메뉴 건너뛰기




Volumn 45, Issue 3, 2015, Pages 731-749

Mining sequential patterns for classification

Author keywords

Information gain; Sequence classification; Sequential pattern mining

Indexed keywords

DATA MINING;

EID: 84944357358     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-014-0817-0     Document Type: Article
Times cited : (69)

References (53)
  • 1
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international ACM Press, conference on management of data
    • Agrawal R, Imielinski T, Swami AN (1993) Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international ACM Press, conference on management of data, pp 207–216
    • (1993) pp 207–216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.N.3
  • 2
    • 0029212693 scopus 로고
    • Mining sequential patterns. In: ICDE. IEEE Press
    • Agrawal R, Srikant R (1995) Mining sequential patterns. In: ICDE. IEEE Press, pp 3–14
    • (1995) pp 3–14
    • Agrawal, R.1    Srikant, R.2
  • 3
    • 84944354088 scopus 로고    scopus 로고
    • Asuncion A, Newman D (n.d.) UCI Machine Learning Repository
    • Asuncion A, Newman D (n.d.) UCI Machine Learning Repository
  • 4
    • 84866050050 scopus 로고    scopus 로고
    • Mining recent temporal patterns for event detection in multivariate time series data. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, pp 280–288
    • Batal I, Fradkin D, Harrison J, Moerchen F, Hauskrecht M (2012) Mining recent temporal patterns for event detection in multivariate time series data. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, pp 280–288. doi:10.1145/2339530.2339578
    • (2012) doi:10.1145/2339530.2339578
    • Batal, I.1    Fradkin, D.2    Harrison, J.3    Moerchen, F.4    Hauskrecht, M.5
  • 6
    • 58549089000 scopus 로고    scopus 로고
    • One in a million: picking the right patterns
    • Bringmann B, Zimmermann A (2008) One in a million: picking the right patterns. Knowl Inf Syst 18(1):61–81
    • (2008) Knowl Inf Syst , vol.18 , Issue.1 , pp. 61-81
    • Bringmann, B.1    Zimmermann, A.2
  • 7
    • 33750340279 scopus 로고    scopus 로고
    • Dont be afraid of simpler patterns. In: Frnkranz J, Scheffer T, Spiliopoulou M (eds) Knowledge discovery in databases: PKDD 2006, vol 4213 of LNCS. Springer, Berlin, pp 55–66
    • Bringmann B, Zimmermann A, Raedt L, Nijssen S (2006) Dont be afraid of simpler patterns. In: Frnkranz J, Scheffer T, Spiliopoulou M (eds) Knowledge discovery in databases: PKDD 2006, vol 4213 of LNCS. Springer, Berlin, pp 55–66. doi:10.1007/11871637_10
    • (2006) doi:10.1007/11871637_10
    • Bringmann, B.1    Zimmermann, A.2    Raedt, L.3    Nijssen, S.4
  • 8
    • 83755201272 scopus 로고    scopus 로고
    • Motif-based classification of time series with bayesian networks and svms. In: Fink A, Lausen B, Seidel W, Ultsch A (eds) Advances in data analysis, data handling and business intelligence. Studies in classification, data analysis, and knowledge organization. Springer, Berlin, pp 105–114
    • Buza K, Schmidt-Thieme L (2010) Motif-based classification of time series with bayesian networks and svms. In: Fink A, Lausen B, Seidel W, Ultsch A (eds) Advances in data analysis, data handling and business intelligence. Studies in classification, data analysis, and knowledge organization. Springer, Berlin, pp 105–114. doi:10.1007/978-3-642-01044-6_9
    • (2010) doi:10.1007/978-3-642-01044-6_9
    • Buza, K.1    Schmidt-Thieme, L.2
  • 9
    • 85018121586 scopus 로고    scopus 로고
    • The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: Proceedings of SIGIR
    • Carbonell J, Coldstein J (1998) The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: Proceedings of SIGIR, p 335336
    • (1998) p 335336
    • Carbonell, J.1    Coldstein, J.2
  • 11
    • 52649163329 scopus 로고    scopus 로고
    • Direct discriminative pattern mining for effective classification. In: ICDE
    • Cheng H, Yan X, Han J, Yu PS (2008) Direct discriminative pattern mining for effective classification. In: ICDE, pp 169–178
    • (2008) pp 169–178
    • Cheng, H.1    Yan, X.2    Han, J.3    Yu, P.S.4
  • 15
  • 16
    • 34548074835 scopus 로고    scopus 로고
    • Learning models and formulas of a temporal event logic. PhD thesis
    • West Lafayette, IN: USA
    • Fern A (2004) Learning models and formulas of a temporal event logic. PhD thesis, Purdue University, West Lafayette, IN, USA
    • (2004) Purdue University
    • Fern, A.1
  • 17
    • 77956235327 scopus 로고    scopus 로고
    • Margin-closed frequent sequential pattern mining. KDD workshop on useful patterns. ACM, New York, NY
    • Fradkin D, Moerchen F (2010) Margin-closed frequent sequential pattern mining. KDD workshop on useful patterns. ACM, New York, NY, USA, pp 45–54
    • (2010) USA , pp. 45-54
    • Fradkin, D.1    Moerchen, F.2
  • 19
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 21
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation. In: Proceedings of the ACM SIGMOD international conference on management of data. ACM Press
    • Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: Proceedings of the ACM SIGMOD international conference on management of data. ACM Press, pp 1–12
    • (2000) pp 1–12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 22
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation. In: SIGMOD
    • Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: SIGMOD, pp 1–12
    • (2000) pp 1–12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 23
    • 65449125907 scopus 로고    scopus 로고
    • Fast logistic regression for text categorization with variable-length n-grams. In: KDD
    • Ifrim G, Bakir GH, Weikum G (2008) Fast logistic regression for text categorization with variable-length n-grams. In: KDD, pp 354–362
    • (2008) pp 354–362
    • Ifrim, G.1    Bakir, G.H.2    Weikum, G.3
  • 24
    • 80052661040 scopus 로고    scopus 로고
    • Bounded coordinate-descent for biological sequence classification in high dimensional predictor space
    • Ifrim G, Wiuf C (2011) Bounded coordinate-descent for biological sequence classification in high dimensional predictor space. In: KDD
    • (2011) In: KDD
    • Ifrim, G.1    Wiuf, C.2
  • 26
    • 78149232135 scopus 로고    scopus 로고
    • Learning and playing in wubble world. In: Proceedings of the fourth artificial intelligence and interactive digital entertainment conference
    • Kerr W, Cohen P, Chang Y-H (2008) Learning and playing in wubble world. In: Proceedings of the fourth artificial intelligence and interactive digital entertainment conference, pp 66–71
    • (2008) pp 66–71
    • Kerr, W.1    Cohen, P.2    Chang, Y.-H.3
  • 28
    • 79953173566 scopus 로고    scopus 로고
    • Mining discriminative patterns for classifying trajectories on road networks
    • Lee J-G, Han J, Li X, Cheng H (2011) Mining discriminative patterns for classifying trajectories on road networks. IEEE Trans Knowl Data Eng 23(5):713–726
    • (2011) IEEE Trans Knowl Data Eng , vol.23 , Issue.5 , pp. 713-726
    • Lee, J.-G.1    Han, J.2    Li, X.3    Cheng, H.4
  • 29
    • 33745781710 scopus 로고    scopus 로고
    • A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 2003 ACM SIGMOD workshop on research issues in data mining and knowledge discovery. ACM Press, pp 2–11
    • Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 2003 ACM SIGMOD workshop on research issues in data mining and knowledge discovery. ACM Press, pp 2–11. URL:http://citeseer.ist.psu.edu/583097.html
    • (2003) URL:http://citeseer.ist.psu.edu/583097.html
    • Lin, J.1    Keogh, E.2    Lonardi, S.3    Chiu, B.4
  • 30
    • 84908630923 scopus 로고    scopus 로고
    • Mining closed discriminative dyadic sequential patterns
    • Lo D, Cheng H, Cia L (2011) Mining closed discriminative dyadic sequential patterns. In: EDBT
    • (2011) In: EDBT
    • Lo, D.1    Cheng, H.2    Cia, L.3
  • 31
    • 69449099775 scopus 로고    scopus 로고
    • Classification of software behaviros for failure detection: a discriminative pattern mining approach
    • In, Proceedings of KDD
    • Lo D, Han J, Cheng H, Khoo S-C, Sun C (2009) Classification of software behaviros for failure detection: a discriminative pattern mining approach. In: Proceedings of KDD
    • (2009)
    • Lo, D.1    Han, J.2    Cheng, H.3    Khoo, S.-C.4    Sun, C.5
  • 32
    • 31344457479 scopus 로고    scopus 로고
    • Fast and memory efficient mining of frequent closed itemsets
    • Lucchese C, Orlando S, Perego R (2006) Fast and memory efficient mining of frequent closed itemsets. IEEE Trans Knowl Data Eng 18(1):21–36
    • (2006) IEEE Trans Knowl Data Eng , vol.18 , Issue.1 , pp. 21-36
    • Lucchese, C.1    Orlando, S.2    Perego, R.3
  • 33
    • 84894641189 scopus 로고    scopus 로고
    • Sensor signal data set for exploring context recognition of mobile devices. In: Proceedings of PERVASIVE. Springer
    • Mäntyjärvi J, Himberg J, Kangas P, Tuomela U, Huuskonen P (2004) Sensor signal data set for exploring context recognition of mobile devices. In: Proceedings of PERVASIVE. Springer, pp 18–23
    • (2004) pp 18–23
    • Mäntyjärvi, J.1    Himberg, J.2    Kangas, P.3    Tuomela, U.4    Huuskonen, P.5
  • 34
    • 80053305876 scopus 로고    scopus 로고
    • Efficient mining of all margin-closed itemsets with applications in temporal knowledge discovery and classification by compression
    • Moerchen F, Thies M, Ultsch A (2011) Efficient mining of all margin-closed itemsets with applications in temporal knowledge discovery and classification by compression. Knowl Inf Syst 29:55–80. doi:10.1007/s10115-010-0329-5
    • (2011) Knowl Inf Syst , vol.29 , pp. 55-80
    • Moerchen, F.1    Thies, M.2    Ultsch, A.3
  • 35
    • 32344436715 scopus 로고    scopus 로고
    • Optimizing time series discretization for knowledge discovery. In: Proceedings of the ACM SIGKDD. ACM Press
    • Mörchen F, Ultsch A (2005) Optimizing time series discretization for knowledge discovery. In: Proceedings of the ACM SIGKDD. ACM Press, pp 660–665
    • (2005) pp 660–665
    • Mörchen, F.1    Ultsch, A.2
  • 36
    • 34548085733 scopus 로고    scopus 로고
    • Efficient mining of understandable patterns from multivariate interval time series
    • Mörchen F, Ultsch A (2007) Efficient mining of understandable patterns from multivariate interval time series. Data Min Knowl Discov 15(2):181–215. doi:10.1007/s10618-007-0070-1
    • (2007) Data Min Knowl Discov , vol.15 , Issue.2 , pp. 181-215
    • Mörchen, F.1    Ultsch, A.2
  • 37
    • 0033687894 scopus 로고    scopus 로고
    • Traversing itemset lattice with statistical metric pruning. In: PODS
    • Morishita S, Sese J (2000) Traversing itemset lattice with statistical metric pruning. In: PODS, pp 226–236
    • (2000) pp 226–236
    • Morishita, S.1    Sese, J.2
  • 38
    • 33745796166 scopus 로고    scopus 로고
    • Multi-class correlated pattern mining. In: Bonchi F, Boulicaut J-F (eds) Knowledge discovery in inductive databases, vol 3933 of LNCS. Springer, Berlin, pp 165–187
    • Nijssen S, Kok J (2006) Multi-class correlated pattern mining. In: Bonchi F, Boulicaut J-F (eds) Knowledge discovery in inductive databases, vol 3933 of LNCS. Springer, Berlin, pp 165–187. doi:10.1007/11733492_10
    • (2006) doi:10.1007/11733492_10
    • Nijssen, S.1    Kok, J.2
  • 39
    • 67650248676 scopus 로고    scopus 로고
    • Pruning strategies based on the upper bound of information gain for discriminative subgraph mining. In: PKAW’08
    • Ohara K, Hara M, Takabayashi K, Motoda H, Washio T (2008) Pruning strategies based on the upper bound of information gain for discriminative subgraph mining. In: PKAW’08, pp 50–60
    • (2008) pp 50–60
    • Ohara, K.1    Hara, M.2    Takabayashi, K.3    Motoda, H.4    Washio, T.5
  • 41
    • 0035016443 scopus 로고    scopus 로고
    • PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings of the IEEE ICDE. IEEE Press
    • Pei J, Han J, Mortazavi-Asl B, Pinto H, Chen Q, Dayal U, Hsu M-C (2001) PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings of the IEEE ICDE. IEEE Press, pp 215–224
    • (2001) pp 215–224
    • Pei, J.1    Han, J.2    Mortazavi-Asl, B.3    Pinto, H.4    Chen, Q.5    Dayal, U.6    Hsu, M.-C.7
  • 42
    • 35048831030 scopus 로고    scopus 로고
    • Itemset classified clustering, In: Boulicaut J-F, Esposito F, Giannotti F, Pedreschi D (eds) Knowledge discovery in databases: PKDD 2004, vol 3202 of LNCS. Springer, Berlin, pp 398–409
    • Sese J, Morishita S (2004) Itemset classified clustering, In: Boulicaut J-F, Esposito F, Giannotti F, Pedreschi D (eds) Knowledge discovery in databases: PKDD 2004, vol 3202 of LNCS. Springer, Berlin, pp 398–409. doi:10.1007/978-3-540-30116-5_37
    • (2004) doi:10.1007/978-3-540-30116-5_37
    • Sese, J.1    Morishita, S.2
  • 43
    • 84907021022 scopus 로고    scopus 로고
    • Log-based predictive maintenance, In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1867–1876
    • Sipos R, Fradkin D, Moerchen F, Wang Z (2014) Log-based predictive maintenance, In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1867–1876. doi:10.1145/2623330.2623340
    • (2014) doi:10.1145/2623330.2623340
    • Sipos, R.1    Fradkin, D.2    Moerchen, F.3    Wang, Z.4
  • 44
    • 84897708583 scopus 로고    scopus 로고
    • Mining sequential patterns: generalizations and performance improvements. In: Proceedings of the 5th international conference on extending database technology (EDBT). Springer, pp 3–17
    • Srikant R, Agrawal R (1996) Mining sequential patterns: generalizations and performance improvements. In: Proceedings of the 5th international conference on extending database technology (EDBT). Springer, pp 3–17. URL:http://citeseer.ist.psu.edu/article/srikant96mining.html
    • (1996) URL:http://citeseer.ist.psu.edu/article/srikant96mining.html
    • Srikant, R.1    Agrawal, R.2
  • 45
    • 0032304547 scopus 로고    scopus 로고
    • Real-time American sign language recognition using desk and wearable computer-based video
    • Starner T, Weaver J, Pentland A (1998) Real-time American sign language recognition using desk and wearable computer-based video. IEEE Trans Pattern Anal Mach Intell 20(12):1371–1375. doi:10.1109/34.735811
    • (1998) IEEE Trans Pattern Anal Mach Intell , vol.20 , Issue.12 , pp. 1371-1375
    • Starner, T.1    Weaver, J.2    Pentland, A.3
  • 46
    • 2442446148 scopus 로고    scopus 로고
    • BIDE: Efficient mining of frequent closed sequences. In: ICDE. IEEE Press
    • Wang J, Han J (2004) BIDE: Efficient mining of frequent closed sequences. In: ICDE. IEEE Press, pp 79–90
    • (2004) pp 79–90
    • Wang, J.1    Han, J.2
  • 47
    • 34347216715 scopus 로고    scopus 로고
    • Frequent closed sequence mining without candidate maintenance
    • Wang J, Han J, Li C (2007) Frequent closed sequence mining without candidate maintenance. IEEE Trans Knowl Data Eng 19(8):1042–1056
    • (2007) IEEE Trans Knowl Data Eng , vol.19 , Issue.8 , pp. 1042-1056
    • Wang, J.1    Han, J.2    Li, C.3
  • 48
    • 34247574865 scopus 로고    scopus 로고
    • Mining nonambiguous temporal patterns for interval-based events
    • Wu S-Y, Chen Y-L (2007) Mining nonambiguous temporal patterns for interval-based events. IEEE Trans Knowl Data Eng 19(6):742–758
    • (2007) IEEE Trans Knowl Data Eng , vol.19 , Issue.6 , pp. 742-758
    • Wu, S.-Y.1    Chen, Y.-L.2
  • 51
    • 0003141935 scopus 로고    scopus 로고
    • A comparative study on feature selection in text categorization. In: ICML
    • Yang Y, Pedersen J (1997) A comparative study on feature selection in text categorization. In: ICML, pp 412–420
    • (1997) pp 412–420
    • Yang, Y.1    Pedersen, J.2
  • 52
    • 0034826102 scopus 로고    scopus 로고
    • Spade: an efficient algorithm for mining frequent sequences
    • Zaki M (2001) Spade: an efficient algorithm for mining frequent sequences. Mach Learn 42:31–60
    • (2001) Mach Learn , vol.42 , pp. 31-60
    • Zaki, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.