-
-
84899106645
-
Septic shock prediction for patients with missing data
-
[45] Ho, J.C., Lee, C.H., Ghosh, J., Septic shock prediction for patients with missing data. ACM Trans. Manage. Inform. Syst., 5(1), 2014, 1.
-
(2014)
ACM Trans. Manage. Inform. Syst.
, vol.5
, Issue.1
, pp. 1
-
-
Ho, J.C.1
Lee, C.H.2
Ghosh, J.3
-
46
-
-
79953827997
-
Septic shock: providing early warnings through multivariate logistic regression models
-
Doctoral dissertation Massachusetts Institute of Technology
-
[46] Shavdia, D., Septic shock: providing early warnings through multivariate logistic regression models. Doctoral dissertation, 2007, Massachusetts Institute of Technology.
-
(2007)
-
-
Shavdia, D.1
-
48
-
-
84953282768
-
Mortality prediction in septic shock patients: Towards new personalized models in critical care
-
IEEE August
-
[48] Carrara, M., Baselli, G., Ferrario, M., Mortality prediction in septic shock patients: Towards new personalized models in critical care. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, IEEE, 2792–2795 August.
-
(2015)
2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
, pp. 2792-2795
-
-
Carrara, M.1
Baselli, G.2
Ferrario, M.3
-
49
-
-
84969249584
-
Imputation-enhanced prediction of septic shock in ICU patients
-
[49] Ho, J.C., Lee, C.H., Ghosh, J., Imputation-enhanced prediction of septic shock in ICU patients. Proceedings of the ACM SIGKDD Workshop on Health Informatics (HI-KDD12), 2012.
-
(2012)
Proceedings of the ACM SIGKDD Workshop on Health Informatics (HI-KDD12)
-
-
Ho, J.C.1
Lee, C.H.2
Ghosh, J.3
-
50
-
-
77954660289
-
Comparison of analytic approaches for determining variables-a case study in predicting the likelihood of sepsis
-
[50] Gwadry-Sridhar, F., Lewden, B., Mequanint, S., Bauer, M., Comparison of analytic approaches for determining variables-a case study in predicting the likelihood of sepsis. HEALTHINF, 2009, 90–96.
-
(2009)
HEALTHINF
, pp. 90-96
-
-
Gwadry-Sridhar, F.1
Lewden, B.2
Mequanint, S.3
Bauer, M.4
-
51
-
-
84878154666
-
Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients
-
[51] Vieira, S.M., Mendona, L.F., Farinha, G.J., Sousa, J.M., Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients. Appl. Soft Comput. 13:8 (2013), 3494–3504.
-
(2013)
Appl. Soft Comput.
, vol.13
, Issue.8
, pp. 3494-3504
-
-
Vieira, S.M.1
Mendona, L.F.2
Farinha, G.J.3
Sousa, J.M.4
-
52
-
-
77952370942
-
Non-invasive classification of severe sepsis and systemic inflammatory response syndrome using a nonlinear support vector machine: a preliminary study
-
[52] Tang, C.H., Middleton, P.M., Savkin, A.V., Chan, G.S., Bishop, S., Lovell, N.H., Non-invasive classification of severe sepsis and systemic inflammatory response syndrome using a nonlinear support vector machine: a preliminary study. Physiol. Measure., 31(6), 2010, 775.
-
(2010)
Physiol. Measure.
, vol.31
, Issue.6
, pp. 775
-
-
Tang, C.H.1
Middleton, P.M.2
Savkin, A.V.3
Chan, G.S.4
Bishop, S.5
Lovell, N.H.6
-
53
-
-
47649096699
-
Presymptomatic prediction of sepsis in intensive care unit patients
-
[53] Lukaszewski, R.A., Yates, A.M., Jackson, M.C., Swingler, K., Scherer, J.M., Simpson, A.J., et al. Presymptomatic prediction of sepsis in intensive care unit patients. Clin. Vaccine Immunol. 15:7 (2008), 1089–1094.
-
(2008)
Clin. Vaccine Immunol.
, vol.15
, Issue.7
, pp. 1089-1094
-
-
Lukaszewski, R.A.1
Yates, A.M.2
Jackson, M.C.3
Swingler, K.4
Scherer, J.M.5
Simpson, A.J.6
-
54
-
-
74949093051
-
Early prediction of septic shock in hospitalized patients
-
[54] Thiel, S.W., Rosini, J.M., Shannon, W., Doherty, J.A., Micek, S.T., Kollef, M.H., Early prediction of septic shock in hospitalized patients. J. Hospital Med. 5:1 (2010), 19–25.
-
(2010)
J. Hospital Med.
, vol.5
, Issue.1
, pp. 19-25
-
-
Thiel, S.W.1
Rosini, J.M.2
Shannon, W.3
Doherty, J.A.4
Micek, S.T.5
Kollef, M.H.6
-
55
-
-
80053072848
-
Predicting septic shock outcomes in a database with missing data using fuzzy modeling: influence of pre-processing techniques on real-world data-based classification
-
[55] Pereira, R.D., Almeida, R.J., Kaymak, U., Vieira, S.M., Sousa, J., et al. Predicting septic shock outcomes in a database with missing data using fuzzy modeling: influence of pre-processing techniques on real-world data-based classification. 2011 IEEE International Conference on Fuzzy Systems (FUZZ), 2011, 2507–2512.
-
(2011)
2011 IEEE International Conference on Fuzzy Systems (FUZZ)
, pp. 2507-2512
-
-
Pereira, R.D.1
Almeida, R.J.2
Kaymak, U.3
Vieira, S.M.4
Sousa, J.5
-
56
-
-
84880481157
-
Predicting outcomes of septic shock patients using feature selection based on soft computing techniques
-
Springer Berlin Heidelberg
-
[56] Fialho, A.S., Cismondi, F., Vieira, S.M., Sousa, J.a.M.C., Reti, S.R., Howell, M.D., Finkelstein, S.N., Predicting outcomes of septic shock patients using feature selection based on soft computing techniques. Information Processing and Management of Uncertainty in Knowledge-Based Systems Applications, Communications in Computer and Information Science, vol. 81, 2010, Springer, Berlin Heidelberg, 65–74.
-
(2010)
Information Processing and Management of Uncertainty in Knowledge-Based Systems, Applications, Communications in Computer and Information Science
, vol.81
, pp. 65-74
-
-
Fialho, A.S.1
Cismondi, F.2
Vieira, S.M.3
Sousa, J.A.M.C.4
Reti, S.R.5
Howell, M.D.6
Finkelstein, S.N.7
-
57
-
-
84899054093
-
Early detection of apnea-bradycardia episodes in preterm infants based on coupled hidden Markov model
-
IEEE December
-
[57] Masoudi, S., Montazeri, N., Shamsollahi, M.B., Ge, D., Beuche, A., Pladys, P., Hernndez, A.I., Early detection of apnea-bradycardia episodes in preterm infants based on coupled hidden Markov model. IEEE International Symposium on Signal Processing and Information Technology, 2013, IEEE, 000243–000248 December.
-
(2013)
IEEE International Symposium on Signal Processing and Information Technology
, pp. 000243-000248
-
-
Masoudi, S.1
Montazeri, N.2
Shamsollahi, M.B.3
Ge, D.4
Beuche, A.5
Pladys, P.6
Hernndez, A.I.7
-
58
-
-
0042626512
-
Knowledge-based approach to septic shock patient data using a neural network with trapezoidal activation functions
-
[58] Paetz, J., Knowledge-based approach to septic shock patient data using a neural network with trapezoidal activation functions. Artif. Intell. Med. 28:2 (2003), 207–230.
-
(2003)
Artif. Intell. Med.
, vol.28
, Issue.2
, pp. 207-230
-
-
Paetz, J.1
-
59
-
-
36048986113
-
Discovery and inclusion of SOFA score episodes in mortality prediction
-
[59] Toma, T., Abu-Hanna, A., Bosman, R.J., Discovery and inclusion of SOFA score episodes in mortality prediction. J. Biomed. Inform. 40:6 (2007), 649–660.
-
(2007)
J. Biomed. Inform.
, vol.40
, Issue.6
, pp. 649-660
-
-
Toma, T.1
Abu-Hanna, A.2
Bosman, R.J.3
-
60
-
-
77954143717
-
Learning predictive models that use pattern discovery a bootstrap evaluative approach applied in organ functioning sequences
-
[60] Toma, T., Bosman, R.J., Siebes, A., Peek, N., Abu-Hanna, A., Learning predictive models that use pattern discovery a bootstrap evaluative approach applied in organ functioning sequences. J. Biomed. Inform. 43:4 (2010), 578–586.
-
(2010)
J. Biomed. Inform.
, vol.43
, Issue.4
, pp. 578-586
-
-
Toma, T.1
Bosman, R.J.2
Siebes, A.3
Peek, N.4
Abu-Hanna, A.5
-
62
-
-
84875605527
-
Modelling and analysing the dynamics of disease progression from cross-sectional studies
-
[62] Li, Y., Swift, S., Tucker, A., Modelling and analysing the dynamics of disease progression from cross-sectional studies. J. Biomed. Inform. 46:2 (2013), 266–274.
-
(2013)
J. Biomed. Inform.
, vol.46
, Issue.2
, pp. 266-274
-
-
Li, Y.1
Swift, S.2
Tucker, A.3
-
63
-
-
77949269473
-
Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the Intensive Care Unit
-
[63] Peelen, L., de Keizer, N.F., de Jonge, E., Bosman, R.J., Abu-Hanna, A., Peek, N., Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the Intensive Care Unit. J. Biomed. Inform. 43:2 (2010), 273–286.
-
(2010)
J. Biomed. Inform.
, vol.43
, Issue.2
, pp. 273-286
-
-
Peelen, L.1
de Keizer, N.F.2
de Jonge, E.3
Bosman, R.J.4
Abu-Hanna, A.5
Peek, N.6
-
64
-
-
77958136867
-
An investigation of patterns in hemodynamic data indicative of impending hypotension in intensive care
-
[64] Lee, J., Mark, R.G., An investigation of patterns in hemodynamic data indicative of impending hypotension in intensive care. Biomed. Eng., 9(1), 2010, 1.
-
(2010)
Biomed. Eng.
, vol.9
, Issue.1
, pp. 1
-
-
Lee, J.1
Mark, R.G.2
|