-
1
-
-
84863229467
-
Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications
-
[1] Li, Y., Rodrigues, J., Tomas, H., Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 41 (2012), 2193–2221.
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 2193-2221
-
-
Li, Y.1
Rodrigues, J.2
Tomas, H.3
-
2
-
-
84861076436
-
Hydrogels for protein delivery
-
[2] Vermonden, T., Censi, R., Hennink, W.E., Hydrogels for protein delivery. Chem. Rev. 112 (2012), 2853–2888.
-
(2012)
Chem. Rev.
, vol.112
, pp. 2853-2888
-
-
Vermonden, T.1
Censi, R.2
Hennink, W.E.3
-
3
-
-
84951266376
-
Supramolecular biomaterials
-
[3] Webber, M.J., Appel, E.A., Meijer, E.W., Langer, R., Supramolecular biomaterials. Nat. Mater 15 (2016), 13–26.
-
(2016)
Nat. Mater
, vol.15
, pp. 13-26
-
-
Webber, M.J.1
Appel, E.A.2
Meijer, E.W.3
Langer, R.4
-
4
-
-
84960438658
-
Easy synthesis of tunable hybrid bioactive hydrogels
-
[4] Echalier, C., Pinese, C., Garric, X., Van Den Berghe, H., Jumas Bilak, E., Martinez, J., Mehdi, A., Subra, G., Easy synthesis of tunable hybrid bioactive hydrogels. Chem. Mater 28 (2016), 1261–1265.
-
(2016)
Chem. Mater
, vol.28
, pp. 1261-1265
-
-
Echalier, C.1
Pinese, C.2
Garric, X.3
Van Den Berghe, H.4
Jumas Bilak, E.5
Martinez, J.6
Mehdi, A.7
Subra, G.8
-
5
-
-
68749094066
-
Reverse thermogelling biodegradable polymer aqueous solutions
-
[5] Joo, M.K., Park, M.H., Choi, B.G., Jeong, B., Reverse thermogelling biodegradable polymer aqueous solutions. J. Mat. Chem. 19 (2009), 5891–5905.
-
(2009)
J. Mat. Chem.
, vol.19
, pp. 5891-5905
-
-
Joo, M.K.1
Park, M.H.2
Choi, B.G.3
Jeong, B.4
-
6
-
-
84884598640
-
Injectable biodegradable hydrogels: progress and challenges
-
[6] Bae, K.H., Wang, L.-S., Kurisawa, M., Injectable biodegradable hydrogels: progress and challenges. J. Mat. Chem. B 1 (2013), 5371–5388.
-
(2013)
J. Mat. Chem. B
, vol.1
, pp. 5371-5388
-
-
Bae, K.H.1
Wang, L.-S.2
Kurisawa, M.3
-
7
-
-
84946944019
-
Heparin-based temperature-sensitive injectable hydrogels for protein delivery
-
[7] Sim, H.J., Thambi, T., Lee, D.S., Heparin-based temperature-sensitive injectable hydrogels for protein delivery. J. Mat. Chem. B 3 (2015), 8892–8901.
-
(2015)
J. Mat. Chem. B
, vol.3
, pp. 8892-8901
-
-
Sim, H.J.1
Thambi, T.2
Lee, D.S.3
-
8
-
-
84977962768
-
Stem cells and injectable hydrogels: synergistic therapeutics in myocardial repair
-
[8] Sepantafar, M., Maheronnaghsh, R., Mohammadi, H., Rajabi-Zeleti, S., Annabi, N., Aghdami, N., Baharvand, H., Stem cells and injectable hydrogels: synergistic therapeutics in myocardial repair. Biotech. Adv. 34 (2016), 362–379.
-
(2016)
Biotech. Adv.
, vol.34
, pp. 362-379
-
-
Sepantafar, M.1
Maheronnaghsh, R.2
Mohammadi, H.3
Rajabi-Zeleti, S.4
Annabi, N.5
Aghdami, N.6
Baharvand, H.7
-
9
-
-
64249113913
-
Photodegradable hydrogels for dynamic tuning of physical and chemical properties
-
[9] Kloxin, A.M., Kasko, A.M., Salinas, C.N., Anseth, K.S., Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324 (2009), 59–63.
-
(2009)
Science
, vol.324
, pp. 59-63
-
-
Kloxin, A.M.1
Kasko, A.M.2
Salinas, C.N.3
Anseth, K.S.4
-
10
-
-
84876688583
-
Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels
-
[10] Khetan, S., Guvendiren, M., Legant, W.R., Cohen, D.M., Chen, C.S., Burdick, J.A., Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater 12 (2013), 458–465.
-
(2013)
Nat. Mater
, vol.12
, pp. 458-465
-
-
Khetan, S.1
Guvendiren, M.2
Legant, W.R.3
Cohen, D.M.4
Chen, C.S.5
Burdick, J.A.6
-
11
-
-
84915767648
-
Delivery of iPS-NPCs to the stroke cavity within a hyaluronic acid matrix promotes the differentiation of transplanted cells
-
[11] Lam, J., Lowry, W.E., Carmichael, S.T., Segura, T., Delivery of iPS-NPCs to the stroke cavity within a hyaluronic acid matrix promotes the differentiation of transplanted cells. Adv. Funct. Mater 24 (2014), 7053–7062.
-
(2014)
Adv. Funct. Mater
, vol.24
, pp. 7053-7062
-
-
Lam, J.1
Lowry, W.E.2
Carmichael, S.T.3
Segura, T.4
-
12
-
-
84908291543
-
In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery
-
[12] Singh, N.K., Lee, D.S., In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. J. Control. Release 193 (2014), 214–227.
-
(2014)
J. Control. Release
, vol.193
, pp. 214-227
-
-
Singh, N.K.1
Lee, D.S.2
-
13
-
-
84901290130
-
Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition
-
[13] Purcell, B.P., Lobb, D., Charati, M.B., Dorsey, S.M., Wade, R.J., Zellars, K.N., Doviak, H., Pettaway, S., Logdon, C.B., Shuman, J.A., Freels, P.D., Gorman Iii, J.H., Gorman, R.C., Spinale, F.G., Burdick, J.A., Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. Nat. Mater 13 (2014), 653–661.
-
(2014)
Nat. Mater
, vol.13
, pp. 653-661
-
-
Purcell, B.P.1
Lobb, D.2
Charati, M.B.3
Dorsey, S.M.4
Wade, R.J.5
Zellars, K.N.6
Doviak, H.7
Pettaway, S.8
Logdon, C.B.9
Shuman, J.A.10
Freels, P.D.11
Gorman Iii, J.H.12
Gorman, R.C.13
Spinale, F.G.14
Burdick, J.A.15
-
14
-
-
84991609103
-
Stimuli-sensitive injectable hydrogels based on polysaccharides and their biomedical applications, macromol
-
[14] Thambi, T., Phan, V.H.G., Lee, D.S., Stimuli-sensitive injectable hydrogels based on polysaccharides and their biomedical applications, macromol. Rapid Commun. 37 (2016), 1881–1896.
-
(2016)
Rapid Commun.
, vol.37
, pp. 1881-1896
-
-
Thambi, T.1
Phan, V.H.G.2
Lee, D.S.3
-
15
-
-
84870943988
-
Injectable hydrogels from segmented PEG-bisurea copolymers
-
[15] Pawar, G.M., Koenigs, M., Fahimi, Z., Cox, M., Voets, I.K., Wyss, H.M., Sijbesma, R.P., Injectable hydrogels from segmented PEG-bisurea copolymers. Biomacromolecules 13 (2012), 3966–3976.
-
(2012)
Biomacromolecules
, vol.13
, pp. 3966-3976
-
-
Pawar, G.M.1
Koenigs, M.2
Fahimi, Z.3
Cox, M.4
Voets, I.K.5
Wyss, H.M.6
Sijbesma, R.P.7
-
16
-
-
84860388302
-
Hierarchical formation of supramolecular transient networks in water: a modular injectable delivery system
-
[16] Dankers, P.Y.W., Hermans, T.M., Baughman, T.W., Kamikawa, Y., Kieltyka, R.E., Bastings, M.M.C., Janssen, H.M., Sommerdijk, N.A.J.M., Larsen, A., van Luyn, M.J.A., Bosman, A.W., Popa, E.R., Fytas, G., Meijer, E.W., Hierarchical formation of supramolecular transient networks in water: a modular injectable delivery system. Adv. Mater 24 (2012), 2703–2709.
-
(2012)
Adv. Mater
, vol.24
, pp. 2703-2709
-
-
Dankers, P.Y.W.1
Hermans, T.M.2
Baughman, T.W.3
Kamikawa, Y.4
Kieltyka, R.E.5
Bastings, M.M.C.6
Janssen, H.M.7
Sommerdijk, N.A.J.M.8
Larsen, A.9
van Luyn, M.J.A.10
Bosman, A.W.11
Popa, E.R.12
Fytas, G.13
Meijer, E.W.14
-
17
-
-
84910602067
-
In situ-forming injectable hydrogels for regenerative medicine
-
[17] Yang, J.-A., Yeom, J., Hwang, B.W., Hoffman, A.S., Hahn, S.K., In situ-forming injectable hydrogels for regenerative medicine. Prog. Polym. Sci. 39 (2014), 1973–1986.
-
(2014)
Prog. Polym. Sci.
, vol.39
, pp. 1973-1986
-
-
Yang, J.-A.1
Yeom, J.2
Hwang, B.W.3
Hoffman, A.S.4
Hahn, S.K.5
-
18
-
-
84966356769
-
Pancreatic cancer therapy using an injectable nanobiohybrid hydrogel
-
[18] Phan, V.H.G., Lee, E., Maeng, J.H., Thambi, T., Kim, B.S., Lee, D., Lee, D.S., Pancreatic cancer therapy using an injectable nanobiohybrid hydrogel. RSC Adv. 6 (2016), 41644–41655.
-
(2016)
RSC Adv.
, vol.6
, pp. 41644-41655
-
-
Phan, V.H.G.1
Lee, E.2
Maeng, J.H.3
Thambi, T.4
Kim, B.S.5
Lee, D.6
Lee, D.S.7
-
19
-
-
77951218278
-
Engineering hydrogels as extracellular matrix mimics
-
[19] Geckil, H., Xu, F., Zhang, X., Moon, S., Demirci, U., Engineering hydrogels as extracellular matrix mimics. Nanomedicine 5 (2010), 469–484.
-
(2010)
Nanomedicine
, vol.5
, pp. 469-484
-
-
Geckil, H.1
Xu, F.2
Zhang, X.3
Moon, S.4
Demirci, U.5
-
20
-
-
84964712046
-
Mechanically tunable curcumin incorporated polyurethane hydrogels as potential biomaterials
-
[20] Divakaran, A.V., Azad, L.B., Surwase, S.S., Torris A. T, A., Badiger, M.V., Mechanically tunable curcumin incorporated polyurethane hydrogels as potential biomaterials. Chem. Mater 28 (2016), 2120–2130.
-
(2016)
Chem. Mater
, vol.28
, pp. 2120-2130
-
-
Divakaran, A.V.1
Azad, L.B.2
Surwase, S.S.3
Torris A. T, A.4
Badiger, M.V.5
-
21
-
-
34547655569
-
Reverse thermal gelling PEG−PTMC diblock copolymer aqueous solution
-
[21] Kim, S.Y., Kim, H.J., Lee, K.E., Han, S.S., Sohn, Y.S., Jeong, B., Reverse thermal gelling PEG−PTMC diblock copolymer aqueous solution. Macromolecules 40 (2007), 5519–5525.
-
(2007)
Macromolecules
, vol.40
, pp. 5519-5525
-
-
Kim, S.Y.1
Kim, H.J.2
Lee, K.E.3
Han, S.S.4
Sohn, Y.S.5
Jeong, B.6
-
22
-
-
52449086984
-
Temperature-sensitive poly(caprolactone-co-trimethylene carbonate)−poly(ethylene glycol)−poly(caprolactone-co-trimethylene carbonate) as in situ gel-forming biomaterial
-
[22] Park, S.H., Choi, B.G., Joo, M.K., Han, D.K., Sohn, Y.S., Jeong, B., Temperature-sensitive poly(caprolactone-co-trimethylene carbonate)−poly(ethylene glycol)−poly(caprolactone-co-trimethylene carbonate) as in situ gel-forming biomaterial. Macromolecules 41 (2008), 6486–6492.
-
(2008)
Macromolecules
, vol.41
, pp. 6486-6492
-
-
Park, S.H.1
Choi, B.G.2
Joo, M.K.3
Han, D.K.4
Sohn, Y.S.5
Jeong, B.6
-
23
-
-
47749146197
-
Injectable hydrogels as unique biomedical materials
-
[23] Yu, L., Ding, J., Injectable hydrogels as unique biomedical materials. Chem. Soc. Rev. 37 (2008), 1473–1481.
-
(2008)
Chem. Soc. Rev.
, vol.37
, pp. 1473-1481
-
-
Yu, L.1
Ding, J.2
-
24
-
-
84947997797
-
Stimuli-responsive supramolecular hydrogels with high extensibility and fast self-healing via precoordinated mussel-inspired chemistry
-
[24] Hou, S., Ma, P.X., Stimuli-responsive supramolecular hydrogels with high extensibility and fast self-healing via precoordinated mussel-inspired chemistry. Chem. Mater 27 (2015), 7627–7635.
-
(2015)
Chem. Mater
, vol.27
, pp. 7627-7635
-
-
Hou, S.1
Ma, P.X.2
-
25
-
-
0035385135
-
Hydrogels for tissue engineering
-
[25] Lee, K.Y., Mooney, D.J., Hydrogels for tissue engineering. Chem. Rev. 101 (2001), 1869–1880.
-
(2001)
Chem. Rev.
, vol.101
, pp. 1869-1880
-
-
Lee, K.Y.1
Mooney, D.J.2
-
26
-
-
84923382826
-
Long-term delivery of protein therapeutics
-
[26] Vaishya, R., Khurana, V., Patel, S., Mitra, A.K., Long-term delivery of protein therapeutics. Expert Opin. Drug Deliv. 12 (2015), 415–440.
-
(2015)
Expert Opin. Drug Deliv.
, vol.12
, pp. 415-440
-
-
Vaishya, R.1
Khurana, V.2
Patel, S.3
Mitra, A.K.4
-
27
-
-
40649101153
-
Thermo-sensitive and biodegradable hydrogels based on stereocomplexed Pluronic multi-block copolymers for controlled protein delivery
-
[27] Chung, H.J., Lee, Y., Park, T.G., Thermo-sensitive and biodegradable hydrogels based on stereocomplexed Pluronic multi-block copolymers for controlled protein delivery. J. J. Control. Release 127 (2008), 22–30.
-
(2008)
J. J. Control. Release
, vol.127
, pp. 22-30
-
-
Chung, H.J.1
Lee, Y.2
Park, T.G.3
-
28
-
-
41549148288
-
Hydrogels in drug delivery: progress and challenges
-
[28] Hoare, T.R., Kohane, D.S., Hydrogels in drug delivery: progress and challenges. Polymer 49 (2008), 1993–2007.
-
(2008)
Polymer
, vol.49
, pp. 1993-2007
-
-
Hoare, T.R.1
Kohane, D.S.2
-
29
-
-
84991014966
-
A biodegradable thermo-responsive hybrid hydrogel: therapeutic applications in preventing the post-operative recurrence of breast cancer
-
[29] Qu, Y., Chu, B.Y., Peng, J.R., Liao, J.F., Qi, T.T., Shi, K., Zhang, X.N., Wei, Y.Q., Qian, Z.Y., A biodegradable thermo-responsive hybrid hydrogel: therapeutic applications in preventing the post-operative recurrence of breast cancer. NPG Asia Mater, 7, 2015, e207.
-
(2015)
NPG Asia Mater
, vol.7
, pp. e207
-
-
Qu, Y.1
Chu, B.Y.2
Peng, J.R.3
Liao, J.F.4
Qi, T.T.5
Shi, K.6
Zhang, X.N.7
Wei, Y.Q.8
Qian, Z.Y.9
-
30
-
-
72149088227
-
Cationic and thermosensitive protamine conjugated gels for enhancing sustained human growth hormone delivery
-
[30] Park, M.-R., Chun, C., Ahn, S.-W., Ki, M.-H., Cho, C.-S., Song, S.-C., Cationic and thermosensitive protamine conjugated gels for enhancing sustained human growth hormone delivery. Biomaterials 31 (2010), 1349–1359.
-
(2010)
Biomaterials
, vol.31
, pp. 1349-1359
-
-
Park, M.-R.1
Chun, C.2
Ahn, S.-W.3
Ki, M.-H.4
Cho, C.-S.5
Song, S.-C.6
-
31
-
-
84870365758
-
Dual ionic interaction system based on polyelectrolyte complex and ionic, injectable, and thermosensitive hydrogel for sustained release of human growth hormone
-
[31] Park, M.-R., Seo, B.-B., Song, S.-C., Dual ionic interaction system based on polyelectrolyte complex and ionic, injectable, and thermosensitive hydrogel for sustained release of human growth hormone. Biomaterials 34 (2013), 1327–1336.
-
(2013)
Biomaterials
, vol.34
, pp. 1327-1336
-
-
Park, M.-R.1
Seo, B.-B.2
Song, S.-C.3
-
32
-
-
84904438425
-
Biostable and bioreducible polymersomes for intracellular delivery of doxorubicin
-
[32] Thambi, T., Deepagan, V.G., Ko, H., Suh, Y.D., Yi, G.-R., Lee, J.Y., Lee, D.S., Park, J.H., Biostable and bioreducible polymersomes for intracellular delivery of doxorubicin. Polym. Chem. 5 (2014), 4627–4634.
-
(2014)
Polym. Chem.
, vol.5
, pp. 4627-4634
-
-
Thambi, T.1
Deepagan, V.G.2
Ko, H.3
Suh, Y.D.4
Yi, G.-R.5
Lee, J.Y.6
Lee, D.S.7
Park, J.H.8
-
33
-
-
84881023895
-
In situ forming acyl-capped PCLA–PEG–PCLA triblock copolymer based hydrogels
-
[33] Sandker, M.J., Petit, A., Redout, E.M., Siebelt, M., Müller, B., Bruin, P., Meyboom, R., Vermonden, T., Hennink, W.E., Weinans, H., In situ forming acyl-capped PCLA–PEG–PCLA triblock copolymer based hydrogels. Biomaterials 34 (2013), 8002–8011.
-
(2013)
Biomaterials
, vol.34
, pp. 8002-8011
-
-
Sandker, M.J.1
Petit, A.2
Redout, E.M.3
Siebelt, M.4
Müller, B.5
Bruin, P.6
Meyboom, R.7
Vermonden, T.8
Hennink, W.E.9
Weinans, H.10
-
34
-
-
0033204239
-
Thermoreversible gelation of PEG−PLGA−PEG triblock copolymer aqueous solutions
-
[34] Jeong, B., Bae, Y.H., Kim, S.W., Thermoreversible gelation of PEG−PLGA−PEG triblock copolymer aqueous solutions. Macromolecules 32 (1999), 7064–7069.
-
(1999)
Macromolecules
, vol.32
, pp. 7064-7069
-
-
Jeong, B.1
Bae, Y.H.2
Kim, S.W.3
-
35
-
-
84887021750
-
Injectable thermosensitive PEG–PCL–PEG hydrogel/acellular bone matrix composite for bone regeneration in cranial defects
-
[35] Ni, P., Ding, Q., Fan, M., Liao, J., Qian, Z., Luo, J., Li, X., Luo, F., Yang, Z., Wei, Y., Injectable thermosensitive PEG–PCL–PEG hydrogel/acellular bone matrix composite for bone regeneration in cranial defects. Biomaterials 35 (2014), 236–248.
-
(2014)
Biomaterials
, vol.35
, pp. 236-248
-
-
Ni, P.1
Ding, Q.2
Fan, M.3
Liao, J.4
Qian, Z.5
Luo, J.6
Li, X.7
Luo, F.8
Yang, Z.9
Wei, Y.10
-
36
-
-
84973109387
-
Composite hydrogels with tunable anisotropic morphologies and mechanical properties
-
[36] Chau, M., De France, K.J., Kopera, B., Machado, V.R., Rosenfeldt, S., Reyes, L., Chan, K.J.W., Förster, S., Cranston, E.D., Hoare, T., Kumacheva, E., Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chem. Mater 28 (2016), 3406–3415.
-
(2016)
Chem. Mater
, vol.28
, pp. 3406-3415
-
-
Chau, M.1
De France, K.J.2
Kopera, B.3
Machado, V.R.4
Rosenfeldt, S.5
Reyes, L.6
Chan, K.J.W.7
Förster, S.8
Cranston, E.D.9
Hoare, T.10
Kumacheva, E.11
-
37
-
-
84950320025
-
Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials
-
[37] Fukushima, K., Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials. Biomater. Sci. 4 (2016), 9–24.
-
(2016)
Biomater. Sci.
, vol.4
, pp. 9-24
-
-
Fukushima, K.1
-
38
-
-
84906781149
-
Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers
-
[38] Chen, W., Meng, F., Cheng, R., Deng, C., Feijen, J., Zhong, Z., Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers. J. Control. Release 190 (2014), 398–414.
-
(2014)
J. Control. Release
, vol.190
, pp. 398-414
-
-
Chen, W.1
Meng, F.2
Cheng, R.3
Deng, C.4
Feijen, J.5
Zhong, Z.6
-
39
-
-
84927915560
-
Broad-spectrum antimicrobial polycarbonate hydrogels with fast degradability
-
[39] Pascual, A., Tan, J.P.K., Yuen, A., Chan, J.M.W., Coady, D.J., Mecerreyes, D., Hedrick, J.L., Yang, Y.Y., Sardon, H., Broad-spectrum antimicrobial polycarbonate hydrogels with fast degradability. Biomacromolecules 16 (2015), 1169–1178.
-
(2015)
Biomacromolecules
, vol.16
, pp. 1169-1178
-
-
Pascual, A.1
Tan, J.P.K.2
Yuen, A.3
Chan, J.M.W.4
Coady, D.J.5
Mecerreyes, D.6
Hedrick, J.L.7
Yang, Y.Y.8
Sardon, H.9
-
40
-
-
28844483415
-
Novel injectable pH and temperature sensitive block copolymer hydrogel
-
[40] Shim, W.S., Yoo, J.S., Bae, Y.H., Lee, D.S., Novel injectable pH and temperature sensitive block copolymer hydrogel. Biomacromolecules 6 (2005), 2930–2934.
-
(2005)
Biomacromolecules
, vol.6
, pp. 2930-2934
-
-
Shim, W.S.1
Yoo, J.S.2
Bae, Y.H.3
Lee, D.S.4
-
41
-
-
33745627327
-
Sulfonamide-based pH- and temperature-sensitive biodegradable block copolymer hydrogels
-
[41] Shim, W.S., Kim, S.W., Lee, D.S., Sulfonamide-based pH- and temperature-sensitive biodegradable block copolymer hydrogels. Biomacromolecules 7 (2006), 1935–1941.
-
(2006)
Biomacromolecules
, vol.7
, pp. 1935-1941
-
-
Shim, W.S.1
Kim, S.W.2
Lee, D.S.3
-
42
-
-
84939123462
-
Enhancing neurogenesis and angiogenesis with target delivery of stromal cell derived factor-1α using a dual ionic pH-sensitive copolymer
-
[42] Kim, D.H., Seo, Y.K., Thambi, T., Moon, G.J., Son, J.P., Li, G., Park, J.H., Lee, J.H., Kim, H.H., Lee, D.S., Bang, O.Y., Enhancing neurogenesis and angiogenesis with target delivery of stromal cell derived factor-1α using a dual ionic pH-sensitive copolymer. Biomaterials 61 (2015), 115–125.
-
(2015)
Biomaterials
, vol.61
, pp. 115-125
-
-
Kim, D.H.1
Seo, Y.K.2
Thambi, T.3
Moon, G.J.4
Son, J.P.5
Li, G.6
Park, J.H.7
Lee, J.H.8
Kim, H.H.9
Lee, D.S.10
Bang, O.Y.11
-
43
-
-
84952637529
-
Poly(ethylene glycol)-b-poly(lysine) copolymer bearing nitroaromatics for hypoxia-sensitive drug delivery
-
[43] Thambi, T., Son, S., Lee, D.S., Park, J.H., Poly(ethylene glycol)-b-poly(lysine) copolymer bearing nitroaromatics for hypoxia-sensitive drug delivery. Acta Biomater. 29 (2016), 261–270.
-
(2016)
Acta Biomater.
, vol.29
, pp. 261-270
-
-
Thambi, T.1
Son, S.2
Lee, D.S.3
Park, J.H.4
-
44
-
-
84940562204
-
Polyurethane foam containing rhEGF as a dressing material for healing diabetic wounds: synthesis, characterization, in vitro and in vivo studies
-
[44] Pyun, D.G., Choi, H.J., Yoon, H.S., Thambi, T., Lee, D.S., Polyurethane foam containing rhEGF as a dressing material for healing diabetic wounds: synthesis, characterization, in vitro and in vivo studies. Colloids Surf. B 135 (2015), 699–706.
-
(2015)
Colloids Surf. B
, vol.135
, pp. 699-706
-
-
Pyun, D.G.1
Choi, H.J.2
Yoon, H.S.3
Thambi, T.4
Lee, D.S.5
-
45
-
-
84942919713
-
Evaluation of AgHAP-containing polyurethane foam dressing for wound healing: synthesis, characterization, in vitro and in vivo studies
-
[45] Pyun, D.G., Yoon, H.S., Chung, H.Y., Choi, H.J., Thambi, T., Kim, B.S., Lee, D.S., Evaluation of AgHAP-containing polyurethane foam dressing for wound healing: synthesis, characterization, in vitro and in vivo studies. J. Mat. Chem. B 3 (2015), 7752–7763.
-
(2015)
J. Mat. Chem. B
, vol.3
, pp. 7752-7763
-
-
Pyun, D.G.1
Yoon, H.S.2
Chung, H.Y.3
Choi, H.J.4
Thambi, T.5
Kim, B.S.6
Lee, D.S.7
-
46
-
-
84879046837
-
Mineralized cyclodextrin nanoparticles for sustained protein delivery
-
[46] Sivasubramanian, M., Thambi, T., Park, J.H., Mineralized cyclodextrin nanoparticles for sustained protein delivery. Carbohydr. Polym. 97 (2013), 643–649.
-
(2013)
Carbohydr. Polym.
, vol.97
, pp. 643-649
-
-
Sivasubramanian, M.1
Thambi, T.2
Park, J.H.3
-
47
-
-
84961196879
-
PEGylated albumin-based polyion complex micelles for protein delivery
-
[47] Jiang, Y., Lu, H., Chen, F., Callari, M., Pourgholami, M., Morris, D.L., Stenzel, M.H., PEGylated albumin-based polyion complex micelles for protein delivery. Biomacromolecules 17 (2016), 808–817.
-
(2016)
Biomacromolecules
, vol.17
, pp. 808-817
-
-
Jiang, Y.1
Lu, H.2
Chen, F.3
Callari, M.4
Pourgholami, M.5
Morris, D.L.6
Stenzel, M.H.7
|