메뉴 건너뛰기




Volumn , Issue , 2004, Pages 470-478

Learning to detect malicious executables in the wild

Author keywords

Concept Learning; Data Mining; Malicious Software; Security

Indexed keywords

COMPUTER SOFTWARE; DATA MINING; DECISION THEORY; ENCODING (SYMBOLS); LEARNING SYSTEMS; SECURITY OF DATA; TREES (MATHEMATICS); VECTORS;

EID: 12244279567     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1014052.1014105     Document Type: Conference Paper
Times cited : (413)

References (43)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • D. Aha, D. Kibler, and M. Albert. Instance-based learning algorithms. Machine Learning, 6:37-66, 1991.
    • (1991) Machine Learning , vol.6 , pp. 37-66
    • Aha, D.1    Kibler, D.2    Albert, M.3
  • 2
    • 16444373413 scopus 로고
    • Software, Department of Computer Science, University of California, Berkeley
    • A. Aiken. MOSS: A system for detecting software plagiarism. Software, Department of Computer Science, University of California, Berkeley, http://www.cs.berkeley.edu/~aiken/moss.html, 1994.
    • (1994) MOSS: a System for Detecting Software Plagiarism
    • Aiken, A.1
  • 3
    • 12244306014 scopus 로고    scopus 로고
    • Sams Publishing, Indianapolis, IN, 4th edition
    • Anonymous. Maximum Security. Sams Publishing, Indianapolis, IN, 4th edition, 2003.
    • (2003) Maximum Security
  • 4
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • B. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36:105-139, 1999.
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, B.1    Kohavi, R.2
  • 7
    • 84924223669 scopus 로고    scopus 로고
    • Static analysis of executables to detect malicious patterns
    • Berkeley, CA, Advanced Computing Systems Association
    • M. Christodorescu and S. Jha. Static analysis of executables to detect malicious patterns. In Proceedings of the Twelfth USENIX Security Symposium, Berkeley, CA, 2003. Advanced Computing Systems Association.
    • (2003) Proceedings of the Twelfth USENIX Security Symposium
    • Christodorescu, M.1    Jha, S.2
  • 9
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40:139-158, 2000.
    • (2000) Machine Learning , vol.40 , pp. 139-158
    • Dietterich, T.1
  • 10
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29:103-130, 1997.
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 19
    • 0023960940 scopus 로고
    • Detecting plagiarism in student Pascal programs
    • H. Jankowitz. Detecting plagiarism in student Pascal programs. Computer Journal, 31:1-8, 1988.
    • (1988) Computer Journal , vol.31 , pp. 1-8
    • Jankowitz, H.1
  • 20
    • 0000636553 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • Berlin, Springer-Verlag
    • T. Joachims. Text categorization with support vector machines: Learning with many relevant features. In Proceedings of the Tenth European Conference on Machine Learning, pages 487-494, Berlin, 1998. Springer-Verlag.
    • (1998) Proceedings of the Tenth European Conference on Machine Learning , pp. 487-494
    • Joachims, T.1
  • 24
    • 12244274774 scopus 로고
    • Authorship analysis: Identifying the authors of a program
    • Gaithersburg, MD, National Institute of Standards and Technology
    • I. Krsul and E. Spafford. Authorship analysis: Identifying the authors of a program. In Proceedings of the Eighteenth National Information Systems Security Conference, pages 514-524, Gaithersburg, MD, 1995. National Institute of Standards and Technology.
    • (1995) Proceedings of the Eighteenth National Information Systems Security Conference , pp. 514-524
    • Krsul, I.1    Spafford, E.2
  • 26
    • 84945708697 scopus 로고
    • On relevance, probabilistic indexing and information retrieval
    • M. Maron and J. Kuhns. On relevance, probabilistic indexing and information retrieval. Journal of the ACM, 7:216-244, 1960.
    • (1960) Journal of the ACM , vol.7 , pp. 216-244
    • Maron, M.1    Kuhns, J.2
  • 27
    • 0034269416 scopus 로고    scopus 로고
    • Attacking malicious code: A report to the infosec research council
    • September/October
    • G. McGraw and G. Morisett. Attacking malicious code: A report to the Infosec Research Council. IEEE Software, pages 33-41, September/October 2000.
    • (2000) IEEE Software , pp. 33-41
    • McGraw, G.1    Morisett, G.2
  • 28
    • 12244271926 scopus 로고    scopus 로고
    • ROC software
    • Kurt Rossmann Laboratories for Radiologie Image Research, University of Chicago, Chicago, IL
    • C. Metz, Y. Jiang, H. MacMahon, R. Nishikawa, and X. Pan. ROC software. Web page, Kurt Rossmann Laboratories for Radiologie Image Research, University of Chicago, Chicago, IL, 2003.
    • (2003) Web Page
    • Metz, C.1    Jiang, Y.2    MacMahon, H.3    Nishikawa, R.4    Pan, X.5
  • 32
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. Burges, and S. Mika, editors, MIT Press, Cambridge, MA
    • J. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. Burges, and S. Mika, editors, Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge, MA, 1998.
    • (1998) Advances in Kernel Methods - Support Vector Learning
    • Platt, J.1
  • 33
    • 0003243224 scopus 로고    scopus 로고
    • Probabilities for SV machines
    • P. Bartlett, B. Schölkopf, D. Schuurmans, and A. Smola, editors, MIT Press, Cambridge, MA
    • J. Platt. Probabilities for SV machines. In P. Bartlett, B. Schölkopf, D. Schuurmans, and A. Smola, editors, Advances in Large-Margin Classifiers, pages 61-74. MIT Press, Cambridge, MA, 2000.
    • (2000) Advances in Large-margin Classifiers , pp. 61-74
    • Platt, J.1
  • 34
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • F. Provost and T. Fawcett. Robust classification for imprecise environments. Machine Learning, 42:203-231, 2001.
    • (2001) Machine Learning , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 38
    • 77953188431 scopus 로고    scopus 로고
    • Detecting malicious Java code using virtual machine auditing
    • Berkeley, CA, Advanced Computing Systems Association
    • S. Soman, C. Krintz, and G. Vigna. Detecting malicious Java code using virtual machine auditing. In Proceedings of the Twelfth USENIX Security Symposium, Berkeley, CA, 2003. Advanced Computing Systems Association.
    • (2003) Proceedings of the Twelfth USENIX Security Symposium
    • Soman, S.1    Krintz, C.2    Vigna, G.3
  • 39
    • 0027677539 scopus 로고
    • Software forensics: Can we track code to its authors?
    • E. Spafford and S. Weeber. Software forensics: Can we track code to its authors? Computers & Security, 12:585-595, 1993.
    • (1993) Computers & Security , vol.12 , pp. 585-595
    • Spafford, E.1    Weeber, S.2
  • 41
    • 0030216542 scopus 로고    scopus 로고
    • Neural networks for computer virus recognition
    • August 1996
    • G. Tesauro, J. Kephart, and G. Sorkin. Neural networks for computer virus recognition. IEEE Expert, 11:5-6, August 1996.
    • IEEE Expert , vol.11 , pp. 5-6
    • Tesauro, G.1    Kephart, J.2    Sorkin, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.