메뉴 건너뛰기




Volumn 17, Issue 1, 2016, Pages

acdc - Automated Contamination Detection and Confidence estimation for single-cell genome data

Author keywords

Binning; Clustering; Contamination detection; Machine learning; Quality control; Single cell sequencing

Indexed keywords

ARTIFICIAL INTELLIGENCE; CELLS; CLASSIFICATION (OF INFORMATION); CLUSTERING ALGORITHMS; CONTAMINATION; CYTOLOGY; DATABASE SYSTEMS; GENE ENCODING; GENES; IMPURITIES; LEARNING SYSTEMS; OLIGONUCLEOTIDES; PROCESS CONTROL; QUALITY ASSURANCE; QUALITY CONTROL; RNA; SOFTWARE TESTING; STATISTICAL METHODS; TREES (MATHEMATICS); USER INTERFACES;

EID: 85006814675     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-016-1397-7     Document Type: Article
Times cited : (22)

References (45)
  • 1
    • 84897141974 scopus 로고    scopus 로고
    • Method of the year 2013
    • Nature Methods. Method of the year 2013. Nat Methods. 2014; 11(1):1-1.
    • (2014) Nat Methods , vol.11 , Issue.1 , pp. 1-1
  • 3
    • 84942917849 scopus 로고    scopus 로고
    • The first five years of single-cell cancer genomics and beyond
    • Navin NE. The first five years of single-cell cancer genomics and beyond. Genome Res. 2015; 25(10):1499-507.
    • (2015) Genome Res , vol.25 , Issue.10 , pp. 1499-1507
    • Navin, N.E.1
  • 4
    • 84881439152 scopus 로고    scopus 로고
    • Single-cell analysis: toward the clinic
    • Speicher MR. Single-cell analysis: toward the clinic. Genome Med. 2013; 5:74.
    • (2013) Genome Med , vol.5 , pp. 74
    • Speicher, M.R.1
  • 7
    • 84876122754 scopus 로고    scopus 로고
    • The future is now: single-cell genomics of bacteria and archaea
    • Blainey PC. The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol Rev. 2013; 37(3):407-27.
    • (2013) FEMS Microbiol Rev , vol.37 , Issue.3 , pp. 407-427
    • Blainey, P.C.1
  • 10
    • 84958606331 scopus 로고    scopus 로고
    • Single-cell genome sequencing: current state of the science
    • Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet. 2016; 17(3):175-88.
    • (2016) Nat Rev Genet , vol.17 , Issue.3 , pp. 175-188
    • Gawad, C.1    Koh, W.2    Quake, S.R.3
  • 13
    • 84937040910 scopus 로고    scopus 로고
    • Checkm: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes
    • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. Checkm: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015; 25(7):1043-55.
    • (2015) Genome Res , vol.25 , Issue.7 , pp. 1043-1055
    • Parks, D.H.1    Imelfort, M.2    Skennerton, C.T.3    Hugenholtz, P.4    Tyson, G.W.5
  • 14
    • 84876133562 scopus 로고    scopus 로고
    • metabeetl: high-throughput analysis of heterogeneous microbial populations from shotgun dna sequences
    • Ander C, Schulz-Trieglaff OB, Stoye J, Cox AJ. metabeetl: high-throughput analysis of heterogeneous microbial populations from shotgun dna sequences. BMC Bioinformatics. 2013; 14(Suppl 5):2.
    • (2013) BMC Bioinformatics , vol.14 , pp. 2
    • Ander, C.1    Schulz-Trieglaff, O.B.2    Stoye, J.3    Cox, A.J.4
  • 15
    • 84873296417 scopus 로고    scopus 로고
    • Readscan: a fast and scalable pathogen discovery program with accurate genome relative abundance estimation
    • Naeem R, Rashid M, Pain A. Readscan: a fast and scalable pathogen discovery program with accurate genome relative abundance estimation. Bioinformatics. 2013; 29(3):391-2.
    • (2013) Bioinformatics , vol.29 , Issue.3 , pp. 391-392
    • Naeem, R.1    Rashid, M.2    Pain, A.3
  • 16
    • 84899090573 scopus 로고    scopus 로고
    • Kraken: ultrafast metagenomic sequence classification using exact alignments
    • Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014; 15(3):46.
    • (2014) Genome Biol , vol.15 , Issue.3 , pp. 46
    • Wood, D.E.1    Salzberg, S.L.2
  • 17
    • 84870020971 scopus 로고    scopus 로고
    • Classification of metagenomic sequences: methods and challenges
    • Mande SS, Mohammed MH, Ghosh TS. Classification of metagenomic sequences: methods and challenges. Brief Bioinform. 2012; 13(6):669-81.
    • (2012) Brief Bioinform , vol.13 , Issue.6 , pp. 669-681
    • Mande, S.S.1    Mohammed, M.H.2    Ghosh, T.S.3
  • 18
    • 84897374590 scopus 로고    scopus 로고
    • Alignment-free visualization of metagenomic data by nonlinear dimension reduction
    • Laczny CC, Pinel N, Vlassis N, Wilmes P. Alignment-free visualization of metagenomic data by nonlinear dimension reduction. Sci Rep. 2014; 4:4516.
    • (2014) Sci Rep , vol.4 , pp. 4516
    • Laczny, C.C.1    Pinel, N.2    Vlassis, N.3    Wilmes, P.4
  • 19
    • 84951025402 scopus 로고    scopus 로고
    • Automatic discovery of metagenomic structure
    • In: 2015 IEEE International Joint Conferences on Neural Networks. IEEE.
    • Lux M, Sczyrba A, Hammer B. Automatic discovery of metagenomic structure. In: 2015 IEEE International Joint Conferences on Neural Networks. IEEE, doi: 10.1109/IJCNN.2015.7280500.
    • Lux, M.1    Sczyrba, A.2    Hammer, B.3
  • 20
    • 84963800052 scopus 로고    scopus 로고
    • Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes
    • Lin HH, Liao YC. Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci Rep. 2016; 6:24175.
    • (2016) Sci Rep , vol.6 , pp. 24175
    • Lin, H.H.1    Liao, Y.C.2
  • 21
  • 22
    • 84919775831 scopus 로고    scopus 로고
    • Accelerating t-sne using tree-based algorithms
    • Van Der Maaten L. Accelerating t-sne using tree-based algorithms. J Mach Learn Res. 2014; 15(1):3221-45.
    • (2014) J Mach Learn Res , vol.15 , Issue.1 , pp. 3221-3245
    • Van Der Maaten, L.1
  • 23
    • 78649934960 scopus 로고    scopus 로고
    • Relative clustering validity criteria: a comparative overview
    • Vendramin L, Campello RJGB, Hruschka ER. Relative clustering validity criteria: a comparative overview. Stat Anal Data Mining. 2010; 3(4):209-35. doi: 10.1002/sam.10080.
    • (2010) Stat Anal Data Mining , vol.3 , Issue.4 , pp. 209-235
    • Vendramin, L.1    Campello, R.J.G.B.2    Hruschka, E.R.3
  • 24
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond k-means
    • Jain AK. Data clustering: 50 years beyond k-means. Pattern Recogn Lett. 2010; 31(8):651-66.
    • (2010) Pattern Recogn Lett , vol.31 , Issue.8 , pp. 651-666
    • Jain, A.K.1
  • 25
    • 79951748781 scopus 로고    scopus 로고
    • Understanding of internal clustering validation measures
    • In: Data Mining (ICDM), 2010 IEEE 10th International Conference On. IEEE
    • Liu Y, Li Z, Xiong H, Gao X, Wu J. Understanding of internal clustering validation measures. In: Data Mining (ICDM), 2010 IEEE 10th International Conference On. IEEE: 2010. p. 911-6, doi: 10.1109/ICDM.2010.35.
    • (2010) , pp. 911-916
    • Liu, Y.1    Li, Z.2    Xiong, H.3    Gao, X.4    Wu, J.5
  • 27
    • 4344670204 scopus 로고    scopus 로고
    • Application of tetranucleotide frequencies for the assignment of genomic fragments
    • Teeling H, Meyerdierks A, Bauer M, Amann R, Glöckner FO. Application of tetranucleotide frequencies for the assignment of genomic fragments. Environ Microbiol. 2004; 6(9):938-47.
    • (2004) Environ Microbiol , vol.6 , Issue.9 , pp. 938-947
    • Teeling, H.1    Meyerdierks, A.2    Bauer, M.3    Amann, R.4    Glöckner, F.O.5
  • 28
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-sne
    • Van der Maaten L, Hinton G. Visualizing data using t-sne. J Mach Learn Res. 2008; 9(2579-2605):85.
    • (2008) J Mach Learn Res , vol.9 , Issue.85 , pp. 2579-2605
    • Van der Maaten, L.1    Hinton, G.2
  • 29
    • 84893265640 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction for cluster identification in metagenomic samples
    • In: Information Visualisation (IV), 2013 17th International Conference. IEEE.
    • Gisbrecht A, Hammer B, Mokbel B, Sczyrba A. Nonlinear dimensionality reduction for cluster identification in metagenomic samples. In: Information Visualisation (IV), 2013 17th International Conference. IEEE: 2013. p. 174-9.
    • (2013) , pp. 174-179
    • Gisbrecht, A.1    Hammer, B.2    Mokbel, B.3    Sczyrba, A.4
  • 30
    • 0003946510 scopus 로고    scopus 로고
    • Principal Component Analysis
    • Springer-Verlag
    • Jolliffe IT. Principal Component Analysis. Springer-Verlag; 2002. doi: 10.1007/b98835. http://www.springer.com/statistics/statistical+theory+and+methods/book/978-0-387-95442-4
    • (2002)
    • Jolliffe, I.T.1
  • 31
    • 0012834533 scopus 로고    scopus 로고
    • Why so many clustering algorithms: a position paper
    • Estivill-Castro V. Why so many clustering algorithms: a position paper. ACM SIGKDD Explor Newsl. 2002; 4(1):65-75.
    • (2002) ACM SIGKDD Explor Newsl , vol.4 , Issue.1 , pp. 65-75
    • Estivill-Castro, V.1
  • 32
    • 85006805795 scopus 로고    scopus 로고
    • Automated contamination detection in single-cell sequencing
    • Lux M, Hammer B, Sczyrba A. Automated contamination detection in single-cell sequencing. bioRxiv. 2015. doi: 10.1101/020859. http://biorxiv.org/content/early/2015/06/15/020859.full.pdf.
    • (2015) bioRxiv
    • Lux, M.1    Hammer, B.2    Sczyrba, A.3
  • 33
    • 0002643986 scopus 로고
    • The dip test of unimodality
    • Hartigan JA, Hartigan P. The dip test of unimodality. Ann Stat. 1985; 1:70-84.
    • (1985) Ann Stat , vol.1 , pp. 70-84
    • Hartigan, J.A.1    Hartigan, P.2
  • 34
    • 84877780808 scopus 로고    scopus 로고
    • Dip-means: an incremental clustering method for estimating the number of clusters
    • In: Advances in Neural Information Processing Systems. Curran Associates, Inc.
    • Kalogeratos A, Likas A. Dip-means: an incremental clustering method for estimating the number of clusters. In: Advances in Neural Information Processing Systems. Curran Associates, Inc: 2012. p. 2393-401.
    • (2012) , pp. 2393-2401
    • Kalogeratos, A.1    Likas, A.2
  • 35
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • Von Luxburg U. A tutorial on spectral clustering. Stat Comput. 2007; 17(4):395-416.
    • (2007) Stat Comput , vol.17 , Issue.4 , pp. 395-416
    • Von Luxburg, U.1
  • 37
    • 84902357513 scopus 로고    scopus 로고
    • Hierarchical clustering
    • Cluster Analysis, 5th Edition: Wiley Online Library.
    • Everitt BS, Landau S, Leese M, Stahl D. Hierarchical clustering. Cluster Analysis, 5th Edition: Wiley Online Library; 2011. pp. 71-110.
    • (2011) , pp. 71-110
    • Everitt, B.S.1    Landau, S.2    Leese, M.3    Stahl, D.4
  • 39
    • 84857145150 scopus 로고    scopus 로고
    • Art: a next-generation sequencing read simulator
    • Huang W, Li L, Myers JR, Marth GT. Art: a next-generation sequencing read simulator. Bioinformatics. 2012; 28(4):593-4.
    • (2012) Bioinformatics , vol.28 , Issue.4 , pp. 593-594
    • Huang, W.1    Li, L.2    Myers, J.R.3    Marth, G.T.4
  • 41
    • 84926176869 scopus 로고    scopus 로고
    • Effects of sample treatments on genome recovery via single-cell genomics
    • Clingenpeel S, Schwientek P, Hugenholtz P, Woyke T. Effects of sample treatments on genome recovery via single-cell genomics. ISME J. 2014; 8(12):2546-49.
    • (2014) ISME J , vol.8 , Issue.12 , pp. 2546-2549
    • Clingenpeel, S.1    Schwientek, P.2    Hugenholtz, P.3    Woyke, T.4
  • 42
    • 84920678390 scopus 로고    scopus 로고
    • Reconstructing each cell's genome within complex microbial communities-dream or reality
    • Clingenpeel S, Clum A, Schwientek P, Rinke C, Woyke T. Reconstructing each cell's genome within complex microbial communities-dream or reality?Front Microbiol. 2014; 5:771.
    • (2014) Front Microbiol , vol.5 , pp. 771
    • Clingenpeel, S.1    Clum, A.2    Schwientek, P.3    Rinke, C.4    Woyke, T.5
  • 43
    • 84941121634 scopus 로고    scopus 로고
    • Herbinix hemicellulosilytica gen. nov., sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor
    • Koeck DE, Ludwig W, Wanner G, Zverlov VV, Liebl W, Schwarz WH. Herbinix hemicellulosilytica gen. nov., sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor. Int J Syst Evol Microbiol. 2015; 65(8):2365-2371.
    • (2015) Int J Syst Evol Microbiol , vol.65 , Issue.8 , pp. 2365-2371
    • Koeck, D.E.1    Ludwig, W.2    Wanner, G.3    Zverlov, V.V.4    Liebl, W.5    Schwarz, W.H.6
  • 44
    • 84954526735 scopus 로고    scopus 로고
    • Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants
    • Cibis KG, Gneipel A, König H. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants. Journal of biotechnology. 2016.
    • (2016) Journal of biotechnology
    • Cibis, K.G.1    Gneipel, A.2    König, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.