-
1
-
-
79958043675
-
-
Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA. SEER cancer statistics review, 1975–2012, 2015.
-
(2015)
SEER cancer statistics review, 1975–2012
-
-
Howlader, N.1
Noone, A.M.2
Krapcho, M.3
Garshell, J.4
Miller, D.5
Altekruse, S.F.6
Kosary, C.L.7
Yu, M.8
Ruhl, J.9
Tatalovich, Z.10
Mariotto, A.11
Lewis, D.R.12
Chen, H.S.13
Feuer, E.J.14
Cronin, K.A.15
-
2
-
-
84905163505
-
US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status
-
Howlader N, Altekruse SF, Li CI, Chen VW, Clarke CA, Ries LynnAG, Cronin KA. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. Journal of the National Cancer Institute 2014; 106(5):dju055.
-
(2014)
Journal of the National Cancer Institute
, vol.106
, Issue.5
, pp. dju055
-
-
Howlader, N.1
Altekruse, S.F.2
Li, C.I.3
Chen, V.W.4
Clarke, C.A.5
Ries, L.6
Cronin, K.A.7
-
3
-
-
84906996719
-
How many etiological subtypes of breast cancer: two, three, four, or more?
-
Anderson WF, Rosenberg PS, Prat A, Perou CM, Sherman ME. How many etiological subtypes of breast cancer: two, three, four, or more?Journal of the National Cancer Institute 2014; 106(8). DOI: 10.1093/jnci/dju165.
-
(2014)
Journal of the National Cancer Institute
, vol.106
, Issue.8
-
-
Anderson, W.F.1
Rosenberg, P.S.2
Prat, A.3
Perou, C.M.4
Sherman, M.E.5
-
4
-
-
33746765810
-
Breast cancer heterogeneity: a mixture of at least two main types?
-
Anderson WF, Matsuno R. Breast cancer heterogeneity: a mixture of at least two main types?Journal of the National Cancer Institute 2006; 98(14):948–951.
-
(2006)
Journal of the National Cancer Institute
, vol.98
, Issue.14
, pp. 948-951
-
-
Anderson, W.F.1
Matsuno, R.2
-
6
-
-
84864924629
-
Use of imputed population-based cancer registry data as a method of accounting for missing information: application to estrogen receptor status for breast cancer
-
Howlader N, Noone AM, Yu M, Cronin K. A. Use of imputed population-based cancer registry data as a method of accounting for missing information: application to estrogen receptor status for breast cancer. American Journal of Epidemiology 2012; 176(4):347–356.
-
(2012)
American Journal of Epidemiology
, vol.176
, Issue.4
, pp. 347-356
-
-
Howlader, N.1
Noone, A.M.2
Yu, M.3
Cronin, K.A.4
-
7
-
-
34249033328
-
Breast cancer mortality trends in the United States according to estrogen receptor status and age at diagnosis
-
Jatoi I, Chen BE, Anderson WF, Rosenberg PS. Breast cancer mortality trends in the United States according to estrogen receptor status and age at diagnosis. Journal of Clinical Oncology 2007; 25(13):1683–1690.
-
(2007)
Journal of Clinical Oncology
, vol.25
, Issue.13
, pp. 1683-1690
-
-
Jatoi, I.1
Chen, B.E.2
Anderson, W.F.3
Rosenberg, P.S.4
-
8
-
-
0942301253
-
Is male breast cancer similar or different than female breast cancer?
-
Anderson W. F, Althuis MD, Brinton LA, Devesa SS. Is male breast cancer similar or different than female breast cancer?Breast Cancer Research and Treatment 2004; 83(1):77–86.
-
(2004)
Breast Cancer Research and Treatment
, vol.83
, Issue.1
, pp. 77-86
-
-
Anderson, W.F.1
Althuis, M.D.2
Brinton, L.A.3
Devesa, S.S.4
-
9
-
-
17644404753
-
Distinct breast cancer incidence and prognostic patterns in the NCI's SEER program: suggesting a possible link between etiology and outcome
-
Anderson WF, Jatoi I, Devesa SS. Distinct breast cancer incidence and prognostic patterns in the NCI's SEER program: suggesting a possible link between etiology and outcome. Breast Cancer Research and Treatment 2005; 90(2):127–137.
-
(2005)
Breast Cancer Research and Treatment
, vol.90
, Issue.2
, pp. 127-137
-
-
Anderson, W.F.1
Jatoi, I.2
Devesa, S.S.3
-
11
-
-
34247241630
-
The decrease in breast-cancer incidence in 2003 in the United States
-
Ravdin PM, Cronin KA, Howlader N, Berg CD, Chlebowski RT, Feuer EJ, Edwards BK, Berry DA. The decrease in breast-cancer incidence in 2003 in the United States. New England Journal of Medicine 2007; 356(16):1670–1674.
-
(2007)
New England Journal of Medicine
, vol.356
, Issue.16
, pp. 1670-1674
-
-
Ravdin, P.M.1
Cronin, K.A.2
Howlader, N.3
Berg, C.D.4
Chlebowski, R.T.5
Feuer, E.J.6
Edwards, B.K.7
Berry, D.A.8
-
12
-
-
79955759845
-
Breast cancer incidence rates in US women are no longer declining
-
DeSantis C, Howlader N, Cronin KA, Jemal A. Breast cancer incidence rates in US women are no longer declining. Cancer Epidemiology Biomarkers & Prevention 2011; 20(5):733–739.
-
(2011)
Cancer Epidemiology Biomarkers & Prevention
, vol.20
, Issue.5
, pp. 733-739
-
-
DeSantis, C.1
Howlader, N.2
Cronin, K.A.3
Jemal, A.4
-
13
-
-
84930702978
-
Annual report to the nation on the status of cancer, 1975–2011, featuring incidence of breast cancer subtypes by race/ethnicity, poverty, and state
-
Kohler BA, Sherman RL, Howlader N, Jemal A, Ryerson AB, Henry KA, Boscoe FP, Cronin KA, Lake A, Noone AM, Henley SJ, Eheman CR, Anderson R. N, Penberthy L. Annual report to the nation on the status of cancer, 1975–2011, featuring incidence of breast cancer subtypes by race/ethnicity, poverty, and state. Journal of the National Cancer Institute 2015; 107(6):djv048.
-
(2015)
Journal of the National Cancer Institute
, vol.107
, Issue.6
, pp. djv048
-
-
Kohler, B.A.1
Sherman, R.L.2
Howlader, N.3
Jemal, A.4
Ryerson, A.B.5
Henry, K.A.6
Boscoe, F.P.7
Cronin, K.A.8
Lake, A.9
Noone, A.M.10
Henley, S.J.11
Eheman, C.R.12
Anderson, R.N.13
Penberthy, L.14
-
16
-
-
36849069347
-
American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer
-
Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, Somerfield MR, Hayes DF, Jr RCB. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. Journal of Clinical Oncology 2007; 25(33):5287–5312.
-
(2007)
Journal of Clinical Oncology
, vol.25
, Issue.33
, pp. 5287-5312
-
-
Harris, L.1
Fritsche, H.2
Mennel, R.3
Norton, L.4
Ravdin, P.5
Taube, S.6
Somerfield, M.R.7
Hayes, D.F.8
Jr, R.C.B.9
-
17
-
-
0035281530
-
Patterns of use of chemotherapy for breast cancer in older women: findings from medicare claims data
-
Du X, Goodwin JS. Patterns of use of chemotherapy for breast cancer in older women: findings from medicare claims data. Journal of Clinical Oncology 2001; 19:1455–1461.
-
(2001)
Journal of Clinical Oncology
, vol.19
, pp. 1455-1461
-
-
Du, X.1
Goodwin, J.S.2
-
18
-
-
0033485819
-
Breast tumor characteristics as predictors of mammographic detection: comparison of interval- and screen-detected cancers
-
Porter PL, El-Bastawissi AY, Mandelson MT, Lin MG, Khalid N, Watney EA, Cousens L, White D, Taplin S, White E. Breast tumor characteristics as predictors of mammographic detection: comparison of interval- and screen-detected cancers. Journal of the National Cancer Institute 1999; 91(23):2020–2028.
-
(1999)
Journal of the National Cancer Institute
, vol.91
, Issue.23
, pp. 2020-2028
-
-
Porter, P.L.1
El-Bastawissi, A.Y.2
Mandelson, M.T.3
Lin, M.G.4
Khalid, N.5
Watney, E.A.6
Cousens, L.7
White, D.8
Taplin, S.9
White, E.10
-
19
-
-
0037203162
-
A graphical sensitivity analysis for clinical trials with non-ignorable missing binary outcome
-
Hollis S. A graphical sensitivity analysis for clinical trials with non-ignorable missing binary outcome. Statistics in Medicine 2002; 21(24):3823–3834.
-
(2002)
Statistics in Medicine
, vol.21
, Issue.24
, pp. 3823-3834
-
-
Hollis, S.1
-
21
-
-
0037629206
-
Simple approaches to assess the possible impact of missing outcome information on estimates of risk ratios, odds ratios, and risk differences
-
Magder LS. Simple approaches to assess the possible impact of missing outcome information on estimates of risk ratios, odds ratios, and risk differences. Controlled Clinical Trials 2003; 24:411–421.
-
(2003)
Controlled Clinical Trials
, vol.24
, pp. 411-421
-
-
Magder, L.S.1
-
22
-
-
34548549316
-
Analysis of binary outcomes with missing data: missing = smoking, last observation carried forward, and a little multiple imputation
-
Hedeker D, Mermelstein RJ, Demirtas H. Analysis of binary outcomes with missing data: missing = smoking, last observation carried forward, and a little multiple imputation. Addiction 2007; 102:1564–1573.
-
(2007)
Addiction
, vol.102
, pp. 1564-1573
-
-
Hedeker, D.1
Mermelstein, R.J.2
Demirtas, H.3
-
23
-
-
84920273760
-
A general method for handling missing binary outcome data in randomized controlled trials
-
Jackson D, White IR, Mason D, Sutton S. A general method for handling missing binary outcome data in randomized controlled trials. Addiction 2014; 109(12):1286–1993.
-
(2014)
Addiction
, vol.109
, Issue.12
, pp. 1286-1993
-
-
Jackson, D.1
White, I.R.2
Mason, D.3
Sutton, S.4
-
24
-
-
54549102237
-
Imputation methods for missing outcome data in meta-analysis of clinical trials
-
Higgins JPT, White IR, Wood AM. Imputation methods for missing outcome data in meta-analysis of clinical trials. Clinical Trials 2008; 5:225–239.
-
(2008)
Clinical Trials
, vol.5
, pp. 225-239
-
-
Higgins, J.P.T.1
White, I.R.2
Wood, A.M.3
-
25
-
-
84908042851
-
Sensitivity analysis for a partially missing binary outcome in a two-arm randomized clinical trial
-
Liublinska V, Rubin DB. Sensitivity analysis for a partially missing binary outcome in a two-arm randomized clinical trial. Statistics in Medicine 2014; 33(24):4170–4185.
-
(2014)
Statistics in Medicine
, vol.33
, Issue.24
, pp. 4170-4185
-
-
Liublinska, V.1
Rubin, D.B.2
-
26
-
-
0033616909
-
Multiple imputation of missing blood pressure covariates in survival analysis
-
Van Buuren S, Boshuizen HC, Knook DL, et al. Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in Medicine 1999; 18(6):681–694.
-
(1999)
Statistics in Medicine
, vol.18
, Issue.6
, pp. 681-694
-
-
Van Buuren, S.1
Boshuizen, H.C.2
Knook, D.L.3
-
27
-
-
55549128556
-
Using an approximate Bayesian bootstrap to multiply impute nonignorable missing data
-
Siddique J, Belin TR. Using an approximate Bayesian bootstrap to multiply impute nonignorable missing data. Computational Statistics and Data Analysis 2008; 53(2):405–415.
-
(2008)
Computational Statistics and Data Analysis
, vol.53
, Issue.2
, pp. 405-415
-
-
Siddique, J.1
Belin, T.R.2
-
29
-
-
84907893058
-
A hot deck imputation procedure for multiply imputing nonignorable missing data: the proxy pattern-mixture hot deck
-
Sullivan DM, Andridge RR. A hot deck imputation procedure for multiply imputing nonignorable missing data: the proxy pattern-mixture hot deck. Computational Statistics and Data Analysis 2015; 82:173–185.
-
(2015)
Computational Statistics and Data Analysis
, vol.82
, pp. 173-185
-
-
Sullivan, D.M.1
Andridge, R.R.2
-
30
-
-
79951566177
-
Sensitivity analysis when data are missing not-at-random
-
Resseguier N, Giorgi R, Paoletti X. Sensitivity analysis when data are missing not-at-random. Epidemiology 2011; 22(2):282.
-
(2011)
Epidemiology
, vol.22
, Issue.2
, pp. 282
-
-
Resseguier, N.1
Giorgi, R.2
Paoletti, X.3
-
31
-
-
34347398256
-
Sensitivity analysis after multiple imputation under missing at random: a weighting approach
-
Carpenter JR, Kenward MG, White IR. Sensitivity analysis after multiple imputation under missing at random: a weighting approach. Statistical Methods in Medical Research 2007; 16(3):259–275.
-
(2007)
Statistical Methods in Medical Research
, vol.16
, Issue.3
, pp. 259-275
-
-
Carpenter, J.R.1
Kenward, M.G.2
White, I.R.3
-
32
-
-
84944706428
-
Evaluation of a weighting approach for performing sensitivity analysis after multiple imputation
-
Hayati RP, White IR, Lee KJ, Carlin JB, Simpson JA. Evaluation of a weighting approach for performing sensitivity analysis after multiple imputation. BMC Medical Research Methodology 2015; 15:83.
-
(2015)
BMC Medical Research Methodology
, vol.15
, pp. 83
-
-
Hayati, R.1
White, I.R.2
Lee, K.J.3
Carlin, J.B.4
Simpson, J.A.5
-
33
-
-
0002344593
-
A multivariate technique for multiply imputing missing values using a sequence of regression models
-
Raghunathan TE, Lepkowski JM, Van H J, Solenberger P. A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology 2001; 27(1):85–96.
-
(2001)
Survey Methodology
, vol.27
, Issue.1
, pp. 85-96
-
-
Raghunathan, T.E.1
Lepkowski, J.M.2
Van, J.3
Solenberger, P.4
-
34
-
-
77249126457
-
Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study
-
Marshall A, Altman D. G, Royston P, Holder RL. Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study. BMC Medical Research Methodology 2010; 10:7.
-
(2010)
BMC Medical Research Methodology
, vol.10
, pp. 7
-
-
Marshall, A.1
Altman, D.G.2
Royston, P.3
Holder, R.L.4
-
35
-
-
84960452817
-
Assessing nonresponse bias in a business survey: proxy pattern-mixture analysis for skewed data
-
Andridge RR, Thompson KJ. Assessing nonresponse bias in a business survey: proxy pattern-mixture analysis for skewed data. Annals of Applied Statistics 2015; 9:2237–2265.
-
(2015)
Annals of Applied Statistics
, vol.9
, pp. 2237-2265
-
-
Andridge, R.R.1
Thompson, K.J.2
-
36
-
-
21144483152
-
Pattern-mixture models for multivariate incomplete data
-
Little RJA. Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association 1993; 88(421):125–134.
-
(1993)
Journal of the American Statistical Association
, vol.88
, Issue.421
, pp. 125-134
-
-
Little, R.J.A.1
-
37
-
-
84947484877
-
Using the fraction of missing information to identify auxiliary variables for imputation procedures via proxy pattern-mixture models
-
Andridge RR, Thompson KJ. Using the fraction of missing information to identify auxiliary variables for imputation procedures via proxy pattern-mixture models. International Statistical Review 2015; 83:472–492.
-
(2015)
International Statistical Review
, vol.83
, pp. 472-492
-
-
Andridge, R.R.1
Thompson, K.J.2
-
39
-
-
40549106366
-
Estimation of the parameters for a multivariate normal distribution when one variable is dichotomized
-
Hannan JF, Tate RF. Estimation of the parameters for a multivariate normal distribution when one variable is dichotomized. Biometrika 1965; 52:664–668.
-
(1965)
Biometrika
, vol.52
, pp. 664-668
-
-
Hannan, J.F.1
Tate, R.F.2
-
40
-
-
84902544246
-
Tuning multiple imputation by predictive mean matching and local residual draws
-
Morris TP, White IR, Royston P. Tuning multiple imputation by predictive mean matching and local residual draws. BMC Medical Research Methodology 2014; 14(1):75.
-
(2014)
BMC Medical Research Methodology
, vol.14
, Issue.1
, pp. 75
-
-
Morris, T.P.1
White, I.R.2
Royston, P.3
-
42
-
-
84964927929
-
-
R Foundation for Statistical Computing, Vienna, Austri
-
R Core Team. R: A language and environment for statistical computing, R Foundation for Statistical Computing: Vienna, Austria, 2015. http://www.R-project.org.
-
(2015)
R: A language and environment for statistical computing
-
-
-
44
-
-
77955271783
-
Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables
-
White IR, Daniel R, Royston P. Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables. Computational Statistics and Data Analysis 2010; 54:2267–2275.
-
(2010)
Computational Statistics and Data Analysis
, vol.54
, pp. 2267-2275
-
-
White, I.R.1
Daniel, R.2
Royston, P.3
-
45
-
-
78651256743
-
Multiple imputation using chained equations: issues and guidance for practice
-
White IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and guidance for practice. Statistics in Medicine 2011; 30:377–399.
-
(2011)
Statistics in Medicine
, vol.30
, pp. 377-399
-
-
White, I.R.1
Royston, P.2
Wood, A.M.3
-
46
-
-
0031014353
-
Non-response models for the analysis of non-monotone ignorable missing data
-
Robins JM, Gill RD. Non-response models for the analysis of non-monotone ignorable missing data. Statistics in Medicine 1997; 16:39–56.
-
(1997)
Statistics in Medicine
, vol.16
, pp. 39-56
-
-
Robins, J.M.1
Gill, R.D.2
-
49
-
-
84878998135
-
Addressing missing data mechanism uncertainty using multiple-model multiple imputation: application to a longitudinal clinical trial
-
Siddique J, Harel O, Crespi CM. Addressing missing data mechanism uncertainty using multiple-model multiple imputation: application to a longitudinal clinical trial. The Annals of Applied Statistics 2012; 6(4):1814–1837.
-
(2012)
The Annals of Applied Statistics
, vol.6
, Issue.4
, pp. 1814-1837
-
-
Siddique, J.1
Harel, O.2
Crespi, C.M.3
-
50
-
-
84903820681
-
Binary variable multiple-model multiple imputation to address missing data mechanism uncertainty: application to a smoking cessation trial
-
Siddique J, Harel O, Crespi CM, Hedeker D. Binary variable multiple-model multiple imputation to address missing data mechanism uncertainty: application to a smoking cessation trial. Statistics in Medicine 2014; 33(17):3013–3028.
-
(2014)
Statistics in Medicine
, vol.33
, Issue.17
, pp. 3013-3028
-
-
Siddique, J.1
Harel, O.2
Crespi, C.M.3
Hedeker, D.4
-
51
-
-
84947028095
-
-
Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute. Seer*stat software, version 8.2.1, 2015.
-
(2015)
Seer*stat software, version 8.2.1
-
-
-
53
-
-
0034651977
-
Permutation tests for joinpoint regression with applications to cancer rates
-
Kim HJ, Fay MP, Feuer EJ, Midthune DN. Permutation tests for joinpoint regression with applications to cancer rates. Statistics in Medicine 2000; 19:335–351.
-
(2000)
Statistics in Medicine
, vol.19
, pp. 335-351
-
-
Kim, H.J.1
Fay, M.P.2
Feuer, E.J.3
Midthune, D.N.4
-
54
-
-
55849132652
-
Race/ethnicity and breast cancer estrogen receptor status: impact of class, missing data, and modeling assumptions
-
Krieger N, Chen JT, Ware JH, Kaddour A. Race/ethnicity and breast cancer estrogen receptor status: impact of class, missing data, and modeling assumptions. Cancer Causes & Control 2008; 19(10):1305–1318.
-
(2008)
Cancer Causes & Control
, vol.19
, Issue.10
, pp. 1305-1318
-
-
Krieger, N.1
Chen, J.T.2
Ware, J.H.3
Kaddour, A.4
-
55
-
-
24144458327
-
Easy SAS calculations for risk or prevalence ratios and differences
-
Spiegelman D, Hertzmark E. Easy SAS calculations for risk or prevalence ratios and differences. American Journal of Epidemiology 2005; 162(3):199–200.
-
(2005)
American Journal of Epidemiology
, vol.162
, Issue.3
, pp. 199-200
-
-
Spiegelman, D.1
Hertzmark, E.2
-
57
-
-
0037125379
-
Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial
-
Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. Journal of the American Medical Association 2002; 288:321–333.
-
(2002)
Journal of the American Medical Association
, vol.288
, pp. 321-333
-
-
Rossouw, J.E.1
Anderson, G.L.2
Prentice, R.L.3
LaCroix, A.Z.4
Kooperberg, C.5
Stefanick, M.L.6
Jackson, R.D.7
Beresford, S.A.8
Howard, B.V.9
Johnson, K.C.10
Kotchen, J.M.11
Ockene, J.12
-
58
-
-
84939266157
-
Bayesian sensitivity analysis of incomplete data: bridging pattern-mixture and selection models
-
Kaciroti NA, Raghunathan TE. Bayesian sensitivity analysis of incomplete data: bridging pattern-mixture and selection models. Statistics in Medicine 2014; 33:4841–4857.
-
(2014)
Statistics in Medicine
, vol.33
, pp. 4841-4857
-
-
Kaciroti, N.A.1
Raghunathan, T.E.2
|