메뉴 건너뛰기




Volumn 38, Issue 1, 2008, Pages 3-15

Sequential Data Mining: A Comparative Case Study in Development of Atherosclerosis Risk Factors

Author keywords

Anachronism; episode rules; inductive logic programming; temporal pattern; trend analysis; windowing

Indexed keywords


EID: 85008036580     PISSN: 10946977     EISSN: 15582442     Source Type: Journal    
DOI: 10.1109/TSMCC.2007.906055     Document Type: Article
Times cited : (29)

References (26)
  • 3
    • 0033893162 scopus 로고    scopus 로고
    • Scalable feature mining for sequential data
    • Mar./Apr.
    • N. Lesh, M. J. Zaki, and M. Ogihara, “Scalable feature mining for sequential data,” IEEE Intell. Syst., vol. 15, no. 2, pp. 48–56, Mar./Apr. 2000.
    • (2000) IEEE Intell. Syst. , vol.15 , Issue.2 , pp. 48-56
    • Lesh, N.1    Zaki, M.J.2    Ogihara, M.3
  • 5
    • 35448931869 scopus 로고    scopus 로고
    • Discovery of generalized episodes using minimal occurrences
    • H. Mannila and H. Toivonen, “Discovery of generalized episodes using minimal occurrences,” in Proc. 2nd Int. Conf. KDD 1996, pp. 146–151.
    • Proc. 2nd Int. Conf. KDD 1996 , pp. 146-151
    • Mannila, H.1    Toivonen, H.2
  • 6
    • 27144468394 scopus 로고    scopus 로고
    • Discovery of frequent episodes in event sequences
    • H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery of frequent episodes in event sequences,” Data Min. Knowl. Discovery, vol. 1, no. 3, pp. 259–298, 1997.
    • (1997) Data Min. Knowl. Discovery , vol.1 , Issue.3 , pp. 259-298
    • Mannila, H.1    Toivonen, H.2    Verkamo, A.I.3
  • 7
    • 34548584819 scopus 로고    scopus 로고
    • Constraint-based mining of episode rules and optimal window sizes
    • New York, 2004, [8] R. Ichise and M. Numao, “First-order rule mining by using graphs created from temporal medical data, ” in Lecture Notes in Artificial Intelligence, Berlin, Germany: Springer-Verlag
    • N. Meger and C. Rigotti, “Constraint-based mining of episode rules and optimal window sizes,” in Proc. 8th Eur. Conf. Princ. Pract. Knowl. Discovery Databases, New York, 2004, pp. 313–324. [8] R. Ichise and M. Numao, “First-order rule mining by using graphs created from temporal medical data,” in Lecture Notes in Artificial Intelligence, Berlin, Germany: Springer-Verlag, vol. 3430, pp. 115–128, 2005.
    • (2005) Proc. 8th Eur. Conf. Princ. Pract. Knowl. Discovery Databases , vol.3430 , pp. 313-324
    • Meger, N.1    Rigotti, C.2
  • 8
    • 8344241312 scopus 로고    scopus 로고
    • A rule discovery support system for sequential medical data in the case study of a chronic hepatitis dataset
    • Croatia
    • M. Ohsaki, Y. Sato, H. Yokoi, and T. Yamaguchi, “A rule discovery support system for sequential medical data in the case study of a chronic hepatitis dataset,” in Proc. ECML/PKDD-2003 Discovery Challenge Workshop, Croatia, pp. 154–165.
    • Proc. ECML/PKDD-2003 Discovery Challenge Workshop , pp. 154-165
    • Ohsaki, M.1    Sato, Y.2    Yokoi, H.3    Yamaguchi, T.4
  • 9
    • 34548077518 scopus 로고    scopus 로고
    • Mining similar temporal patterns in long time-series data and its application to medicine
    • S. Hirano and S. Tsumoto, “Mining similar temporal patterns in long time-series data and its application to medicine,” in IEEE Int. Conf. Data Min., 2002, pp. 219–226.
    • (2002) IEEE Int. Conf. Data Min. , pp. 219-226
    • Hirano, S.1    Tsumoto, S.2
  • 11
    • 85042683888 scopus 로고    scopus 로고
    • M. Tomeckova, J. Rauch, and P. Berka, STULONG—Data from a longitudinal study of atherosclerosis risk factors. [Online]. Available: http://lisp. vse.cz/challenge/ecmlpkdd2002/
  • 12
    • 85042683859 scopus 로고    scopus 로고
    • STULONG study website. (2002). [Online], Available: http://euromise. vse.cz/stulong-en
  • 14
    • 85042683876 scopus 로고    scopus 로고
    • D. Pyle, Data Preparation for Data Mining. San Mateo, CA: Morgan Kaufmann, 1999.
  • 15
    • 0032286859 scopus 로고    scopus 로고
    • Using smoothed operating characteristic curves to summarize and compare diagnostic systems
    • C. J. Lloyd, “Using smoothed operating characteristic curves to summarize and compare diagnostic systems,” J. Amer. Statist. Assoc., vol. 93, no. 444, pp.1356-1364, 1998.
    • (1998) J. Amer. Statist. Assoc. , vol.93 , Issue.444 , pp. 1356-1364
    • Lloyd, C.J.1
  • 17
    • 85008049648 scopus 로고    scopus 로고
    • A universal data pre-processing system
    • P. Aubrecht and Z. Kouba, “A universal data pre-processing system,” in Proc. DATAKON 2003, pp. 173–184.
    • Proc. DATAKON 2003 , pp. 173-184
    • Aubrecht, P.1    Kouba, Z.2
  • 23
    • 7044269070 scopus 로고    scopus 로고
    • RSD: Relational subgroup discovery through first-order feature construction
    • Jul.
    • N. Lavrac, F. Zelezny, and P. Flach, “RSD: Relational subgroup discovery through first-order feature construction,” in Proc. 12th Int. Conf. Inductive Logic Program., Jul. 2002, pp. 149–165.
    • (2002) Proc. 12th Int. Conf. Inductive Logic Program. , pp. 149-165
    • Lavrac, N.1    Zelezny, F.2    Flach, P.3
  • 24
    • 85042683863 scopus 로고    scopus 로고
    • F. Zelezny. RSD User's manual. [Online]. Available: http://labe.felk. cvut.czzelezny/rsd/
  • 26
    • 85042683845 scopus 로고    scopus 로고
    • V. Blaha, “Ateroskleroza v sekvenenich lekarskych datech,” Master's thesis, Dept. Cybern., FEE, Czech Tech. Univ., Prague, Czech Republic, 2006.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.