-
2
-
-
84951778046
-
Machine learning for sequential data: A review
-
T. G. Dietterich, “Machine learning for sequential data: A review,” in Proc. Joint 1 APR Int. Workshop Struct., Syntactic, Statist. Pattern Recog., 2002, pp. 15–30.
-
(2002)
Proc. Joint 1 APR Int. Workshop Struct., Syntactic, Statist. Pattern Recog.
, pp. 15-30
-
-
Dietterich, T.G.1
-
3
-
-
0033893162
-
Scalable feature mining for sequential data
-
Mar./Apr.
-
N. Lesh, M. J. Zaki, and M. Ogihara, “Scalable feature mining for sequential data,” IEEE Intell. Syst., vol. 15, no. 2, pp. 48–56, Mar./Apr. 2000.
-
(2000)
IEEE Intell. Syst.
, vol.15
, Issue.2
, pp. 48-56
-
-
Lesh, N.1
Zaki, M.J.2
Ogihara, M.3
-
5
-
-
35448931869
-
Discovery of generalized episodes using minimal occurrences
-
H. Mannila and H. Toivonen, “Discovery of generalized episodes using minimal occurrences,” in Proc. 2nd Int. Conf. KDD 1996, pp. 146–151.
-
Proc. 2nd Int. Conf. KDD 1996
, pp. 146-151
-
-
Mannila, H.1
Toivonen, H.2
-
6
-
-
27144468394
-
Discovery of frequent episodes in event sequences
-
H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery of frequent episodes in event sequences,” Data Min. Knowl. Discovery, vol. 1, no. 3, pp. 259–298, 1997.
-
(1997)
Data Min. Knowl. Discovery
, vol.1
, Issue.3
, pp. 259-298
-
-
Mannila, H.1
Toivonen, H.2
Verkamo, A.I.3
-
7
-
-
34548584819
-
Constraint-based mining of episode rules and optimal window sizes
-
New York, 2004, [8] R. Ichise and M. Numao, “First-order rule mining by using graphs created from temporal medical data, ” in Lecture Notes in Artificial Intelligence, Berlin, Germany: Springer-Verlag
-
N. Meger and C. Rigotti, “Constraint-based mining of episode rules and optimal window sizes,” in Proc. 8th Eur. Conf. Princ. Pract. Knowl. Discovery Databases, New York, 2004, pp. 313–324. [8] R. Ichise and M. Numao, “First-order rule mining by using graphs created from temporal medical data,” in Lecture Notes in Artificial Intelligence, Berlin, Germany: Springer-Verlag, vol. 3430, pp. 115–128, 2005.
-
(2005)
Proc. 8th Eur. Conf. Princ. Pract. Knowl. Discovery Databases
, vol.3430
, pp. 313-324
-
-
Meger, N.1
Rigotti, C.2
-
8
-
-
8344241312
-
A rule discovery support system for sequential medical data in the case study of a chronic hepatitis dataset
-
Croatia
-
M. Ohsaki, Y. Sato, H. Yokoi, and T. Yamaguchi, “A rule discovery support system for sequential medical data in the case study of a chronic hepatitis dataset,” in Proc. ECML/PKDD-2003 Discovery Challenge Workshop, Croatia, pp. 154–165.
-
Proc. ECML/PKDD-2003 Discovery Challenge Workshop
, pp. 154-165
-
-
Ohsaki, M.1
Sato, Y.2
Yokoi, H.3
Yamaguchi, T.4
-
9
-
-
34548077518
-
Mining similar temporal patterns in long time-series data and its application to medicine
-
S. Hirano and S. Tsumoto, “Mining similar temporal patterns in long time-series data and its application to medicine,” in IEEE Int. Conf. Data Min., 2002, pp. 219–226.
-
(2002)
IEEE Int. Conf. Data Min.
, pp. 219-226
-
-
Hirano, S.1
Tsumoto, S.2
-
10
-
-
35048894387
-
Mining episode rules in STULONG dataset
-
Pisa, Italy, Sep.
-
N. Meger, C. Leschi, and C. Rigotti, “Mining episode rules in STULONG dataset,” in Proc ECML/PKDD 2004 Discovery Challenge—Collaborat. Effort Knowl. Discovery, Pisa, Italy, Sep. 2004, pp. 1–12.
-
(2004)
Proc ECML/PKDD 2004 Discovery Challenge—Collaborat. Effort Knowl. Discovery
, pp. 1-12
-
-
Meger, N.1
Leschi, C.2
Rigotti, C.3
-
11
-
-
85042683888
-
-
M. Tomeckova, J. Rauch, and P. Berka, STULONG—Data from a longitudinal study of atherosclerosis risk factors. [Online]. Available: http://lisp. vse.cz/challenge/ecmlpkdd2002/
-
-
-
-
12
-
-
85042683859
-
-
STULONG study website. (2002). [Online], Available: http://euromise. vse.cz/stulong-en
-
-
-
-
13
-
-
84942896191
-
Feature selection for temporal health records
-
Berlin, Germany: Springer-Verlag
-
R. A. Baxter, G. Williams, and H. He, “Feature selection for temporal health records,” in 50th Asia-Pacific Conf. Knowl. Discovery Data Min. Lecture Notes in Computer Science, Berlin, Germany: Springer-Verlag, vol. 2035, pp. 198–209, 2001.
-
(2001)
50th Asia-Pacific Conf. Knowl. Discovery Data Min. Lecture Notes in Computer Science
, vol.2035
, pp. 198-209
-
-
Baxter, R.A.1
Williams, G.2
He, H.3
-
14
-
-
85042683876
-
-
D. Pyle, Data Preparation for Data Mining. San Mateo, CA: Morgan Kaufmann, 1999.
-
-
-
-
15
-
-
0032286859
-
Using smoothed operating characteristic curves to summarize and compare diagnostic systems
-
C. J. Lloyd, “Using smoothed operating characteristic curves to summarize and compare diagnostic systems,” J. Amer. Statist. Assoc., vol. 93, no. 444, pp.1356-1364, 1998.
-
(1998)
J. Amer. Statist. Assoc.
, vol.93
, Issue.444
, pp. 1356-1364
-
-
Lloyd, C.J.1
-
17
-
-
85008049648
-
A universal data pre-processing system
-
P. Aubrecht and Z. Kouba, “A universal data pre-processing system,” in Proc. DATAKON 2003, pp. 173–184.
-
Proc. DATAKON 2003
, pp. 173-184
-
-
Aubrecht, P.1
Kouba, Z.2
-
22
-
-
9144244360
-
Trend analysis and risk identification
-
L. Novakova, J. Klema, M. Jakob, O. Stepankova, and S. Rawles, “Trend analysis and risk identification,” in Proc. Workshop ECML/PKDD 2003, pp. 95–107.
-
Proc. Workshop ECML/PKDD 2003
, pp. 95-107
-
-
Novakova, L.1
Klema, J.2
Jakob, M.3
Stepankova, O.4
Rawles, S.5
-
23
-
-
7044269070
-
RSD: Relational subgroup discovery through first-order feature construction
-
Jul.
-
N. Lavrac, F. Zelezny, and P. Flach, “RSD: Relational subgroup discovery through first-order feature construction,” in Proc. 12th Int. Conf. Inductive Logic Program., Jul. 2002, pp. 149–165.
-
(2002)
Proc. 12th Int. Conf. Inductive Logic Program.
, pp. 149-165
-
-
Lavrac, N.1
Zelezny, F.2
Flach, P.3
-
24
-
-
85042683863
-
-
F. Zelezny. RSD User's manual. [Online]. Available: http://labe.felk. cvut.czzelezny/rsd/
-
-
-
-
26
-
-
85042683845
-
-
V. Blaha, “Ateroskleroza v sekvenenich lekarskych datech,” Master's thesis, Dept. Cybern., FEE, Czech Tech. Univ., Prague, Czech Republic, 2006.
-
-
-
|