메뉴 건너뛰기




Volumn 4, Issue 3, 2014, Pages 196-212

Temporal interval pattern languages to characterize time flow

Author keywords

[No Author keywords available]

Indexed keywords

KNOWLEDGE REPRESENTATION;

EID: 84899505444     PISSN: 19424787     EISSN: 19424795     Source Type: Journal    
DOI: 10.1002/widm.1122     Document Type: Review
Times cited : (11)

References (70)
  • 1
    • 39749093168 scopus 로고
    • The magical number seven plus or minus two: Some limits on our capacity for processing information
    • Miller GA. The magical number seven plus or minus two: Some limits on our capacity for processing information. Psychol Rev 1956, 63:579-588.
    • (1956) Psychol Rev , vol.63 , pp. 579-588
    • Miller, G.A.1
  • 2
    • 0031069719 scopus 로고    scopus 로고
    • A framework for knowledge-based temporal abstraction
    • Shahar Y. A framework for knowledge-based temporal abstraction. Artif Intell 1997, 90:79-133.
    • (1997) Artif Intell , vol.90 , pp. 79-133
    • Shahar, Y.1
  • 3
    • 34548093287 scopus 로고    scopus 로고
    • Experiencing SAX: a novel symbolic representation of time series
    • Lin J, Keogh E, Wei L, Lonardi S. Experiencing SAX: a novel symbolic representation of time series. Data Min Knowl Discov 2007, 15:107-144.
    • (2007) Data Min Knowl Discov , vol.15 , pp. 107-144
    • Lin, J.1    Keogh, E.2    Wei, L.3    Lonardi, S.4
  • 4
    • 34548083516 scopus 로고    scopus 로고
    • Data mining with temporal abstractions: learning rules from time series
    • Sacchi L, Larizza C, Combi C, Bellazzi R. Data mining with temporal abstractions: learning rules from time series. Data Min Knowl Discov 2007, 15:217-247.
    • (2007) Data Min Knowl Discov , vol.15 , pp. 217-247
    • Sacchi, L.1    Larizza, C.2    Combi, C.3    Bellazzi, R.4
  • 5
    • 32344436715 scopus 로고    scopus 로고
    • Optimizing time series discretization for knowledge discovery
    • Chicago, IL
    • Mörchen F, Ultsch A. Optimizing time series discretization for knowledge discovery. In: Knowledge Discovery and Data Mining (KDD), Chicago, IL, 2005, 660.
    • (2005) Knowledge Discovery and Data Mining (KDD) , pp. 660
    • Mörchen, F.1    Ultsch, A.2
  • 6
    • 0027682981 scopus 로고
    • Effective scale: a natural unit for measuring scale-space lifetime
    • Lindeberg T. Effective scale: a natural unit for measuring scale-space lifetime. IEEE Trans Pattern Anal Mach Intell 1993, 15:1068-1074.
    • (1993) IEEE Trans Pattern Anal Mach Intell , vol.15 , pp. 1068-1074
    • Lindeberg, T.1
  • 7
    • 0020891393 scopus 로고
    • Scale space filtering. Artificial Intelligence (IJCAI), Karlsruhe, Germany
    • Witkin AP. Scale space filtering. In: Artificial Intelligence (IJCAI), Karlsruhe, Germany, 1983, 1019-1022.
    • (1983) , pp. 1019-1022
    • Witkin, A.P.1
  • 8
    • 77957873516 scopus 로고    scopus 로고
    • Rule discovery from time series. Knowledge Discovery in Databases (KDD)
    • New York, NY: AAAI Press
    • Das G, Lin K-I, Mannila H, Renganathan G, Smyth P. Rule discovery from time series. In: Knowledge Discovery in Databases (KDD), New York, NY: AAAI Press; 1998, 16-22.
    • (1998) , pp. 16-22
    • Das, G.1    Lin, K.-I.2    Mannila, H.3    Renganathan, G.4    Smyth, P.5
  • 9
    • 21844471761 scopus 로고    scopus 로고
    • Clustering of time-series subsequences is meaningless: implications for previous and future research
    • Keogh E, Lin J. Clustering of time-series subsequences is meaningless: implications for previous and future research. Knowl Inf Syst 2004, 8:154-177.
    • (2004) Knowl Inf Syst , vol.8 , pp. 154-177
    • Keogh, E.1    Lin, J.2
  • 10
    • 70350660908 scopus 로고    scopus 로고
    • Time series shapelets: a new primitive for data mining
    • ACM SIGKDD Knowledge Discovery and Data Mining, Paris, France
    • Ye L, Keogh E. Time series shapelets: a new primitive for data mining. In: ACM SIGKDD Knowledge Discovery and Data Mining, Paris, France, 2009, 947-956.
    • (2009) , pp. 947-956
    • Ye, L.1    Keogh, E.2
  • 11
    • 70349811563 scopus 로고    scopus 로고
    • Time series analysis with multiple resolutions
    • Wang Q, Megalooikonomou V, Faloutsos C. Time series analysis with multiple resolutions. Inf Syst 2010, 35:56-74.
    • (2010) Inf Syst , vol.35 , pp. 56-74
    • Wang, Q.1    Megalooikonomou, V.2    Faloutsos, C.3
  • 13
    • 0020849266 scopus 로고
    • Maintaining knowledge about temporal intervals
    • Allen JF. Maintaining knowledge about temporal intervals. Commun ACM 1983, 26:832-843.
    • (1983) Commun ACM , vol.26 , pp. 832-843
    • Allen, J.F.1
  • 15
    • 0026839993 scopus 로고
    • Temporal reasoning based on semi-intervals
    • Freksa C. Temporal reasoning based on semi-intervals. Artif Intell 1992, 54:199-227.
    • (1992) Artif Intell , vol.54 , pp. 199-227
    • Freksa, C.1
  • 16
    • 17444430393 scopus 로고    scopus 로고
    • Linear temporal sequences and their interpretation using midpoint relationships
    • Roddick J, Mooney C. Linear temporal sequences and their interpretation using midpoint relationships. IEEE Trans Knowl Data Eng 2005, 17:133-135.
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , pp. 133-135
    • Roddick, J.1    Mooney, C.2
  • 17
    • 47349115987 scopus 로고    scopus 로고
    • MILPRIT: a constraint-based algorithm for mining temporal relational patterns
    • de Amo S, Junior WP, Giacometti A. MILPRIT: a constraint-based algorithm for mining temporal relational patterns. Int J Data Warehousing Min 2008, 4:42-61.
    • (2008) Int J Data Warehousing Min , vol.4 , pp. 42-61
    • de Amo, S.1    Junior, W.P.2    Giacometti, A.3
  • 18
    • 71749112568 scopus 로고    scopus 로고
    • Discovering hybrid temporal patterns from sequences consisting of point- and interval-based events
    • Wu S-Y, Chen Y-L. Discovering hybrid temporal patterns from sequences consisting of point- and interval-based events. Data Knowl Eng 2009, 68:1309-1330.
    • (2009) Data Knowl Eng , vol.68 , pp. 1309-1330
    • Wu, S.-Y.1    Chen, Y.-L.2
  • 19
    • 30444449564 scopus 로고    scopus 로고
    • Primitive intervals versus point-based intervals: rivals or allies?
    • Ma J, Hayes P. Primitive intervals versus point-based intervals: rivals or allies? Comput J 2005, 49:32-41.
    • (2005) Comput J , vol.49 , pp. 32-41
    • Ma, J.1    Hayes, P.2
  • 21
    • 0030288617 scopus 로고    scopus 로고
    • Combining qualitative and quantitative constraints in temporal reasoning
    • Meiri I. Combining qualitative and quantitative constraints in temporal reasoning. Artif Intell 1996, 87:1-51.
    • (1996) Artif Intell , vol.87 , pp. 1-51
    • Meiri, I.1
  • 22
    • 34547997531 scopus 로고    scopus 로고
    • Discovering frequent generalized episodes when events persist for different durations
    • Laxman S, Sastry PS, Unnikrishnan KP. Discovering frequent generalized episodes when events persist for different durations. IEEE Trans Fuzzy Syst 2007, 19:1188-1201.
    • (2007) IEEE Trans Fuzzy Syst , vol.19 , pp. 1188-1201
    • Laxman, S.1    Sastry, P.S.2    Unnikrishnan, K.P.3
  • 23
    • 80051722310 scopus 로고    scopus 로고
    • Mining health care administrative data with temporal association rules on hybrid events
    • Concaro S, Sacchi L, Cerra C, Fratino P, Bellazzi R. Mining health care administrative data with temporal association rules on hybrid events. Methods Inf Med 2011, 50:166-79.
    • (2011) Methods Inf Med , vol.50 , pp. 166-179
    • Concaro, S.1    Sacchi, L.2    Cerra, C.3    Fratino, P.4    Bellazzi, R.5
  • 29
    • 84943264048 scopus 로고    scopus 로고
    • Discovery of temporal patterns-learning rules about the qualitative behaviour of time series
    • volume 2168 of LNAI, Freiburg, Germany
    • Höppner F. Discovery of temporal patterns-learning rules about the qualitative behaviour of time series. In: Principles and Practice of Knowledge Discovery in Databases (PKDD), volume 2168 of LNAI, Freiburg, Germany, 2001, 192-203.
    • (2001) Principles and Practice of Knowledge Discovery in Databases (PKDD) , pp. 192-203
    • Höppner, F.1
  • 32
    • 34250202878 scopus 로고    scopus 로고
    • ARMADA: an algorithm for discovering richer relative temporal association rules from interval-based data
    • Winarko E, Roddick JF. ARMADA: an algorithm for discovering richer relative temporal association rules from interval-based data. Data Knowl Eng 2007, 63:76-90.
    • (2007) Data Knowl Eng , vol.63 , pp. 76-90
    • Winarko, E.1    Roddick, J.F.2
  • 33
    • 34247574865 scopus 로고    scopus 로고
    • Mining Nonambiguous Temporal Patterns for Interval-Based Events
    • Wu S-Y, Chen Y-L. Mining Nonambiguous Temporal Patterns for Interval-Based Events. IEEE Trans Knowl Data Eng 2007, 19:742-758.
    • (2007) IEEE Trans Knowl Data Eng , vol.19 , pp. 742-758
    • Wu, S.-Y.1    Chen, Y.-L.2
  • 36
    • 34548085733 scopus 로고    scopus 로고
    • Efficient mining of understandable patterns from multivariate interval time series
    • Mörchen F, Ultsch A. Efficient mining of understandable patterns from multivariate interval time series. Data Min Knowl Discov 2007, 15:181-215.
    • (2007) Data Min Knowl Discov , vol.15 , pp. 181-215
    • Mörchen, F.1    Ultsch, A.2
  • 38
    • 78651275243 scopus 로고    scopus 로고
    • An efficient algorithm for mining time interval-based patterns in large databases
    • Information and Knowledge Management; Toronto, Canada. (CIKM)
    • Chen Y-C, Jiang J-C, Peng W-C, Lee S-Y. An efficient algorithm for mining time interval-based patterns in large databases. In: Information and Knowledge Management; Toronto, Canada. (CIKM), 2010, 49-58.
    • (2010) , pp. 49-58
    • Chen, Y.-C.1    Jiang, J.-C.2    Peng, W.-C.3    Lee, S.-Y.4
  • 41
    • 84867635189 scopus 로고    scopus 로고
    • Enriching multivariate temporal patterns with context information to support classification
    • volume 445 of Studies in Computational Intelligence, Springer
    • Höppner F, Peter S, Berthold MR. Enriching multivariate temporal patterns with context information to support classification. In: Computational Intelligence in Intelligent Data Analysis, volume 445 of Studies in Computational Intelligence, Springer, 2013, 195-206.
    • (2013) Computational Intelligence in Intelligent Data Analysis , pp. 195-206
    • Höppner, F.1    Peter, S.2    Berthold, M.R.3
  • 42
    • 84880044240 scopus 로고    scopus 로고
    • Discovering metric temporal constraint networks on temporal databases
    • Álvarez MR, Félix P, Cariñena P. Discovering metric temporal constraint networks on temporal databases. Artif Intell Med 2013, 58:139-154.
    • (2013) Artif Intell Med , vol.58 , pp. 139-154
    • Álvarez, M.R.1    Félix, P.2    Cariñena, P.3
  • 44
    • 0005025796 scopus 로고    scopus 로고
    • Discovering chronicles with numerical time constraints from alarm logs for monitoring dynamic systems
    • IJCAI, Stockholm, Sweden
    • Dousson C, Duong TV. Discovering chronicles with numerical time constraints from alarm logs for monitoring dynamic systems. In: IJCAI, Stockholm, Sweden, 1999, 620-626.
    • (1999) , pp. 620-626
    • Dousson, C.1    Duong, T.V.2
  • 45
    • 73649111123 scopus 로고    scopus 로고
    • Sports event detection using temporal patterns mining and web-casting text
    • ACM Workshop on Analysis and Retrieval of Events/Actions and Workflows in Video Streams (AREA), Vancouver, Canada
    • Dao M-S. and Babaguchi N. Sports event detection using temporal patterns mining and web-casting text. In: ACM Workshop on Analysis and Retrieval of Events/Actions and Workflows in Video Streams (AREA), Vancouver, Canada, 2008, 33-40.
    • (2008) , pp. 33-40
    • Dao, M.-S.1    Babaguchi, N.2
  • 49
    • 33750381070 scopus 로고    scopus 로고
    • Finding informative rules in interval sequences
    • Höppner F, Klawonn F. Finding informative rules in interval sequences. Intell Data Anal 2002, 6:237-256.
    • (2002) Intell Data Anal , vol.6 , pp. 237-256
    • Höppner, F.1    Klawonn, F.2
  • 50
    • 84979604718 scopus 로고    scopus 로고
    • Temporal pattern mining and reasoning using reference event based temporal relations 'RETR'
    • Uma V, Aghila G. Temporal pattern mining and reasoning using reference event based temporal relations 'RETR'. Int J Comput Appl 2011, 36:45-49.
    • (2011) Int J Comput Appl , vol.36 , pp. 45-49
    • Uma, V.1    Aghila, G.2
  • 52
    • 84899518682 scopus 로고    scopus 로고
    • Discovery of core episodes from sequences-using generalization for defragmentation of rule sets
    • September
    • Höppner F. Discovery of core episodes from sequences-using generalization for defragmentation of rule sets. In: Pattern Detection and Discovery, number 2447 in LNCS, September 2002, 199-213.
    • (2002) Pattern Detection and Discovery, number 2447 in LNCS , pp. 199-213
    • Höppner, F.1
  • 53
    • 42149167220 scopus 로고    scopus 로고
    • Unsupervised pattern mining from symbolic temporal data
    • Mörchen F. Unsupervised pattern mining from symbolic temporal data. ACM SIGKDD Explor Newsl 2007, 9:41-55.
    • (2007) ACM SIGKDD Explor Newsl , vol.9 , pp. 41-55
    • Mörchen, F.1
  • 55
    • 34948896659 scopus 로고    scopus 로고
    • A fuzzy relation for comparing intervals
    • Reusch B, ed. Germany: Dortmund
    • Cãlin M, Gâlea D. A fuzzy relation for comparing intervals. In: Reusch B, ed. Proceedings of the 7th Fuzzy Days, vol. 2206. Germany: Dortmund; 2001, 904-916.
    • (2001) Proceedings of the 7th Fuzzy Days , vol.2206 , pp. 904-916
    • Cãlin, M.1    Gâlea, D.2
  • 56
    • 0242628822 scopus 로고    scopus 로고
    • A fuzzy model for representing uncertain, subjective, and vague temporal knowledge in ontologies
    • Sicily, Italy
    • Nagypál G, Motik B. A fuzzy model for representing uncertain, subjective, and vague temporal knowledge in ontologies. In: On The Move to Meaningful Internet Systems 2003, Sicily, Italy, 2003, 906-923.
    • (2003) On The Move to Meaningful Internet Systems 2003 , pp. 906-923
    • Nagypál, G.1    Motik, B.2
  • 58
    • 84899568282 scopus 로고    scopus 로고
    • Pattern graphs: combining multivariate time series and labelled interval sequences for classification
    • Cambridge, England
    • Peter S, Höppner F, Berthold MR. Pattern graphs: combining multivariate time series and labelled interval sequences for classification. In: Research and Development in Intelligent Systems, Cambridge, England, 2013.
    • (2013) Research and Development in Intelligent Systems
    • Peter, S.1    Höppner, F.2    Berthold, M.R.3
  • 63
    • 70350496548 scopus 로고    scopus 로고
    • Multivariate time series classification with temporal abstractions
    • Sanibel Island, Florida
    • Batal I, Sacchi L, Bellazzi R, Hauskrecht M. Multivariate time series classification with temporal abstractions. In: FLAIRS Conference, Sanibel Island, Florida, 2009.
    • (2009) FLAIRS Conference
    • Batal, I.1    Sacchi, L.2    Bellazzi, R.3    Hauskrecht, M.4
  • 65
  • 68
    • 84863182681 scopus 로고    scopus 로고
    • CEMiner-an efficient algorithm for mining closed patterns from time interval-based data
    • Vancouver, Canada, December
    • Chen Y-C, Peng W-C, Lee S-Y. CEMiner-an efficient algorithm for mining closed patterns from time interval-based data. In: IEEE International Conference on Data Mining (ICDM), Vancouver, Canada, December 2011, 121-130.
    • (2011) IEEE International Conference on Data Mining (ICDM) , pp. 121-130
    • Chen, Y.-C.1    Peng, W.-C.2    Lee, S.-Y.3
  • 69
    • 35248820419 scopus 로고    scopus 로고
    • Summarizing sequential data with closed partial orders
    • Newport Beach, CA
    • Casas-Garriga G. Summarizing sequential data with closed partial orders. SIAM Int Conf Data Min, Newport Beach, CA, 2005.
    • (2005) SIAM Int Conf Data Min
    • Casas-Garriga, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.