메뉴 건너뛰기




Volumn 36, Issue 6, 2017, Pages 1014-1028

Imputing estrogen receptor (ER) status in a population-based cancer registry: a sensitivity analysis

Author keywords

cancer surveillance data; multiple imputation; nonignorable missingness; predictive mean matching

Indexed keywords

ESTROGEN RECEPTOR; TUMOR MARKER;

EID: 85006868135     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.7193     Document Type: Article
Times cited : (5)

References (59)
  • 4
    • 33746765810 scopus 로고    scopus 로고
    • Breast cancer heterogeneity: a mixture of at least two main types?
    • Anderson WF, Matsuno R. Breast cancer heterogeneity: a mixture of at least two main types?Journal of the National Cancer Institute 2006; 98(14):948–951.
    • (2006) Journal of the National Cancer Institute , vol.98 , Issue.14 , pp. 948-951
    • Anderson, W.F.1    Matsuno, R.2
  • 6
    • 84864924629 scopus 로고    scopus 로고
    • Use of imputed population-based cancer registry data as a method of accounting for missing information: application to estrogen receptor status for breast cancer
    • Howlader N, Noone AM, Yu M, Cronin K. A. Use of imputed population-based cancer registry data as a method of accounting for missing information: application to estrogen receptor status for breast cancer. American Journal of Epidemiology 2012; 176(4):347–356.
    • (2012) American Journal of Epidemiology , vol.176 , Issue.4 , pp. 347-356
    • Howlader, N.1    Noone, A.M.2    Yu, M.3    Cronin, K.A.4
  • 7
    • 34249033328 scopus 로고    scopus 로고
    • Breast cancer mortality trends in the United States according to estrogen receptor status and age at diagnosis
    • Jatoi I, Chen BE, Anderson WF, Rosenberg PS. Breast cancer mortality trends in the United States according to estrogen receptor status and age at diagnosis. Journal of Clinical Oncology 2007; 25(13):1683–1690.
    • (2007) Journal of Clinical Oncology , vol.25 , Issue.13 , pp. 1683-1690
    • Jatoi, I.1    Chen, B.E.2    Anderson, W.F.3    Rosenberg, P.S.4
  • 9
    • 17644404753 scopus 로고    scopus 로고
    • Distinct breast cancer incidence and prognostic patterns in the NCI's SEER program: suggesting a possible link between etiology and outcome
    • Anderson WF, Jatoi I, Devesa SS. Distinct breast cancer incidence and prognostic patterns in the NCI's SEER program: suggesting a possible link between etiology and outcome. Breast Cancer Research and Treatment 2005; 90(2):127–137.
    • (2005) Breast Cancer Research and Treatment , vol.90 , Issue.2 , pp. 127-137
    • Anderson, W.F.1    Jatoi, I.2    Devesa, S.S.3
  • 17
    • 0035281530 scopus 로고    scopus 로고
    • Patterns of use of chemotherapy for breast cancer in older women: findings from medicare claims data
    • Du X, Goodwin JS. Patterns of use of chemotherapy for breast cancer in older women: findings from medicare claims data. Journal of Clinical Oncology 2001; 19:1455–1461.
    • (2001) Journal of Clinical Oncology , vol.19 , pp. 1455-1461
    • Du, X.1    Goodwin, J.S.2
  • 19
    • 0037203162 scopus 로고    scopus 로고
    • A graphical sensitivity analysis for clinical trials with non-ignorable missing binary outcome
    • Hollis S. A graphical sensitivity analysis for clinical trials with non-ignorable missing binary outcome. Statistics in Medicine 2002; 21(24):3823–3834.
    • (2002) Statistics in Medicine , vol.21 , Issue.24 , pp. 3823-3834
    • Hollis, S.1
  • 21
    • 0037629206 scopus 로고    scopus 로고
    • Simple approaches to assess the possible impact of missing outcome information on estimates of risk ratios, odds ratios, and risk differences
    • Magder LS. Simple approaches to assess the possible impact of missing outcome information on estimates of risk ratios, odds ratios, and risk differences. Controlled Clinical Trials 2003; 24:411–421.
    • (2003) Controlled Clinical Trials , vol.24 , pp. 411-421
    • Magder, L.S.1
  • 22
    • 34548549316 scopus 로고    scopus 로고
    • Analysis of binary outcomes with missing data: missing = smoking, last observation carried forward, and a little multiple imputation
    • Hedeker D, Mermelstein RJ, Demirtas H. Analysis of binary outcomes with missing data: missing = smoking, last observation carried forward, and a little multiple imputation. Addiction 2007; 102:1564–1573.
    • (2007) Addiction , vol.102 , pp. 1564-1573
    • Hedeker, D.1    Mermelstein, R.J.2    Demirtas, H.3
  • 23
    • 84920273760 scopus 로고    scopus 로고
    • A general method for handling missing binary outcome data in randomized controlled trials
    • Jackson D, White IR, Mason D, Sutton S. A general method for handling missing binary outcome data in randomized controlled trials. Addiction 2014; 109(12):1286–1993.
    • (2014) Addiction , vol.109 , Issue.12 , pp. 1286-1993
    • Jackson, D.1    White, I.R.2    Mason, D.3    Sutton, S.4
  • 24
    • 54549102237 scopus 로고    scopus 로고
    • Imputation methods for missing outcome data in meta-analysis of clinical trials
    • Higgins JPT, White IR, Wood AM. Imputation methods for missing outcome data in meta-analysis of clinical trials. Clinical Trials 2008; 5:225–239.
    • (2008) Clinical Trials , vol.5 , pp. 225-239
    • Higgins, J.P.T.1    White, I.R.2    Wood, A.M.3
  • 25
    • 84908042851 scopus 로고    scopus 로고
    • Sensitivity analysis for a partially missing binary outcome in a two-arm randomized clinical trial
    • Liublinska V, Rubin DB. Sensitivity analysis for a partially missing binary outcome in a two-arm randomized clinical trial. Statistics in Medicine 2014; 33(24):4170–4185.
    • (2014) Statistics in Medicine , vol.33 , Issue.24 , pp. 4170-4185
    • Liublinska, V.1    Rubin, D.B.2
  • 26
    • 0033616909 scopus 로고    scopus 로고
    • Multiple imputation of missing blood pressure covariates in survival analysis
    • Van Buuren S, Boshuizen HC, Knook DL, et al. Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in Medicine 1999; 18(6):681–694.
    • (1999) Statistics in Medicine , vol.18 , Issue.6 , pp. 681-694
    • Van Buuren, S.1    Boshuizen, H.C.2    Knook, D.L.3
  • 27
    • 55549128556 scopus 로고    scopus 로고
    • Using an approximate Bayesian bootstrap to multiply impute nonignorable missing data
    • Siddique J, Belin TR. Using an approximate Bayesian bootstrap to multiply impute nonignorable missing data. Computational Statistics and Data Analysis 2008; 53(2):405–415.
    • (2008) Computational Statistics and Data Analysis , vol.53 , Issue.2 , pp. 405-415
    • Siddique, J.1    Belin, T.R.2
  • 29
    • 84907893058 scopus 로고    scopus 로고
    • A hot deck imputation procedure for multiply imputing nonignorable missing data: the proxy pattern-mixture hot deck
    • Sullivan DM, Andridge RR. A hot deck imputation procedure for multiply imputing nonignorable missing data: the proxy pattern-mixture hot deck. Computational Statistics and Data Analysis 2015; 82:173–185.
    • (2015) Computational Statistics and Data Analysis , vol.82 , pp. 173-185
    • Sullivan, D.M.1    Andridge, R.R.2
  • 30
    • 79951566177 scopus 로고    scopus 로고
    • Sensitivity analysis when data are missing not-at-random
    • Resseguier N, Giorgi R, Paoletti X. Sensitivity analysis when data are missing not-at-random. Epidemiology 2011; 22(2):282.
    • (2011) Epidemiology , vol.22 , Issue.2 , pp. 282
    • Resseguier, N.1    Giorgi, R.2    Paoletti, X.3
  • 31
    • 34347398256 scopus 로고    scopus 로고
    • Sensitivity analysis after multiple imputation under missing at random: a weighting approach
    • Carpenter JR, Kenward MG, White IR. Sensitivity analysis after multiple imputation under missing at random: a weighting approach. Statistical Methods in Medical Research 2007; 16(3):259–275.
    • (2007) Statistical Methods in Medical Research , vol.16 , Issue.3 , pp. 259-275
    • Carpenter, J.R.1    Kenward, M.G.2    White, I.R.3
  • 33
    • 0002344593 scopus 로고    scopus 로고
    • A multivariate technique for multiply imputing missing values using a sequence of regression models
    • Raghunathan TE, Lepkowski JM, Van H J, Solenberger P. A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology 2001; 27(1):85–96.
    • (2001) Survey Methodology , vol.27 , Issue.1 , pp. 85-96
    • Raghunathan, T.E.1    Lepkowski, J.M.2    Van, J.3    Solenberger, P.4
  • 34
    • 77249126457 scopus 로고    scopus 로고
    • Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study
    • Marshall A, Altman D. G, Royston P, Holder RL. Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study. BMC Medical Research Methodology 2010; 10:7.
    • (2010) BMC Medical Research Methodology , vol.10 , pp. 7
    • Marshall, A.1    Altman, D.G.2    Royston, P.3    Holder, R.L.4
  • 35
    • 84960452817 scopus 로고    scopus 로고
    • Assessing nonresponse bias in a business survey: proxy pattern-mixture analysis for skewed data
    • Andridge RR, Thompson KJ. Assessing nonresponse bias in a business survey: proxy pattern-mixture analysis for skewed data. Annals of Applied Statistics 2015; 9:2237–2265.
    • (2015) Annals of Applied Statistics , vol.9 , pp. 2237-2265
    • Andridge, R.R.1    Thompson, K.J.2
  • 36
    • 21144483152 scopus 로고
    • Pattern-mixture models for multivariate incomplete data
    • Little RJA. Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association 1993; 88(421):125–134.
    • (1993) Journal of the American Statistical Association , vol.88 , Issue.421 , pp. 125-134
    • Little, R.J.A.1
  • 37
    • 84947484877 scopus 로고    scopus 로고
    • Using the fraction of missing information to identify auxiliary variables for imputation procedures via proxy pattern-mixture models
    • Andridge RR, Thompson KJ. Using the fraction of missing information to identify auxiliary variables for imputation procedures via proxy pattern-mixture models. International Statistical Review 2015; 83:472–492.
    • (2015) International Statistical Review , vol.83 , pp. 472-492
    • Andridge, R.R.1    Thompson, K.J.2
  • 39
    • 40549106366 scopus 로고
    • Estimation of the parameters for a multivariate normal distribution when one variable is dichotomized
    • Hannan JF, Tate RF. Estimation of the parameters for a multivariate normal distribution when one variable is dichotomized. Biometrika 1965; 52:664–668.
    • (1965) Biometrika , vol.52 , pp. 664-668
    • Hannan, J.F.1    Tate, R.F.2
  • 40
    • 84902544246 scopus 로고    scopus 로고
    • Tuning multiple imputation by predictive mean matching and local residual draws
    • Morris TP, White IR, Royston P. Tuning multiple imputation by predictive mean matching and local residual draws. BMC Medical Research Methodology 2014; 14(1):75.
    • (2014) BMC Medical Research Methodology , vol.14 , Issue.1 , pp. 75
    • Morris, T.P.1    White, I.R.2    Royston, P.3
  • 42
    • 84964927929 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna, Austri
    • R Core Team. R: A language and environment for statistical computing, R Foundation for Statistical Computing: Vienna, Austria, 2015. http://www.R-project.org.
    • (2015) R: A language and environment for statistical computing
  • 44
    • 77955271783 scopus 로고    scopus 로고
    • Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables
    • White IR, Daniel R, Royston P. Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables. Computational Statistics and Data Analysis 2010; 54:2267–2275.
    • (2010) Computational Statistics and Data Analysis , vol.54 , pp. 2267-2275
    • White, I.R.1    Daniel, R.2    Royston, P.3
  • 45
    • 78651256743 scopus 로고    scopus 로고
    • Multiple imputation using chained equations: issues and guidance for practice
    • White IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and guidance for practice. Statistics in Medicine 2011; 30:377–399.
    • (2011) Statistics in Medicine , vol.30 , pp. 377-399
    • White, I.R.1    Royston, P.2    Wood, A.M.3
  • 46
    • 0031014353 scopus 로고    scopus 로고
    • Non-response models for the analysis of non-monotone ignorable missing data
    • Robins JM, Gill RD. Non-response models for the analysis of non-monotone ignorable missing data. Statistics in Medicine 1997; 16:39–56.
    • (1997) Statistics in Medicine , vol.16 , pp. 39-56
    • Robins, J.M.1    Gill, R.D.2
  • 47
    • 79959816997 scopus 로고    scopus 로고
    • Block-conditional missing at random models for missing data
    • Zhou Y, Little RJA, Kalbfleisch JD. Block-conditional missing at random models for missing data. Statistical Science 2010; 4:517–532.
    • (2010) Statistical Science , vol.4 , pp. 517-532
    • Zhou, Y.1    Little, R.J.A.2    Kalbfleisch, J.D.3
  • 49
    • 84878998135 scopus 로고    scopus 로고
    • Addressing missing data mechanism uncertainty using multiple-model multiple imputation: application to a longitudinal clinical trial
    • Siddique J, Harel O, Crespi CM. Addressing missing data mechanism uncertainty using multiple-model multiple imputation: application to a longitudinal clinical trial. The Annals of Applied Statistics 2012; 6(4):1814–1837.
    • (2012) The Annals of Applied Statistics , vol.6 , Issue.4 , pp. 1814-1837
    • Siddique, J.1    Harel, O.2    Crespi, C.M.3
  • 50
    • 84903820681 scopus 로고    scopus 로고
    • Binary variable multiple-model multiple imputation to address missing data mechanism uncertainty: application to a smoking cessation trial
    • Siddique J, Harel O, Crespi CM, Hedeker D. Binary variable multiple-model multiple imputation to address missing data mechanism uncertainty: application to a smoking cessation trial. Statistics in Medicine 2014; 33(17):3013–3028.
    • (2014) Statistics in Medicine , vol.33 , Issue.17 , pp. 3013-3028
    • Siddique, J.1    Harel, O.2    Crespi, C.M.3    Hedeker, D.4
  • 51
    • 84947028095 scopus 로고    scopus 로고
    • Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute. Seer*stat software, version 8.2.1, 2015.
    • (2015) Seer*stat software, version 8.2.1
  • 53
    • 0034651977 scopus 로고    scopus 로고
    • Permutation tests for joinpoint regression with applications to cancer rates
    • Kim HJ, Fay MP, Feuer EJ, Midthune DN. Permutation tests for joinpoint regression with applications to cancer rates. Statistics in Medicine 2000; 19:335–351.
    • (2000) Statistics in Medicine , vol.19 , pp. 335-351
    • Kim, H.J.1    Fay, M.P.2    Feuer, E.J.3    Midthune, D.N.4
  • 54
    • 55849132652 scopus 로고    scopus 로고
    • Race/ethnicity and breast cancer estrogen receptor status: impact of class, missing data, and modeling assumptions
    • Krieger N, Chen JT, Ware JH, Kaddour A. Race/ethnicity and breast cancer estrogen receptor status: impact of class, missing data, and modeling assumptions. Cancer Causes & Control 2008; 19(10):1305–1318.
    • (2008) Cancer Causes & Control , vol.19 , Issue.10 , pp. 1305-1318
    • Krieger, N.1    Chen, J.T.2    Ware, J.H.3    Kaddour, A.4
  • 55
    • 24144458327 scopus 로고    scopus 로고
    • Easy SAS calculations for risk or prevalence ratios and differences
    • Spiegelman D, Hertzmark E. Easy SAS calculations for risk or prevalence ratios and differences. American Journal of Epidemiology 2005; 162(3):199–200.
    • (2005) American Journal of Epidemiology , vol.162 , Issue.3 , pp. 199-200
    • Spiegelman, D.1    Hertzmark, E.2
  • 58
    • 84939266157 scopus 로고    scopus 로고
    • Bayesian sensitivity analysis of incomplete data: bridging pattern-mixture and selection models
    • Kaciroti NA, Raghunathan TE. Bayesian sensitivity analysis of incomplete data: bridging pattern-mixture and selection models. Statistics in Medicine 2014; 33:4841–4857.
    • (2014) Statistics in Medicine , vol.33 , pp. 4841-4857
    • Kaciroti, N.A.1    Raghunathan, T.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.