-
1
-
-
84875633856
-
Using pseudo time-series trajectories to explore disease regions in glaucoma.
-
Fourteenth workshop on intelligent data analysis in biomedicine and pharmacology (IDAMAP), Verona, Italy; July
-
Li X, Garway-Heath D, Tucker A. Using pseudo time-series trajectories to explore disease regions in glaucoma. In: Fourteenth workshop on intelligent data analysis in biomedicine and pharmacology (IDAMAP), Verona, Italy; July 2009. p. 61-2.
-
(2009)
, pp. 61-2
-
-
Li, X.1
Garway-Heath, D.2
Tucker, A.3
-
2
-
-
78650645128
-
Uncovering disease regions using pseudo time-series trajectories on clinical trial data.
-
3rd International conference on biomedical engineering and informatics (BMEI). IEEE Xplore, Yantai, China, October.
-
Li Y, Tucker A. Uncovering disease regions using pseudo time-series trajectories on clinical trial data. In: 3rd International conference on biomedical engineering and informatics (BMEI). IEEE Xplore, Yantai, China; 2010 October. p. 2356-62.
-
(2010)
, pp. 2356-62
-
-
Li, Y.1
Tucker, A.2
-
3
-
-
33746754282
-
Optic disc and visual field progression in ocular hypertensive subjects: detection rates, specificity, and agreement
-
Strouthidis N.G., Scott A., Peter N.M., Garway-Heath D.F. Optic disc and visual field progression in ocular hypertensive subjects: detection rates, specificity, and agreement. Invest Ophthalmol Vis Sci 2006, 47:2904-2910.
-
(2006)
Invest Ophthalmol Vis Sci
, vol.47
, pp. 2904-2910
-
-
Strouthidis, N.G.1
Scott, A.2
Peter, N.M.3
Garway-Heath, D.F.4
-
4
-
-
37249089420
-
Predictive data mining in clinical medicine: current issues and guidelines
-
Bellazzi R., Zupan B. Predictive data mining in clinical medicine: current issues and guidelines. Int J Med Inform 2008, 77(2):81-97.
-
(2008)
Int J Med Inform
, vol.77
, Issue.2
, pp. 81-97
-
-
Bellazzi, R.1
Zupan, B.2
-
5
-
-
80052024526
-
Comparison of regression tree data mining methods for prediction of mortality in head injury
-
Sut N., Simsek O. Comparison of regression tree data mining methods for prediction of mortality in head injury. Int J Expert Syst Appl 2011, 38(12):15534-15539.
-
(2011)
Int J Expert Syst Appl
, vol.38
, Issue.12
, pp. 15534-15539
-
-
Sut, N.1
Simsek, O.2
-
6
-
-
19344369418
-
A spatio-temporal Bayesian network classifier for understanding visual field deterioration
-
Tucker A., Vinciotti V., Garway-Heath D., Liu X. A spatio-temporal Bayesian network classifier for understanding visual field deterioration. Artif Intell Med 2005, 34:163-177.
-
(2005)
Artif Intell Med
, vol.34
, pp. 163-177
-
-
Tucker, A.1
Vinciotti, V.2
Garway-Heath, D.3
Liu, X.4
-
7
-
-
0036150210
-
Predicting glaucomatous visual field deterioration through short multivariate time series modelling
-
Swift S., Liu X. Predicting glaucomatous visual field deterioration through short multivariate time series modelling. Artif Intell Med 2002 Jan, 24(1):5-24.
-
(2002)
Artif Intell Med
, vol.24
, Issue.1
, pp. 5-24
-
-
Swift, S.1
Liu, X.2
-
8
-
-
77949265483
-
A data mining framework for time series estimation
-
Hu X., Xu P., Wu S., Asgari S., Bergsneider M. A data mining framework for time series estimation. J Biomed Inform 2010 April, 43(2):190-199.
-
(2010)
J Biomed Inform
, vol.43
, Issue.2
, pp. 190-199
-
-
Hu, X.1
Xu, P.2
Wu, S.3
Asgari, S.4
Bergsneider, M.5
-
9
-
-
38049047983
-
Making time: pseudo time-series for the temporal analysis of cross-section data.
-
The 7th international conference on intelligent data analysis (IDA-2007): lecture notes in computer science 4723; 2007 September 6-8, Ljubljana, Slovenija
-
Peeling E, Tucker A. Making time: pseudo time-series for the temporal analysis of cross-section data. In: The 7th international conference on intelligent data analysis (IDA-2007): lecture notes in computer science 4723; 2007 September 6-8, Ljubljana, Slovenija; 2007. p. 184-94.
-
(2007)
, pp. 184-94
-
-
Peeling, E.1
Tucker, A.2
-
10
-
-
76849106690
-
The pseudo temporal bootstrap for predicting glaucoma from cross-sectional visual field data
-
Tucker A., Garway-Heath D. The pseudo temporal bootstrap for predicting glaucoma from cross-sectional visual field data. IEEE Trans IT Biomed 2010, 14(1):79-85.
-
(2010)
IEEE Trans IT Biomed
, vol.14
, Issue.1
, pp. 79-85
-
-
Tucker, A.1
Garway-Heath, D.2
-
11
-
-
84875615763
-
-
World Health Organization [homepage on the Internet]. Programmes and projects: cancer. World Cancer Day 2010. Quick cancer facts. <>; [accessed 27.09.12].
-
World Health Organization [homepage on the Internet]. Programmes and projects: cancer. World Cancer Day 2010. Quick cancer facts. <>; 2010 [accessed 27.09.12]. http://www.lib.monash.edu.au/tutorials/citing/vancouver.html.
-
(2010)
-
-
-
12
-
-
84875580046
-
-
World Health Organization [homepage on the Internet]. Press release WHO/71: Parkinson's disease - a unique survey launched. Updated 1998 October 14. <>; [accessed 27.09.12].
-
World Health Organization [homepage on the Internet]. Press release WHO/71: Parkinson's disease - a unique survey launched. Updated 1998 October 14. <>; 1998 [accessed 27.09.12]. http://www.who.int/inf-pr-1998/en/pr98-71.html.
-
(1998)
-
-
-
14
-
-
84875629712
-
-
A gentle tutorial on the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. International Computer Science Institute (ICSI). Technical report TR-97-021;
-
Bilmes J. A gentle tutorial on the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. International Computer Science Institute (ICSI). Technical report TR-97-021; 1997.
-
(1997)
-
-
Bilmes, J.1
-
15
-
-
0000854197
-
Learning the structure of dynamic probabilistic networks
-
Friedman N., Murphy K., Russell S. Learning the structure of dynamic probabilistic networks. Cooper Moral 1998, 0:139-147.
-
(1998)
Cooper Moral
, vol.0
, pp. 139-147
-
-
Friedman, N.1
Murphy, K.2
Russell, S.3
-
16
-
-
46649093156
-
Dynamic Bayesian networks as prognostic models for clinical patient management
-
Marcel A.J., van Gerven G.T., Babs P.J.F.L. Dynamic Bayesian networks as prognostic models for clinical patient management. J Biomed Inform 2008 August, 41(4):515-529.
-
(2008)
J Biomed Inform
, vol.41
, Issue.4
, pp. 515-529
-
-
Marcel, A.J.1
van Gerven, G.T.2
Babs, P.J.F.L.3
-
17
-
-
77949269473
-
Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the intensive care unit
-
Peelen L., de Keizer N.F., de Jonge E., Bosman R.-J., Abu-Hanna A., Peek N. Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the intensive care unit. J Biomed Inform 2010, 43(2):273-286.
-
(2010)
J Biomed Inform
, vol.43
, Issue.2
, pp. 273-286
-
-
Peelen, L.1
de Keizer, N.F.2
de Jonge, E.3
Bosman, R.-J.4
Abu-Hanna, A.5
Peek, N.6
-
18
-
-
84875624248
-
-
Dynamic Bayesian networks: representation, inference and learning. PhD thesis, CS Division, U.C. Berkeley;
-
Murphy K. Dynamic Bayesian networks: representation, inference and learning. PhD thesis, CS Division, U.C. Berkeley; 2002.
-
(2002)
-
-
Murphy, K.1
-
19
-
-
8444239684
-
Enhancing HMM-based biomedical named entity recognition by studying special phenomena
-
Zhang J., Shen D., Zhou G.D., Su J., Tan C.L. Enhancing HMM-based biomedical named entity recognition by studying special phenomena. J Biomed Inform 2004, 37(6):411-422.
-
(2004)
J Biomed Inform
, vol.37
, Issue.6
, pp. 411-422
-
-
Zhang, J.1
Shen, D.2
Zhou, G.D.3
Su, J.4
Tan, C.L.5
-
20
-
-
33845394419
-
A mutagenetic tree hidden Markov model for longitudinal clonal HIV sequence data
-
Niko B., Mathias D. A mutagenetic tree hidden Markov model for longitudinal clonal HIV sequence data. Biostatistics 2007, 8(1):53-71.
-
(2007)
Biostatistics
, vol.8
, Issue.1
, pp. 53-71
-
-
Niko, B.1
Mathias, D.2
-
21
-
-
84945709831
-
Algorithm 97: shortest path
-
Floyd R.W. Algorithm 97: shortest path. Commun ACM 1962, 5(6):345.
-
(1962)
Commun ACM
, vol.5
, Issue.6
, pp. 345
-
-
Floyd, R.W.1
-
22
-
-
33645031180
-
The robust selection of predictive genes via a simple classifier
-
Vinciotti V., Tucker A., Kellam P., Liu X. The robust selection of predictive genes via a simple classifier. Appl Bioinform 2006, 5(1):1-11.
-
(2006)
Appl Bioinform
, vol.5
, Issue.1
, pp. 1-11
-
-
Vinciotti, V.1
Tucker, A.2
Kellam, P.3
Liu, X.4
-
23
-
-
85162057887
-
Auto-regressive HMM inference with incomplete data for short-horizon wind forecasting.
-
Proceedings of the 24th annual conf. on neural information processing systems (NIPS);
-
Barber C, Bockhorst J, Roebber P. Auto-regressive HMM inference with incomplete data for short-horizon wind forecasting. In: Proceedings of the 24th annual conf. on neural information processing systems (NIPS); 2010.
-
(2010)
-
-
Barber, C.1
Bockhorst, J.2
Roebber, P.3
-
24
-
-
84875585969
-
-
Autoregressive hidden Markov model with application in an EI Nino study. Master's thesis, University of Saskatchewan, Saskatoon, Saskatchewan, Canada;
-
Tang X. Autoregressive hidden Markov model with application in an EI Nino study. Master's thesis, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; 2004.
-
(2004)
-
-
Tang, X.1
-
25
-
-
0033782197
-
Mapping the visual field to the optic disc
-
Garway-Heath D., Fitzke F., Hitchings R. Mapping the visual field to the optic disc. Br J Ophthalmol 2000 Oct, 107(10):1809-1815.
-
(2000)
Br J Ophthalmol
, vol.107
, Issue.10
, pp. 1809-1815
-
-
Garway-Heath, D.1
Fitzke, F.2
Hitchings, R.3
-
26
-
-
0033833492
-
Use of sequential Heidelberg retina tomograph images to identify changes at the optic disc in ocularhypertensive patients at risk of developing glaucoma
-
Kamal D., Garway-Heath D., Hitchings R., Fitzke F. Use of sequential Heidelberg retina tomograph images to identify changes at the optic disc in ocularhypertensive patients at risk of developing glaucoma. Br J Ophthalmol 2000 Sep, 84(9):993-998.
-
(2000)
Br J Ophthalmol
, vol.84
, Issue.9
, pp. 993-998
-
-
Kamal, D.1
Garway-Heath, D.2
Hitchings, R.3
Fitzke, F.4
-
27
-
-
0028143590
-
Advanced glaucoma intervention study. 2. Visual field test scoring and reliability
-
Derick R.J., Gilbert D., Sommer A. Advanced glaucoma intervention study. 2. Visual field test scoring and reliability. Br J Ophthalmol 1994, 101(8):1445-1455.
-
(1994)
Br J Ophthalmol
, vol.101
, Issue.8
, pp. 1445-1455
-
-
Derick, R.J.1
Gilbert, D.2
Sommer, A.3
-
28
-
-
0029050617
-
Computer-derived nuclear features distinguish malignant from benign breast cytology
-
Wolberg W.H., Street W.N., Heisey D.M., Mangasarian O.L. Computer-derived nuclear features distinguish malignant from benign breast cytology. Human Pathol 1995, 26(7):792-796.
-
(1995)
Human Pathol
, vol.26
, Issue.7
, pp. 792-796
-
-
Wolberg, W.H.1
Street, W.N.2
Heisey, D.M.3
Mangasarian, O.L.4
-
29
-
-
34447507896
-
-
Costello DAE, Moroz IM. Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. BioMedical Engineering OnLine [serial on the Internet]. 2007 June 26. <> [accessed 27.09.12].
-
Little MA, McSharry PE, Roberts SJ, Costello DAE, Moroz IM. Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. BioMedical Engineering OnLine [serial on the Internet]. 2007 June 26. <>; 2007 [accessed 27.09.12]. http://www.ncbi.nlm.nih.gov.
-
(2007)
-
-
Little, M.A.1
McSharry, P.E.2
Roberts, S.J.3
-
30
-
-
84875616183
-
-
UCI machine learning repository. Irvine, CA: University of California, School of Information and Computer Science. <>[accessed 27.09.12]
-
Frank A, Asuncion A. UCI machine learning repository. Irvine, CA: University of California, School of Information and Computer Science. <>; 2010 [accessed 27.09.12]. http://archive.ics.uci.edu/ml.
-
(2010)
-
-
Frank, A.1
Asuncion, A.2
-
31
-
-
38049012105
-
A Bayesian network approach to explaining time series with changing structure
-
Tucker A., Liu X. A Bayesian network approach to explaining time series with changing structure. Intell Data Anal 2004, 8(5):469-480.
-
(2004)
Intell Data Anal
, vol.8
, Issue.5
, pp. 469-480
-
-
Tucker, A.1
Liu, X.2
-
32
-
-
79551497706
-
Learning non-stationary dynamic Bayesian networks
-
Robinson J.W., Hartemink A.J. Learning non-stationary dynamic Bayesian networks. J Mach Learn Res 2010, 11:3647-3680.
-
(2010)
J Mach Learn Res
, vol.11
, pp. 3647-3680
-
-
Robinson, J.W.1
Hartemink, A.J.2
|