메뉴 건너뛰기




Volumn , Issue , 2016, Pages 2337-2343

Accelerated sparse linear regression via random projection

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; GRADIENT METHODS; LINEAR REGRESSION; REGRESSION ANALYSIS;

EID: 85007168398     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (13)

References (29)
  • 1
    • 79551550744 scopus 로고    scopus 로고
    • Nesta: A fast and accurate first-order method for sparse recovery
    • Becker, S.; Bobin, J.; and Candes, E. J. 2011. Nesta: A fast and accurate first-order method for sparse recovery. SIAM Journal on Imaging Sciences 4(1):1-39.
    • (2011) SIAM Journal on Imaging Sciences , vol.4 , Issue.1 , pp. 1-39
    • Becker, S.1    Bobin, J.2    Candes, E.J.3
  • 3
    • 36749005582 scopus 로고    scopus 로고
    • A new twist: Two-step iterative shrinkage/thresholding algorithms for image restoration
    • Bioucas-Dias, J. M., and Figueiredo, M. A. 2007. A new twist: Two-step iterative shrinkage/thresholding algorithms for image restoration. Image Processing, IEEE Transactions on 16(12):2992-3004.
    • (2007) Image Processing, IEEE Transactions on , vol.16 , Issue.12 , pp. 2992-3004
    • Bioucas-Dias, J.M.1    Figueiredo, M.A.2
  • 4
    • 33947416035 scopus 로고    scopus 로고
    • Near-optimal signal recovery from random projections: Universal encoding strategies?
    • Candes, E. J., and Tao, T. 2006. Near-optimal signal recovery from random projections: Universal encoding strategies? Information Theory, IEEE Transactions on 52(12):5406- 5425.
    • (2006) Information Theory, IEEE Transactions on , vol.52 , Issue.12 , pp. 5406-5425
    • Candes, E.J.1    Tao, T.2
  • 6
    • 3142750484 scopus 로고    scopus 로고
    • Clustering large graphs via the singular value decomposition
    • Drineas, P.; Frieze, A.; Kannan, R.; Vempala, S.; and Vinay, V. 2004. Clustering large graphs via the singular value decomposition. Machine learning 56(1-3):9-33.
    • (2004) Machine Learning , vol.56 , Issue.1-3 , pp. 9-33
    • Drineas, P.1    Frieze, A.2    Kannan, R.3    Vempala, S.4    Vinay, V.5
  • 8
    • 33751075906 scopus 로고    scopus 로고
    • Fast monte carlo algorithms for matrices II: Computing a lowrank approximation to a matrix
    • Drineas, P.; Kannan, R.; and Mahoney, M. W. 2006. Fast monte carlo algorithms for matrices ii: Computing a lowrank approximation to a matrix. SIAM Journal on Computing 36(1):158-183.
    • (2006) SIAM Journal on Computing , vol.36 , Issue.1 , pp. 158-183
    • Drineas, P.1    Kannan, R.2    Mahoney, M.W.3
  • 10
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
    • Figueiredo, M. A.; Nowak, R. D.; and Wright, S. J. 2007. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. Selected Topics in Signal Processing, IEEE Journal of 1(4):586-597.
    • (2007) Selected Topics in Signal Processing, IEEE Journal of , vol.1 , Issue.4 , pp. 586-597
    • Figueiredo, M.A.1    Nowak, R.D.2    Wright, S.J.3
  • 11
    • 20444476106 scopus 로고    scopus 로고
    • Fast montecarlo algorithms for finding low-rank approximations
    • Frieze, A.; Kannan, R.; and Vempala, S. 2004. Fast montecarlo algorithms for finding low-rank approximations. Journal of the ACM (JACM) 51(6):1025-1041.
    • (2004) Journal of the ACM (JACM) , vol.51 , Issue.6 , pp. 1025-1041
    • Frieze, A.1    Kannan, R.2    Vempala, S.3
  • 12
    • 69649095451 scopus 로고    scopus 로고
    • Fixed-point continuation for l1-minimization methodology and convergence
    • Hale, E. T.; Yin, W.; and Zhang, Y. 2008. Fixed-point continuation for l1-minimization methodology and convergence. SIAM Journal on Optimization 19(3):1107-1130.
    • (2008) SIAM Journal on Optimization , vol.19 , Issue.3 , pp. 1107-1130
    • Hale, E.T.1    Yin, W.2    Zhang, Y.3
  • 13
    • 79960425522 scopus 로고    scopus 로고
    • Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
    • Halko, N.; Martinsson, P.-G.; and Tropp, J. A. 2011. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review 53(2):217-288.
    • (2011) SIAM Review , vol.53 , Issue.2 , pp. 217-288
    • Halko, N.1    Martinsson, P.-G.2    Tropp, J.A.3
  • 14
    • 51049096710 scopus 로고    scopus 로고
    • Adaptive lasso for sparse high-dimensional regression models
    • Huang, J.; Ma, S.; and Zhang, C.-H. 2008. Adaptive lasso for sparse high-dimensional regression models. Statistica Sinica 18(4):1603.
    • (2008) Statistica Sinica , vol.18 , Issue.4 , pp. 1603
    • Huang, J.1    Ma, S.2    Zhang, C.-H.3
  • 21
    • 84879800501 scopus 로고    scopus 로고
    • Gradient methods for minimizing composite functions
    • Nesterov, Y. 2013. Gradient methods for minimizing composite functions. Mathematical Programming 140(1):125- 161.
    • (2013) Mathematical Programming , vol.140 , Issue.1 , pp. 125-161
    • Nesterov, Y.1
  • 24
    • 77955666600 scopus 로고    scopus 로고
    • A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization, and continuation
    • Wen, Z.; Yin, W.; Goldfarb, D.; and Zhang, Y. 2010. A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization, and continuation. SIAM Journal on Scientific Computing 32(4):1832-1857.
    • (2010) SIAM Journal on Scientific Computing , vol.32 , Issue.4 , pp. 1832-1857
    • Wen, Z.1    Yin, W.2    Goldfarb, D.3    Zhang, Y.4
  • 26
    • 84880741411 scopus 로고    scopus 로고
    • A proximal-gradient homotopy method for the sparse least-squares problem
    • Xiao, L., and Zhang, T. 2013. A proximal-gradient homotopy method for the sparse least-squares problem. SIAM Journal on Optimization 23(2):1062-1091.
    • (2013) SIAM Journal on Optimization , vol.23 , Issue.2 , pp. 1062-1091
    • Xiao, L.1    Zhang, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.