메뉴 건너뛰기




Volumn 46, Issue 2, 2013, Pages 266-274

Modelling and analysing the dynamics of disease progression from cross-sectional studies

Author keywords

Algorithms; Data mining; Disease progression; Time series

Indexed keywords

BOOTSTRAP TECHNIQUE; CROSS-SECTIONAL STUDY; DISEASE PROGRESSION; INTERMEDIATE STAGE; NUMBER OF PEOPLES; PARKINSON'S DISEASE; TIME SERIES MODELS; TIME-SERIES DATA;

EID: 84875605527     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2012.11.003     Document Type: Article
Times cited : (27)

References (32)
  • 1
    • 84875633856 scopus 로고    scopus 로고
    • Using pseudo time-series trajectories to explore disease regions in glaucoma.
    • Fourteenth workshop on intelligent data analysis in biomedicine and pharmacology (IDAMAP), Verona, Italy; July
    • Li X, Garway-Heath D, Tucker A. Using pseudo time-series trajectories to explore disease regions in glaucoma. In: Fourteenth workshop on intelligent data analysis in biomedicine and pharmacology (IDAMAP), Verona, Italy; July 2009. p. 61-2.
    • (2009) , pp. 61-2
    • Li, X.1    Garway-Heath, D.2    Tucker, A.3
  • 2
    • 78650645128 scopus 로고    scopus 로고
    • Uncovering disease regions using pseudo time-series trajectories on clinical trial data.
    • 3rd International conference on biomedical engineering and informatics (BMEI). IEEE Xplore, Yantai, China, October.
    • Li Y, Tucker A. Uncovering disease regions using pseudo time-series trajectories on clinical trial data. In: 3rd International conference on biomedical engineering and informatics (BMEI). IEEE Xplore, Yantai, China; 2010 October. p. 2356-62.
    • (2010) , pp. 2356-62
    • Li, Y.1    Tucker, A.2
  • 3
    • 33746754282 scopus 로고    scopus 로고
    • Optic disc and visual field progression in ocular hypertensive subjects: detection rates, specificity, and agreement
    • Strouthidis N.G., Scott A., Peter N.M., Garway-Heath D.F. Optic disc and visual field progression in ocular hypertensive subjects: detection rates, specificity, and agreement. Invest Ophthalmol Vis Sci 2006, 47:2904-2910.
    • (2006) Invest Ophthalmol Vis Sci , vol.47 , pp. 2904-2910
    • Strouthidis, N.G.1    Scott, A.2    Peter, N.M.3    Garway-Heath, D.F.4
  • 4
    • 37249089420 scopus 로고    scopus 로고
    • Predictive data mining in clinical medicine: current issues and guidelines
    • Bellazzi R., Zupan B. Predictive data mining in clinical medicine: current issues and guidelines. Int J Med Inform 2008, 77(2):81-97.
    • (2008) Int J Med Inform , vol.77 , Issue.2 , pp. 81-97
    • Bellazzi, R.1    Zupan, B.2
  • 5
    • 80052024526 scopus 로고    scopus 로고
    • Comparison of regression tree data mining methods for prediction of mortality in head injury
    • Sut N., Simsek O. Comparison of regression tree data mining methods for prediction of mortality in head injury. Int J Expert Syst Appl 2011, 38(12):15534-15539.
    • (2011) Int J Expert Syst Appl , vol.38 , Issue.12 , pp. 15534-15539
    • Sut, N.1    Simsek, O.2
  • 6
    • 19344369418 scopus 로고    scopus 로고
    • A spatio-temporal Bayesian network classifier for understanding visual field deterioration
    • Tucker A., Vinciotti V., Garway-Heath D., Liu X. A spatio-temporal Bayesian network classifier for understanding visual field deterioration. Artif Intell Med 2005, 34:163-177.
    • (2005) Artif Intell Med , vol.34 , pp. 163-177
    • Tucker, A.1    Vinciotti, V.2    Garway-Heath, D.3    Liu, X.4
  • 7
    • 0036150210 scopus 로고    scopus 로고
    • Predicting glaucomatous visual field deterioration through short multivariate time series modelling
    • Swift S., Liu X. Predicting glaucomatous visual field deterioration through short multivariate time series modelling. Artif Intell Med 2002 Jan, 24(1):5-24.
    • (2002) Artif Intell Med , vol.24 , Issue.1 , pp. 5-24
    • Swift, S.1    Liu, X.2
  • 8
    • 77949265483 scopus 로고    scopus 로고
    • A data mining framework for time series estimation
    • Hu X., Xu P., Wu S., Asgari S., Bergsneider M. A data mining framework for time series estimation. J Biomed Inform 2010 April, 43(2):190-199.
    • (2010) J Biomed Inform , vol.43 , Issue.2 , pp. 190-199
    • Hu, X.1    Xu, P.2    Wu, S.3    Asgari, S.4    Bergsneider, M.5
  • 9
    • 38049047983 scopus 로고    scopus 로고
    • Making time: pseudo time-series for the temporal analysis of cross-section data.
    • The 7th international conference on intelligent data analysis (IDA-2007): lecture notes in computer science 4723; 2007 September 6-8, Ljubljana, Slovenija
    • Peeling E, Tucker A. Making time: pseudo time-series for the temporal analysis of cross-section data. In: The 7th international conference on intelligent data analysis (IDA-2007): lecture notes in computer science 4723; 2007 September 6-8, Ljubljana, Slovenija; 2007. p. 184-94.
    • (2007) , pp. 184-94
    • Peeling, E.1    Tucker, A.2
  • 10
    • 76849106690 scopus 로고    scopus 로고
    • The pseudo temporal bootstrap for predicting glaucoma from cross-sectional visual field data
    • Tucker A., Garway-Heath D. The pseudo temporal bootstrap for predicting glaucoma from cross-sectional visual field data. IEEE Trans IT Biomed 2010, 14(1):79-85.
    • (2010) IEEE Trans IT Biomed , vol.14 , Issue.1 , pp. 79-85
    • Tucker, A.1    Garway-Heath, D.2
  • 11
    • 84875615763 scopus 로고    scopus 로고
    • World Health Organization [homepage on the Internet]. Programmes and projects: cancer. World Cancer Day 2010. Quick cancer facts. <>; [accessed 27.09.12].
    • World Health Organization [homepage on the Internet]. Programmes and projects: cancer. World Cancer Day 2010. Quick cancer facts. <>; 2010 [accessed 27.09.12]. http://www.lib.monash.edu.au/tutorials/citing/vancouver.html.
    • (2010)
  • 12
    • 84875580046 scopus 로고    scopus 로고
    • World Health Organization [homepage on the Internet]. Press release WHO/71: Parkinson's disease - a unique survey launched. Updated 1998 October 14. <>; [accessed 27.09.12].
    • World Health Organization [homepage on the Internet]. Press release WHO/71: Parkinson's disease - a unique survey launched. Updated 1998 October 14. <>; 1998 [accessed 27.09.12]. http://www.who.int/inf-pr-1998/en/pr98-71.html.
    • (1998)
  • 14
    • 84875629712 scopus 로고    scopus 로고
    • A gentle tutorial on the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. International Computer Science Institute (ICSI). Technical report TR-97-021;
    • Bilmes J. A gentle tutorial on the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. International Computer Science Institute (ICSI). Technical report TR-97-021; 1997.
    • (1997)
    • Bilmes, J.1
  • 15
    • 0000854197 scopus 로고    scopus 로고
    • Learning the structure of dynamic probabilistic networks
    • Friedman N., Murphy K., Russell S. Learning the structure of dynamic probabilistic networks. Cooper Moral 1998, 0:139-147.
    • (1998) Cooper Moral , vol.0 , pp. 139-147
    • Friedman, N.1    Murphy, K.2    Russell, S.3
  • 16
    • 46649093156 scopus 로고    scopus 로고
    • Dynamic Bayesian networks as prognostic models for clinical patient management
    • Marcel A.J., van Gerven G.T., Babs P.J.F.L. Dynamic Bayesian networks as prognostic models for clinical patient management. J Biomed Inform 2008 August, 41(4):515-529.
    • (2008) J Biomed Inform , vol.41 , Issue.4 , pp. 515-529
    • Marcel, A.J.1    van Gerven, G.T.2    Babs, P.J.F.L.3
  • 17
    • 77949269473 scopus 로고    scopus 로고
    • Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the intensive care unit
    • Peelen L., de Keizer N.F., de Jonge E., Bosman R.-J., Abu-Hanna A., Peek N. Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the intensive care unit. J Biomed Inform 2010, 43(2):273-286.
    • (2010) J Biomed Inform , vol.43 , Issue.2 , pp. 273-286
    • Peelen, L.1    de Keizer, N.F.2    de Jonge, E.3    Bosman, R.-J.4    Abu-Hanna, A.5    Peek, N.6
  • 18
    • 84875624248 scopus 로고    scopus 로고
    • Dynamic Bayesian networks: representation, inference and learning. PhD thesis, CS Division, U.C. Berkeley;
    • Murphy K. Dynamic Bayesian networks: representation, inference and learning. PhD thesis, CS Division, U.C. Berkeley; 2002.
    • (2002)
    • Murphy, K.1
  • 19
    • 8444239684 scopus 로고    scopus 로고
    • Enhancing HMM-based biomedical named entity recognition by studying special phenomena
    • Zhang J., Shen D., Zhou G.D., Su J., Tan C.L. Enhancing HMM-based biomedical named entity recognition by studying special phenomena. J Biomed Inform 2004, 37(6):411-422.
    • (2004) J Biomed Inform , vol.37 , Issue.6 , pp. 411-422
    • Zhang, J.1    Shen, D.2    Zhou, G.D.3    Su, J.4    Tan, C.L.5
  • 20
    • 33845394419 scopus 로고    scopus 로고
    • A mutagenetic tree hidden Markov model for longitudinal clonal HIV sequence data
    • Niko B., Mathias D. A mutagenetic tree hidden Markov model for longitudinal clonal HIV sequence data. Biostatistics 2007, 8(1):53-71.
    • (2007) Biostatistics , vol.8 , Issue.1 , pp. 53-71
    • Niko, B.1    Mathias, D.2
  • 21
    • 84945709831 scopus 로고
    • Algorithm 97: shortest path
    • Floyd R.W. Algorithm 97: shortest path. Commun ACM 1962, 5(6):345.
    • (1962) Commun ACM , vol.5 , Issue.6 , pp. 345
    • Floyd, R.W.1
  • 22
    • 33645031180 scopus 로고    scopus 로고
    • The robust selection of predictive genes via a simple classifier
    • Vinciotti V., Tucker A., Kellam P., Liu X. The robust selection of predictive genes via a simple classifier. Appl Bioinform 2006, 5(1):1-11.
    • (2006) Appl Bioinform , vol.5 , Issue.1 , pp. 1-11
    • Vinciotti, V.1    Tucker, A.2    Kellam, P.3    Liu, X.4
  • 23
    • 85162057887 scopus 로고    scopus 로고
    • Auto-regressive HMM inference with incomplete data for short-horizon wind forecasting.
    • Proceedings of the 24th annual conf. on neural information processing systems (NIPS);
    • Barber C, Bockhorst J, Roebber P. Auto-regressive HMM inference with incomplete data for short-horizon wind forecasting. In: Proceedings of the 24th annual conf. on neural information processing systems (NIPS); 2010.
    • (2010)
    • Barber, C.1    Bockhorst, J.2    Roebber, P.3
  • 24
    • 84875585969 scopus 로고    scopus 로고
    • Autoregressive hidden Markov model with application in an EI Nino study. Master's thesis, University of Saskatchewan, Saskatoon, Saskatchewan, Canada;
    • Tang X. Autoregressive hidden Markov model with application in an EI Nino study. Master's thesis, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; 2004.
    • (2004)
    • Tang, X.1
  • 25
    • 0033782197 scopus 로고    scopus 로고
    • Mapping the visual field to the optic disc
    • Garway-Heath D., Fitzke F., Hitchings R. Mapping the visual field to the optic disc. Br J Ophthalmol 2000 Oct, 107(10):1809-1815.
    • (2000) Br J Ophthalmol , vol.107 , Issue.10 , pp. 1809-1815
    • Garway-Heath, D.1    Fitzke, F.2    Hitchings, R.3
  • 26
    • 0033833492 scopus 로고    scopus 로고
    • Use of sequential Heidelberg retina tomograph images to identify changes at the optic disc in ocularhypertensive patients at risk of developing glaucoma
    • Kamal D., Garway-Heath D., Hitchings R., Fitzke F. Use of sequential Heidelberg retina tomograph images to identify changes at the optic disc in ocularhypertensive patients at risk of developing glaucoma. Br J Ophthalmol 2000 Sep, 84(9):993-998.
    • (2000) Br J Ophthalmol , vol.84 , Issue.9 , pp. 993-998
    • Kamal, D.1    Garway-Heath, D.2    Hitchings, R.3    Fitzke, F.4
  • 27
    • 0028143590 scopus 로고
    • Advanced glaucoma intervention study. 2. Visual field test scoring and reliability
    • Derick R.J., Gilbert D., Sommer A. Advanced glaucoma intervention study. 2. Visual field test scoring and reliability. Br J Ophthalmol 1994, 101(8):1445-1455.
    • (1994) Br J Ophthalmol , vol.101 , Issue.8 , pp. 1445-1455
    • Derick, R.J.1    Gilbert, D.2    Sommer, A.3
  • 28
    • 0029050617 scopus 로고
    • Computer-derived nuclear features distinguish malignant from benign breast cytology
    • Wolberg W.H., Street W.N., Heisey D.M., Mangasarian O.L. Computer-derived nuclear features distinguish malignant from benign breast cytology. Human Pathol 1995, 26(7):792-796.
    • (1995) Human Pathol , vol.26 , Issue.7 , pp. 792-796
    • Wolberg, W.H.1    Street, W.N.2    Heisey, D.M.3    Mangasarian, O.L.4
  • 29
    • 34447507896 scopus 로고    scopus 로고
    • Costello DAE, Moroz IM. Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. BioMedical Engineering OnLine [serial on the Internet]. 2007 June 26. <> [accessed 27.09.12].
    • Little MA, McSharry PE, Roberts SJ, Costello DAE, Moroz IM. Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. BioMedical Engineering OnLine [serial on the Internet]. 2007 June 26. <>; 2007 [accessed 27.09.12]. http://www.ncbi.nlm.nih.gov.
    • (2007)
    • Little, M.A.1    McSharry, P.E.2    Roberts, S.J.3
  • 30
    • 84875616183 scopus 로고    scopus 로고
    • UCI machine learning repository. Irvine, CA: University of California, School of Information and Computer Science. <>[accessed 27.09.12]
    • Frank A, Asuncion A. UCI machine learning repository. Irvine, CA: University of California, School of Information and Computer Science. <>; 2010 [accessed 27.09.12]. http://archive.ics.uci.edu/ml.
    • (2010)
    • Frank, A.1    Asuncion, A.2
  • 31
    • 38049012105 scopus 로고    scopus 로고
    • A Bayesian network approach to explaining time series with changing structure
    • Tucker A., Liu X. A Bayesian network approach to explaining time series with changing structure. Intell Data Anal 2004, 8(5):469-480.
    • (2004) Intell Data Anal , vol.8 , Issue.5 , pp. 469-480
    • Tucker, A.1    Liu, X.2
  • 32
    • 79551497706 scopus 로고    scopus 로고
    • Learning non-stationary dynamic Bayesian networks
    • Robinson J.W., Hartemink A.J. Learning non-stationary dynamic Bayesian networks. J Mach Learn Res 2010, 11:3647-3680.
    • (2010) J Mach Learn Res , vol.11 , pp. 3647-3680
    • Robinson, J.W.1    Hartemink, A.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.