-
1
-
-
0038166193
-
Database-friendly random projections: Johnson-lindenstrauss with binary coins
-
Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of Computer and System Sciences, 66(4): 671-687, 2003.
-
(2003)
Journal of Computer and System Sciences
, vol.66
, Issue.4
, pp. 671-687
-
-
Achlioptas, D.1
-
3
-
-
33749033927
-
Kernels as features: On kernels, margins, and low-dimensional mappings
-
Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. Kernels as features: On kernels, margins, and low-dimensional mappings. Machine Learning, 65(1): 79-94, 2006.
-
(2006)
Machine Learning
, vol.65
, Issue.1
, pp. 79-94
-
-
Balcan, M.-F.1
Blum, A.2
Vempala, S.3
-
5
-
-
33745869085
-
Random projection, margins, kernels, and feature-selection
-
Avrim Blum. Random projection, margins, kernels, and feature-selection. In Proceedings of the 2005 international conference on Subspace, Latent Structure and Feature Selection, pages 52-68, 2006.
-
(2006)
Proceedings of the 2005 International Conference on Subspace, Latent Structure and Feature Selection
, pp. 52-68
-
-
Blum, A.1
-
9
-
-
84879814207
-
-
ArXiv e-prints, arXiv: 1011.2590
-
Vladimir Braverman, Rafail Ostrovsky, and Yuval Rabani. Rademacher chaos, random eulerian graphs and the sparse johnson-lindenstrauss transform. ArXiv e-prints, arXiv: 1011.2590, 2010.
-
(2010)
Rademacher Chaos, Random Eulerian Graphs and the Sparse Johnson-lindenstrauss Transform
-
-
Braverman, V.1
Ostrovsky, R.2
Rabani, Y.3
-
10
-
-
85032750937
-
An introduction to compressive sampling
-
Emmanuel J. Candès and Michael B. Wakin. An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2): 21-30, 2008.
-
(2008)
IEEE Signal Processing Magazine
, vol.25
, Issue.2
, pp. 21-30
-
-
Candès, E.J.1
Wakin, M.B.2
-
16
-
-
85161978528
-
Learning the structure of manifolds using random projections
-
Yoav Freund, Sanjoy Dasgupta, Mayank Kabra, and Nakul Verma. Learning the structure of manifolds using random projections. In Advances in Neural Information Processing Systems 20, pages 473-480, 2008.
-
(2008)
Advances in Neural Information Processing Systems 20
, pp. 473-480
-
-
Freund, Y.1
Dasgupta, S.2
Kabra, M.3
Verma, N.4
-
18
-
-
26444442431
-
Face recognition experiments with random projection
-
Navin Goel, George Bebis, and Ara Nefian. Face recognition experiments with random projection. In Proceedings of SPIE, pages 426-437, 2005.
-
(2005)
Proceedings of SPIE
, pp. 426-437
-
-
Goel, N.1
Bebis, G.2
Nefian, A.3
-
20
-
-
84857791088
-
An empirical feature-based learning algorithm producing sparse approximations
-
Xin Guo and Ding-Xuan Zhou. An empirical feature-based learning algorithm producing sparse approximations. Applied and Computational Harmonic Analysis, 32(3): 389-400, 2012.
-
(2012)
Applied and Computational Harmonic Analysis
, vol.32
, Issue.3
, pp. 389-400
-
-
Guo, X.1
Zhou, D.-X.2
-
21
-
-
33745561205
-
An introduction to variable and feature selection
-
Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. Journal of Machine Learning Research, 3: 1157-1182, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
22
-
-
79960425522
-
Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
-
N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2): 217-288, 2011.
-
(2011)
SIAM Review
, vol.53
, Issue.2
, pp. 217-288
-
-
Halko, N.1
Martinsson, P.G.2
Tropp, J.A.3
-
23
-
-
0003235719
-
Rank-deficient and discrete ill-posed problems: Numerical aspects of linear inversion
-
Philadelphia, PA, USA
-
Per Christian Hansen. Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1998.
-
(1998)
Society for Industrial and Applied Mathematics
-
-
Hansen, P.C.1
-
25
-
-
84898471955
-
Beyond the regret minimization barrier: An optimal algorithm for stochastic strongly-convex optimization
-
Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization. In Proceedings of the 24th Annual Conference on Learning Theory (COLT), pages 421-436, 2011.
-
(2011)
Proceedings of the 24th Annual Conference on Learning Theory (COLT)
, pp. 421-436
-
-
Hazan, E.1
Kale, S.2
-
27
-
-
84867114245
-
A simple algorithm for semi-supervised learning with improved generalization error bound
-
Ming Ji, Tianbao Yang, Binbin Lin, Rong Jin, and Jiawei Han. A simple algorithm for semi-supervised learning with improved generalization error bound. In Proceedings of the 29th International Conference on Machine Learning (ICML-12), pages 1223-1230, 2012.
-
(2012)
Proceedings of the 29th International Conference on Machine Learning (ICML-12)
, pp. 1223-1230
-
-
Ji, M.1
Yang, T.2
Lin, B.3
Jin, R.4
Han, J.5
-
32
-
-
17444406259
-
Smooth minimization of non-smooth functions
-
Yu. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103(1): 127-152, 2005.
-
(2005)
Mathematical Programming
, vol.103
, Issue.1
, pp. 127-152
-
-
Nesterov, Yu.1
-
33
-
-
84879816397
-
-
ArXiv e-prints, arXiv: 1211.6085
-
Saurabh Paul, Christos Boutsidis, Malik Magdon-Ismail, and Petros Drineas. Random projections for support vector machines. ArXiv e-prints, arXiv: 1211.6085, 2012.
-
(2012)
Random Projections for Support Vector Machines
-
-
Paul, S.1
Boutsidis, C.2
Magdon-Ismail, M.3
Drineas, P.4
|