메뉴 건너뛰기




Volumn 66, Issue , 2017, Pages 19-31

Septic shock prediction for ICU patients via coupled HMM walking on sequential contrast patterns

Author keywords

Coupled hidden Markov models; Septic shock; Sequential pattern mining; Symbolic sequences

Indexed keywords

BLOOD PRESSURE; CONTINUOUS TIME SYSTEMS; FORECASTING; HEART; INTENSIVE CARE UNITS; LEARNING SYSTEMS; MARKOV PROCESSES; PATIENT MONITORING; PHYSIOLOGICAL MODELS; PHYSIOLOGY;

EID: 85007438910     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2016.12.010     Document Type: Article
Times cited : (87)

References (64)
  • 1
    • 84883076264 scopus 로고    scopus 로고
    • Severe sepsis and septic shock
    • [1] Angus, D.C., Van Der Poll, T., Severe sepsis and septic shock. New England J. Med. 369:9 (2013), 840–851.
    • (2013) New England J. Med. , vol.369 , Issue.9 , pp. 840-851
    • Angus, D.C.1    Van Der Poll, T.2
  • 2
    • 77953577951 scopus 로고    scopus 로고
    • Population trends in the incidence and outcomes of acute myocardial infarction
    • [2] Yeh, R.W., Sidney, S., Chandra, M., Sorel, M., Selby, J.V., Go, A.S., Population trends in the incidence and outcomes of acute myocardial infarction. New England J. Med. 362:23 (2010), 2155–2165.
    • (2010) New England J. Med. , vol.362 , Issue.23 , pp. 2155-2165
    • Yeh, R.W.1    Sidney, S.2    Chandra, M.3    Sorel, M.4    Selby, J.V.5    Go, A.S.6
  • 5
    • 84929016199 scopus 로고    scopus 로고
    • Predictors of patients who present to the emergency department with sepsis and progress to septic shock between 4 and 48 hours of emergency department arrival∗
    • [5] Capp, R., Horton, C.L., Takhar, S.S., Ginde, A.A., Peak, D.A., Zane, R., Marill, K.A., Predictors of patients who present to the emergency department with sepsis and progress to septic shock between 4 and 48 hours of emergency department arrival∗. Crit. Care Med. 43:5 (2015), 983–988.
    • (2015) Crit. Care Med. , vol.43 , Issue.5 , pp. 983-988
    • Capp, R.1    Horton, C.L.2    Takhar, S.S.3    Ginde, A.A.4    Peak, D.A.5    Zane, R.6    Marill, K.A.7
  • 6
    • 84938704873 scopus 로고    scopus 로고
    • A targeted real-time early warning score (TREWScore) for septic shock
    • 299ra122-299ra122
    • [6] Henry, K.E., Hager, D.N., Pronovost, P.J., Saria, S., A targeted real-time early warning score (TREWScore) for septic shock. Sci. Trans. Med., 7(299), 2015 299ra122-299ra122.
    • (2015) Sci. Trans. Med. , vol.7 , Issue.299
    • Henry, K.E.1    Hager, D.N.2    Pronovost, P.J.3    Saria, S.4
  • 11
    • 84921727487 scopus 로고    scopus 로고
    • Analyzing complex patients temporal histories: new frontiers in temporal data mining
    • [11] Sacchi, L., Dagliati, A., Bellazzi, R., Analyzing complex patients temporal histories: new frontiers in temporal data mining. Data Min. Clin. Med., 2015, 89–105.
    • (2015) Data Min. Clin. Med. , pp. 89-105
    • Sacchi, L.1    Dagliati, A.2    Bellazzi, R.3
  • 17
    • 34548083516 scopus 로고    scopus 로고
    • Data mining with temporal abstractions: learning rules from time series
    • [17] Sacchi, L., Larizza, C., Combi, C., Bellazzi, R., Data mining with temporal abstractions: learning rules from time series. Data Min. Knowl. Disc. 15:2 (2007), 217–247.
    • (2007) Data Min. Knowl. Disc. , vol.15 , Issue.2 , pp. 217-247
    • Sacchi, L.1    Larizza, C.2    Combi, C.3    Bellazzi, R.4
  • 18
    • 84930482550 scopus 로고    scopus 로고
    • Classification-driven temporal discretization of multivariate time series
    • [18] Moskovitch, R., Shahar, Y., Classification-driven temporal discretization of multivariate time series. Data Min. Knowl. Disc., 2014, 1–43.
    • (2014) Data Min. Knowl. Disc. , pp. 1-43
    • Moskovitch, R.1    Shahar, Y.2
  • 19
    • 84899505444 scopus 로고    scopus 로고
    • Temporal interval pattern languages to characterize time flow
    • [19] Hoppner, F., Peter, S., Temporal interval pattern languages to characterize time flow. Wiley Interdisc. Rev.: Data Min. Knowl. Disc. 4:3 (2014), 196–212.
    • (2014) Wiley Interdisc. Rev.: Data Min. Knowl. Disc. , vol.4 , Issue.3 , pp. 196-212
    • Hoppner, F.1    Peter, S.2
  • 22
    • 84871741964 scopus 로고    scopus 로고
    • A framework for mining signatures from event sequences and its applications in healthcare data
    • [22] Wang, F., Lee, N., Hu, J., Sun, J., Ebadollahi, S., Laine, A.F., A framework for mining signatures from event sequences and its applications in healthcare data. IEEE Trans. Pattern Anal. Machine Intell. 35:2 (2013), 272–285.
    • (2013) IEEE Trans. Pattern Anal. Machine Intell. , vol.35 , Issue.2 , pp. 272-285
    • Wang, F.1    Lee, N.2    Hu, J.3    Sun, J.4    Ebadollahi, S.5    Laine, A.F.6
  • 23
    • 85018098825 scopus 로고    scopus 로고
    • Learning sequential classifiers from long and noisy discrete-event sequences efficiently
    • [23] Dafe, G., Veloso, A., Zaki, M., Meira, W. Jr., Learning sequential classifiers from long and noisy discrete-event sequences efficiently. Data Min. Knowl. Disc., 2014, 1–24.
    • (2014) Data Min. Knowl. Disc. , pp. 1-24
    • Dafe, G.1    Veloso, A.2    Zaki, M.3    Meira, W.4
  • 24
    • 0026710191 scopus 로고
    • Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee, American College of Chest Physicians/Society of Critical Care Medicine
    • [24] Bone, R.C., Balk, R.A., Cerra, F.B., Dellinger, R.P., Fein, A.M., Knaus, W.A., Schein, R.M., Sibbald, W.J., Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee, American College of Chest Physicians/Society of Critical Care Medicine. Chest 101:6 (1992), 1644–1655.
    • (1992) Chest , vol.101 , Issue.6 , pp. 1644-1655
    • Bone, R.C.1    Balk, R.A.2    Cerra, F.B.3    Dellinger, R.P.4    Fein, A.M.5    Knaus, W.A.6    Schein, R.M.7    Sibbald, W.J.8
  • 25
    • 79955479858 scopus 로고    scopus 로고
    • Multiparameter intelligent monitoring in intensive care II (MIMIC-II): a public-access intensive care unit database
    • [25] Saeed, M., Villarroel, M., Reisner, A.T., Clifford, G., Lehman, L.W., Moody, G., et al. Multiparameter intelligent monitoring in intensive care II (MIMIC-II): a public-access intensive care unit database. Crit. Care Med., 39(5), 2011, 952.
    • (2011) Crit. Care Med. , vol.39 , Issue.5 , pp. 952
    • Saeed, M.1    Villarroel, M.2    Reisner, A.T.3    Clifford, G.4    Lehman, L.W.5    Moody, G.6
  • 26
    • 77955605527 scopus 로고    scopus 로고
    • Motif discovery in physiological datasets: a methodology for inferring predictive elements
    • [26] Syed, Z., Stultz, C., Kellis, M., Indyk, P., Guttag, J., Motif discovery in physiological datasets: a methodology for inferring predictive elements. ACM Trans. Knowl. Disc. Data (TKDD), 4(1), 2010, 2.
    • (2010) ACM Trans. Knowl. Disc. Data (TKDD) , vol.4 , Issue.1 , pp. 2
    • Syed, Z.1    Stultz, C.2    Kellis, M.3    Indyk, P.4    Guttag, J.5
  • 29
    • 34147151231 scopus 로고    scopus 로고
    • Mining minimal distinguishing subsequence patterns with gap constraints
    • [29] Ji, X., Bailey, J., Dong, G., Mining minimal distinguishing subsequence patterns with gap constraints. Knowl. Inform. Syst. 11:3 (2007), 259–286.
    • (2007) Knowl. Inform. Syst. , vol.11 , Issue.3 , pp. 259-286
    • Ji, X.1    Bailey, J.2    Dong, G.3
  • 30
    • 0034511252 scopus 로고    scopus 로고
    • Estimation of coupled hidden Markov models with application to biosignal interaction modelling
    • IEEE
    • [30] Rezek, I., Roberts, S.J., Estimation of coupled hidden Markov models with application to biosignal interaction modelling. Neural Networks Signal Process Proc., vol. 2, 2000, IEEE, 804–813.
    • (2000) Neural Networks Signal Process Proc. , vol.2 , pp. 804-813
    • Rezek, I.1    Roberts, S.J.2
  • 31
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • [31] Rabiner, L.R., A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77:2 (1989), 257–286.
    • (1989) Proc. IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 32
    • 84982886690 scopus 로고    scopus 로고
    • Bearing fault recognition method based on neighbourhood component analysis and coupled hidden Markov model
    • [32] Zhou, H., Chen, J., Dong, G., Wang, H., Yuan, H., Bearing fault recognition method based on neighbourhood component analysis and coupled hidden Markov model. Mech. Syst. Signal Process., 2015.
    • (2015) Mech. Syst. Signal Process.
    • Zhou, H.1    Chen, J.2    Dong, G.3    Wang, H.4    Yuan, H.5
  • 34
    • 84863461594 scopus 로고    scopus 로고
    • Coupled behavior analysis with applications
    • [34] Cao, L., Ou, Y., Yu, P.S., Coupled behavior analysis with applications. IEEE Trans. Knowl. Data Eng. 24:8 (2012), 1378–1392.
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , Issue.8 , pp. 1378-1392
    • Cao, L.1    Ou, Y.2    Yu, P.S.3
  • 39
    • 84944357358 scopus 로고    scopus 로고
    • Mining sequential patterns for classification
    • [39] Fradkin, D., Morchen, F., Mining sequential patterns for classification. Knowl. Inform. Syst., 2015, 1–19.
    • (2015) Knowl. Inform. Syst. , pp. 1-19
    • Fradkin, D.1    Morchen, F.2
  • 42
    • 81055156693 scopus 로고    scopus 로고
    • A brief survey on sequence classification
    • [42] Xing, Z., Pei, J., Keogh, E., A brief survey on sequence classification. ACM SIGKDD Explorat. Newslett. 12:1 (2010), 40–48.
    • (2010) ACM SIGKDD Explorat. Newslett. , vol.12 , Issue.1 , pp. 40-48
    • Xing, Z.1    Pei, J.2    Keogh, E.3
  • 44
    • 84964316172 scopus 로고    scopus 로고
    • Risk prediction for acute hypotensive patients by using gap constrained sequential contrast patterns
    • American Medical Informatics Association
    • [44] Ghosh, S., Feng, M., Nguyen, H., Li, J., Risk prediction for acute hypotensive patients by using gap constrained sequential contrast patterns. AMIA Annual Symposium Proceedings, vol. 2014, 2014, American Medical Informatics Association, 1748.
    • (2014) AMIA Annual Symposium Proceedings , vol.2014 , pp. 1748
    • Ghosh, S.1    Feng, M.2    Nguyen, H.3    Li, J.4
  • 45
    • 84899106645 scopus 로고    scopus 로고
    • Septic shock prediction for patients with missing data
    • [45] Ho, J.C., Lee, C.H., Ghosh, J., Septic shock prediction for patients with missing data. ACM Trans. Manage. Inform. Syst., 5(1), 2014, 1.
    • (2014) ACM Trans. Manage. Inform. Syst. , vol.5 , Issue.1 , pp. 1
    • Ho, J.C.1    Lee, C.H.2    Ghosh, J.3
  • 46
    • 79953827997 scopus 로고    scopus 로고
    • Septic shock: providing early warnings through multivariate logistic regression models
    • Doctoral dissertation Massachusetts Institute of Technology
    • [46] Shavdia, D., Septic shock: providing early warnings through multivariate logistic regression models. Doctoral dissertation, 2007, Massachusetts Institute of Technology.
    • (2007)
    • Shavdia, D.1
  • 50
    • 77954660289 scopus 로고    scopus 로고
    • Comparison of analytic approaches for determining variables-a case study in predicting the likelihood of sepsis
    • [50] Gwadry-Sridhar, F., Lewden, B., Mequanint, S., Bauer, M., Comparison of analytic approaches for determining variables-a case study in predicting the likelihood of sepsis. HEALTHINF, 2009, 90–96.
    • (2009) HEALTHINF , pp. 90-96
    • Gwadry-Sridhar, F.1    Lewden, B.2    Mequanint, S.3    Bauer, M.4
  • 51
    • 84878154666 scopus 로고    scopus 로고
    • Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients
    • [51] Vieira, S.M., Mendona, L.F., Farinha, G.J., Sousa, J.M., Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients. Appl. Soft Comput. 13:8 (2013), 3494–3504.
    • (2013) Appl. Soft Comput. , vol.13 , Issue.8 , pp. 3494-3504
    • Vieira, S.M.1    Mendona, L.F.2    Farinha, G.J.3    Sousa, J.M.4
  • 52
    • 77952370942 scopus 로고    scopus 로고
    • Non-invasive classification of severe sepsis and systemic inflammatory response syndrome using a nonlinear support vector machine: a preliminary study
    • [52] Tang, C.H., Middleton, P.M., Savkin, A.V., Chan, G.S., Bishop, S., Lovell, N.H., Non-invasive classification of severe sepsis and systemic inflammatory response syndrome using a nonlinear support vector machine: a preliminary study. Physiol. Measure., 31(6), 2010, 775.
    • (2010) Physiol. Measure. , vol.31 , Issue.6 , pp. 775
    • Tang, C.H.1    Middleton, P.M.2    Savkin, A.V.3    Chan, G.S.4    Bishop, S.5    Lovell, N.H.6
  • 55
    • 80053072848 scopus 로고    scopus 로고
    • Predicting septic shock outcomes in a database with missing data using fuzzy modeling: influence of pre-processing techniques on real-world data-based classification
    • [55] Pereira, R.D., Almeida, R.J., Kaymak, U., Vieira, S.M., Sousa, J., et al. Predicting septic shock outcomes in a database with missing data using fuzzy modeling: influence of pre-processing techniques on real-world data-based classification. 2011 IEEE International Conference on Fuzzy Systems (FUZZ), 2011, 2507–2512.
    • (2011) 2011 IEEE International Conference on Fuzzy Systems (FUZZ) , pp. 2507-2512
    • Pereira, R.D.1    Almeida, R.J.2    Kaymak, U.3    Vieira, S.M.4    Sousa, J.5
  • 58
    • 0042626512 scopus 로고    scopus 로고
    • Knowledge-based approach to septic shock patient data using a neural network with trapezoidal activation functions
    • [58] Paetz, J., Knowledge-based approach to septic shock patient data using a neural network with trapezoidal activation functions. Artif. Intell. Med. 28:2 (2003), 207–230.
    • (2003) Artif. Intell. Med. , vol.28 , Issue.2 , pp. 207-230
    • Paetz, J.1
  • 59
    • 36048986113 scopus 로고    scopus 로고
    • Discovery and inclusion of SOFA score episodes in mortality prediction
    • [59] Toma, T., Abu-Hanna, A., Bosman, R.J., Discovery and inclusion of SOFA score episodes in mortality prediction. J. Biomed. Inform. 40:6 (2007), 649–660.
    • (2007) J. Biomed. Inform. , vol.40 , Issue.6 , pp. 649-660
    • Toma, T.1    Abu-Hanna, A.2    Bosman, R.J.3
  • 60
    • 77954143717 scopus 로고    scopus 로고
    • Learning predictive models that use pattern discovery a bootstrap evaluative approach applied in organ functioning sequences
    • [60] Toma, T., Bosman, R.J., Siebes, A., Peek, N., Abu-Hanna, A., Learning predictive models that use pattern discovery a bootstrap evaluative approach applied in organ functioning sequences. J. Biomed. Inform. 43:4 (2010), 578–586.
    • (2010) J. Biomed. Inform. , vol.43 , Issue.4 , pp. 578-586
    • Toma, T.1    Bosman, R.J.2    Siebes, A.3    Peek, N.4    Abu-Hanna, A.5
  • 62
    • 84875605527 scopus 로고    scopus 로고
    • Modelling and analysing the dynamics of disease progression from cross-sectional studies
    • [62] Li, Y., Swift, S., Tucker, A., Modelling and analysing the dynamics of disease progression from cross-sectional studies. J. Biomed. Inform. 46:2 (2013), 266–274.
    • (2013) J. Biomed. Inform. , vol.46 , Issue.2 , pp. 266-274
    • Li, Y.1    Swift, S.2    Tucker, A.3
  • 63
    • 77949269473 scopus 로고    scopus 로고
    • Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the Intensive Care Unit
    • [63] Peelen, L., de Keizer, N.F., de Jonge, E., Bosman, R.J., Abu-Hanna, A., Peek, N., Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the Intensive Care Unit. J. Biomed. Inform. 43:2 (2010), 273–286.
    • (2010) J. Biomed. Inform. , vol.43 , Issue.2 , pp. 273-286
    • Peelen, L.1    de Keizer, N.F.2    de Jonge, E.3    Bosman, R.J.4    Abu-Hanna, A.5    Peek, N.6
  • 64
    • 77958136867 scopus 로고    scopus 로고
    • An investigation of patterns in hemodynamic data indicative of impending hypotension in intensive care
    • [64] Lee, J., Mark, R.G., An investigation of patterns in hemodynamic data indicative of impending hypotension in intensive care. Biomed. Eng., 9(1), 2010, 1.
    • (2010) Biomed. Eng. , vol.9 , Issue.1 , pp. 1
    • Lee, J.1    Mark, R.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.