메뉴 건너뛰기




Volumn 75, Issue , 2017, Pages 938-953

Review of techniques based on artificial neural networks for the electrical characterization of concentrator photovoltaic technology

Author keywords

Artificial neural networks; Concentrator photovoltaics; Electrical characterization

Indexed keywords

COMPLEX NETWORKS; CONCENTRATION (PROCESS); NEURAL NETWORKS; SEMICONDUCTOR DEVICES; SEMICONDUCTOR MATERIALS; SOLAR CELLS;

EID: 85006489178     PISSN: 13640321     EISSN: 18790690     Source Type: Journal    
DOI: 10.1016/j.rser.2016.11.075     Document Type: Review
Times cited : (74)

References (99)
  • 1
    • 33746080913 scopus 로고    scopus 로고
    • Photovoltaic concentration at the onset of its commercial deployment
    • [1] Luque, A., Sala, G., Luque-Heredia, I., Photovoltaic concentration at the onset of its commercial deployment. Prog Photovolt: Res Appl 14:5 (2006), 413–428.
    • (2006) Prog Photovolt: Res Appl , vol.14 , Issue.5 , pp. 413-428
    • Luque, A.1    Sala, G.2    Luque-Heredia, I.3
  • 2
    • 0033893667 scopus 로고    scopus 로고
    • The promise of concentrators
    • [2] Swanson, R.M., The promise of concentrators. Prog Photovolt: Res Appl 8:1 (2000), 93–111.
    • (2000) Prog Photovolt: Res Appl , vol.8 , Issue.1 , pp. 93-111
    • Swanson, R.M.1
  • 4
    • 79851511844 scopus 로고    scopus 로고
    • High Concentrator PhotoVoltaics efficiencies: Present status and forecast
    • [4] Pérez-Higueras, P., Muñoz, E., Almonacid, G., Vidal, P., High Concentrator PhotoVoltaics efficiencies: Present status and forecast. Renew Sustain Energy Rev 15:4 (2011), 1810–1815.
    • (2011) Renew Sustain Energy Rev , vol.15 , Issue.4 , pp. 1810-1815
    • Pérez-Higueras, P.1    Muñoz, E.2    Almonacid, G.3    Vidal, P.4
  • 5
    • 78149416508 scopus 로고    scopus 로고
    • Building Integrated Concentrating Photovoltaics: a review
    • [5] Chemisana, D., Building Integrated Concentrating Photovoltaics: a review. Renew Sustain Energy Rev 15 (2011), 603–611.
    • (2011) Renew Sustain Energy Rev , vol.15 , pp. 603-611
    • Chemisana, D.1
  • 6
    • 84879002526 scopus 로고    scopus 로고
    • Life cycle assessment of a building integrated concentrated photovoltaic scheme
    • [6] Menoufi, K., Chemisana, D., Rosell, J., Life cycle assessment of a building integrated concentrated photovoltaic scheme. Appl Energy 111 (2013), 505–514.
    • (2013) Appl Energy , vol.111 , pp. 505-514
    • Menoufi, K.1    Chemisana, D.2    Rosell, J.3
  • 7
    • 82355185727 scopus 로고    scopus 로고
    • Energy production of photovoltaic system: fixed, tracking and concentrating
    • [7] Gómez-Gil, F.J., Wang, X., Barnett, A., Energy production of photovoltaic system: fixed, tracking and concentrating. Renew Sustain Energy Rev 16 (2012), 306–313.
    • (2012) Renew Sustain Energy Rev , vol.16 , pp. 306-313
    • Gómez-Gil, F.J.1    Wang, X.2    Barnett, A.3
  • 8
    • 84876672679 scopus 로고    scopus 로고
    • Life cycle assessment of high-concentration photovoltaic systems
    • [8] Fthenakis, V., Kim, H., Life cycle assessment of high-concentration photovoltaic systems. Prog Photovolt: Res Appl 21:3 (2013), 379–388.
    • (2013) Prog Photovolt: Res Appl , vol.21 , Issue.3 , pp. 379-388
    • Fthenakis, V.1    Kim, H.2
  • 9
    • 85152014294 scopus 로고    scopus 로고
    • Globaldata. Concentrated Photovoltaics (CPV) – Global Market Size, Competitive Landscape and Key Country Analysis to 2020
    • PRNewswire New York, U.K.
    • [9] Reportlinker, Globaldata. Concentrated Photovoltaics (CPV) – Global Market Size, Competitive Landscape and Key Country Analysis to 2020. 2014, PRNewswire, New York, U.K.
    • (2014)
    • Reportlinker1
  • 10
    • 84884587804 scopus 로고    scopus 로고
    • Toward 100 gigawatts of concentrator photovoltaics by 2030
    • [10] Friedman, D., King, R., Swanson, R., McJannet, J., Gwinner, D., Toward 100 gigawatts of concentrator photovoltaics by 2030. IEEE J Photovolt 3:4 (2013), 1460–1463.
    • (2013) IEEE J Photovolt , vol.3 , Issue.4 , pp. 1460-1463
    • Friedman, D.1    King, R.2    Swanson, R.3    McJannet, J.4    Gwinner, D.5
  • 11
    • 77957314918 scopus 로고    scopus 로고
    • Life cycle assessment and evaluation of energy payback time on high-concentration photovoltaic power generation system
    • [11] Nishimura, A., Hayashi, Y., Tanaka, K., Hirota, M., Kato, S., Ito, M., Araki, K.H.E., Life cycle assessment and evaluation of energy payback time on high-concentration photovoltaic power generation system. Appl Energy 87:9 (2010), 2797–2807.
    • (2010) Appl Energy , vol.87 , Issue.9 , pp. 2797-2807
    • Nishimura, A.1    Hayashi, Y.2    Tanaka, K.3    Hirota, M.4    Kato, S.5    Ito, M.6    Araki, K.H.E.7
  • 13
    • 84928537310 scopus 로고    scopus 로고
    • Levelised cost of electricity in high concentrated photovoltaic grid connected systems: spatial analysis of Spain
    • [13] Talavera, D., Pérez-Higueras, P., Ruíz-Arias, J., Fernández, E., Levelised cost of electricity in high concentrated photovoltaic grid connected systems: spatial analysis of Spain. Appl Energy 151 (2015), 49–59.
    • (2015) Appl Energy , vol.151 , pp. 49-59
    • Talavera, D.1    Pérez-Higueras, P.2    Ruíz-Arias, J.3    Fernández, E.4
  • 14
    • 84964322436 scopus 로고    scopus 로고
    • Investigating the impact of weather variables on the energy yield and cost of energy of grid-connected solar concentrator systems
    • [14] Fernández, E., Talavera, D., Almonacid, F., Smestad, G., Investigating the impact of weather variables on the energy yield and cost of energy of grid-connected solar concentrator systems. Energy 106 (2016), 790–801.
    • (2016) Energy , vol.106 , pp. 790-801
    • Fernández, E.1    Talavera, D.2    Almonacid, F.3    Smestad, G.4
  • 15
    • 84880381795 scopus 로고    scopus 로고
    • Models for the electrical characterization of high concentration photovoltaic cells and modules: a review
    • [15] Rodrigo, P., Fernández, E., Almonacid, F., Pérez-Higueras, P., Models for the electrical characterization of high concentration photovoltaic cells and modules: a review. Renew Sustain Energy Rev 26 (2013), 752–760.
    • (2013) Renew Sustain Energy Rev , vol.26 , pp. 752-760
    • Rodrigo, P.1    Fernández, E.2    Almonacid, F.3    Pérez-Higueras, P.4
  • 17
    • 84938571945 scopus 로고    scopus 로고
    • Multijunction concentrator solar cells: analysis and fundamentals. In: High concentrator photovoltaics: fundamentals, engineering and power plants
    • Springer
    • [17] Fernández, E.F., García-Loureiro, A., Smestad, G.P., Multijunction concentrator solar cells: analysis and fundamentals. In: High concentrator photovoltaics: fundamentals, engineering and power plants. 2015, Springer, 9–37.
    • (2015) , pp. 9-37
    • Fernández, E.F.1    García-Loureiro, A.2    Smestad, G.P.3
  • 18
    • 84961152497 scopus 로고    scopus 로고
    • A theoretical analysis of the impact of atmospheric parameters on the spectral, electrical and thermal performance of a concentrating III-V triple-junction solar cell
    • [18] Theristis, M., Fernández, E., Stark, C., O'Donovan, T., A theoretical analysis of the impact of atmospheric parameters on the spectral, electrical and thermal performance of a concentrating III-V triple-junction solar cell. Energy Convers Manag 117 (2016), 218–227.
    • (2016) Energy Convers Manag , vol.117 , pp. 218-227
    • Theristis, M.1    Fernández, E.2    Stark, C.3    O'Donovan, T.4
  • 19
    • 84901300707 scopus 로고    scopus 로고
    • Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions
    • [19] Fernandez, E.F., Almonacid, F., Ruiz-Arias, J., Soria-Moya, A., Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions. Sol Energy Mater Sol Cells 127 (2014), 179–187.
    • (2014) Sol Energy Mater Sol Cells , vol.127 , pp. 179-187
    • Fernandez, E.F.1    Almonacid, F.2    Ruiz-Arias, J.3    Soria-Moya, A.4
  • 20
    • 84957588223 scopus 로고    scopus 로고
    • Optics for concentrating photovoltaics: trends, limits and opportunities for materials and design
    • [pp. 394-407] [pp. 394-407]
    • [20] Shanks, K., Senthilarasu, S., Mallick, T., Optics for concentrating photovoltaics: trends, limits and opportunities for materials and design. [pp. 394-407] Renew Sustain Energy Rev Vols. 60 (2016), 394–407 [pp. 394-407].
    • (2016) Renew Sustain Energy Rev , vol.60 , pp. 394-407
    • Shanks, K.1    Senthilarasu, S.2    Mallick, T.3
  • 21
    • 84904214731 scopus 로고    scopus 로고
    • Review of methods for the calculation of cell temperature in high concentration photovoltaic modules for electrical characterization
    • [21] Rodrigo, P., Fernández, E., Almonacid, F., Pérez-Higueras, P., Review of methods for the calculation of cell temperature in high concentration photovoltaic modules for electrical characterization. Renew Sustain Energy Rev 38 (2014), 478–488.
    • (2014) Renew Sustain Energy Rev , vol.38 , pp. 478-488
    • Rodrigo, P.1    Fernández, E.2    Almonacid, F.3    Pérez-Higueras, P.4
  • 22
  • 23
    • 85152033807 scopus 로고    scopus 로고
    • Comparative assessment of the spectral impact on the energy yield of high concentrator and conventional photovoltaic technology. Solar Energy Materials and Solar Cells, vol. 147,
    • [23] Fernández, E F, Soria-Moya, A, Almonacid, F, Aguilera, J. Comparative assessment of the spectral impact on the energy yield of high concentrator and conventional photovoltaic technology. Solar Energy Materials and Solar Cells, vol. 147, pp. 185–197.
    • Fernández, E.F.1    Soria-Moya, A.2    Almonacid, F.3    Aguilera, J.4
  • 24
    • 84920915291 scopus 로고    scopus 로고
    • Optimal combination of gridded and ground-observed solar radiation data for regional solar resource assessment
    • [pp. 411-424,]
    • [24] Ruiz-Arias, J., Quesada-Ruiz, S., Fernández, E., Gueymard, C., Optimal combination of gridded and ground-observed solar radiation data for regional solar resource assessment. [pp. 411-424,] Sol Energy, 112 112 (2015), 411–424.
    • (2015) Sol Energy, 112 , vol.112 , pp. 411-424
    • Ruiz-Arias, J.1    Quesada-Ruiz, S.2    Fernández, E.3    Gueymard, C.4
  • 26
    • 0033686465 scopus 로고    scopus 로고
    • Application of Artificial neural networks for energy systems
    • [26] Kalogirou, S., Application of Artificial neural networks for energy systems. Appl Energy 67 (2000), 17–35.
    • (2000) Appl Energy , vol.67 , pp. 17-35
    • Kalogirou, S.1
  • 27
    • 0034963531 scopus 로고    scopus 로고
    • Application of Artificial neural networks in renewable energy systems applications: a review
    • [27] Kalogirou, S., Application of Artificial neural networks in renewable energy systems applications: a review. Renew Sustain Energy Rev 5 (2001), 373–401.
    • (2001) Renew Sustain Energy Rev , vol.5 , pp. 373-401
    • Kalogirou, S.1
  • 28
    • 0035343061 scopus 로고    scopus 로고
    • Recurrent neural supervised models for generating solar radiation
    • [28] Hontoria, L., Aguilera, J., Riesco, J., Zufiria, P., Recurrent neural supervised models for generating solar radiation. J Intell Robot Syst 31 (2001), 201–221.
    • (2001) J Intell Robot Syst , vol.31 , pp. 201-221
    • Hontoria, L.1    Aguilera, J.2    Riesco, J.3    Zufiria, P.4
  • 29
    • 0037141799 scopus 로고    scopus 로고
    • Generation of hourly irradiation synthetic series using the neural network multilayer perceptron
    • [29] Hontoria, L., Aguilera, J., Zufiria, P., Generation of hourly irradiation synthetic series using the neural network multilayer perceptron. Sol Energy, 72:5 (2002), 441–446.
    • (2002) Sol Energy , vol.72 , Issue.5 , pp. 441-446
    • Hontoria, L.1    Aguilera, J.2    Zufiria, P.3
  • 30
    • 0032075864 scopus 로고    scopus 로고
    • An ANN-based approach for predicting global radiation in location with no direct measurement instrumentation
    • [30] Al-Alawi, S., Al-Hinai, H., An ANN-based approach for predicting global radiation in location with no direct measurement instrumentation. Renew Energy, 14 (1998), 199–204.
    • (1998) Renew Energy , vol.14 , pp. 199-204
    • Al-Alawi, S.1    Al-Hinai, H.2
  • 31
    • 27144494198 scopus 로고    scopus 로고
    • A simplified model for generating sequences of global radiation data for insolates sites: using neural network and library of Markov transition matrices
    • [31] Mellit, A., Benghanem, M., Hadj Arab, A., Guessoum, A., A simplified model for generating sequences of global radiation data for insolates sites: using neural network and library of Markov transition matrices. Sol Energy 79:5 (2005), 468–482.
    • (2005) Sol Energy , vol.79 , Issue.5 , pp. 468-482
    • Mellit, A.1    Benghanem, M.2    Hadj Arab, A.3    Guessoum, A.4
  • 32
    • 33646726754 scopus 로고    scopus 로고
    • An adaptative wavelet-network model for forecasting daily total solar
    • [32] Mellit, A., Benghanem, M., Kalogirou, S., An adaptative wavelet-network model for forecasting daily total solar. Appl Energy, 83 (2006), 704–722.
    • (2006) Appl Energy , vol.83 , pp. 704-722
    • Mellit, A.1    Benghanem, M.2    Kalogirou, S.3
  • 33
    • 0344980643 scopus 로고    scopus 로고
    • Estimation of the maximum power and normal operating power of a photovoltaic module by neural networks
    • [33] Bahgat, A., Helwa, N., Ahamd, G., El Shenawy, E., Estimation of the maximum power and normal operating power of a photovoltaic module by neural networks. Renew Energy 29 (2004), 443–457.
    • (2004) Renew Energy , vol.29 , pp. 443-457
    • Bahgat, A.1    Helwa, N.2    Ahamd, G.3    El Shenawy, E.4
  • 34
    • 0031236934 scopus 로고    scopus 로고
    • Neural network based estimation of maximum power generation from PV module using environmental information
    • [34] Himaya, T., Katabayashi, K., Neural network based estimation of maximum power generation from PV module using environmental information. IEEE Trans Energy Convers, 12:3 (1997), 241–247.
    • (1997) IEEE Trans Energy Convers , vol.12 , Issue.3 , pp. 241-247
    • Himaya, T.1    Katabayashi, K.2
  • 35
    • 15744393954 scopus 로고    scopus 로고
    • An adaptive artificial neural network model for sizing stand-alone photovoltaic systems: application for isolated sites in Algeria
    • [35] Mellit, A., Benghanem, M., Hadj Arab, A., Guessoum, A., An adaptive artificial neural network model for sizing stand-alone photovoltaic systems: application for isolated sites in Algeria. Renew Energy, 30:10 (2005), 1501–1524.
    • (2005) Renew Energy , vol.30 , Issue.10 , pp. 1501-1524
    • Mellit, A.1    Benghanem, M.2    Hadj Arab, A.3    Guessoum, A.4
  • 36
    • 33748420215 scopus 로고    scopus 로고
    • “Modelling and simulation of standalone photovoltaic system using an adaptative artificial neural network
    • [36] Mellit, A., Benghanem, M., Kalogirou, S., “Modelling and simulation of standalone photovoltaic system using an adaptative artificial neural network. Renew Energy 32:2 (2007), 285–313.
    • (2007) Renew Energy , vol.32 , Issue.2 , pp. 285-313
    • Mellit, A.1    Benghanem, M.2    Kalogirou, S.3
  • 37
    • 0033666927 scopus 로고    scopus 로고
    • ANN based peak power tracking for PV supplied motors
    • [37] Veerachary, M., Yadaiah, N., ANN based peak power tracking for PV supplied motors. Sol Energy 69:4 (2000), 343–350.
    • (2000) Sol Energy , vol.69 , Issue.4 , pp. 343-350
    • Veerachary, M.1    Yadaiah, N.2
  • 38
    • 13444260750 scopus 로고    scopus 로고
    • Maximum power point tracking controller for PV systems using neural networks
    • [38] Bahgat, A., Helwa, N., Ahamd, G., El Shenawy, E., Maximum power point tracking controller for PV systems using neural networks. Renew Energy 30 (2005), 1257–1268.
    • (2005) Renew Energy , vol.30 , pp. 1257-1268
    • Bahgat, A.1    Helwa, N.2    Ahamd, G.3    El Shenawy, E.4
  • 39
    • 32344446938 scopus 로고    scopus 로고
    • Neural network based solar cell model
    • [39] Karapete, E., Boztepe, M., Colak, M., Neural network based solar cell model. Energy Convers Manag 47 (2006), 1159–1178.
    • (2006) Energy Convers Manag , vol.47 , pp. 1159-1178
    • Karapete, E.1    Boztepe, M.2    Colak, M.3
  • 40
    • 0036489495 scopus 로고    scopus 로고
    • Selecting a suitable model for characterizing photovoltaic devices
    • [40] de Blas, M., Torres, J., Prieto, E., García, A., Selecting a suitable model for characterizing photovoltaic devices. Renew Energy 25 (2002), 371–380.
    • (2002) Renew Energy , vol.25 , pp. 371-380
    • de Blas, M.1    Torres, J.2    Prieto, E.3    García, A.4
  • 41
    • 56049088497 scopus 로고    scopus 로고
    • Characterisation of Si-crystalline PV modules by artificial neural networks
    • [41] Almonacid, F., Rus, C., Hontoria, L., Fuentes, M., Nofuentes, G., Characterisation of Si-crystalline PV modules by artificial neural networks. Renew Energy no. 34 (2009), 941–949.
    • (2009) Renew Energy , vol.34 , pp. 941-949
    • Almonacid, F.1    Rus, C.2    Hontoria, L.3    Fuentes, M.4    Nofuentes, G.5
  • 42
    • 73249138360 scopus 로고    scopus 로고
    • Characterisation of PV CIS module by artificial neural networks. A comparative study with other methods
    • [42] Almonacid, F., Rus, C., Hontoria, L., F.J, M., Characterisation of PV CIS module by artificial neural networks. A comparative study with other methods. Renew Energy 35 (2010), 973–980.
    • (2010) Renew Energy , vol.35 , pp. 973-980
    • Almonacid, F.1    Rus, C.2    Hontoria, L.3    F.J, M.4
  • 43
    • 78650733354 scopus 로고    scopus 로고
    • Calculation of the energy provided by a PV generator. Comparative study: conventional methods vs artificial neural networks
    • [43] Almonacid, F., Rus, C., Pérez-Higueras, P., Hontoria, L., Calculation of the energy provided by a PV generator. Comparative study: conventional methods vs artificial neural networks. Energy 36 (2011), 375–384.
    • (2011) Energy , vol.36 , pp. 375-384
    • Almonacid, F.1    Rus, C.2    Pérez-Higueras, P.3    Hontoria, L.4
  • 44
    • 68049137320 scopus 로고    scopus 로고
    • Estimation of the energy of a PV generator using artificial neural network
    • [44] Almonacid, F., Rus, C., Pérez-Higueras, P., Hontoria, L., Estimation of the energy of a PV generator using artificial neural network. Renew Energy no. 34 (2009), 2743–2750.
    • (2009) Renew Energy , vol.34 , pp. 2743-2750
    • Almonacid, F.1    Rus, C.2    Pérez-Higueras, P.3    Hontoria, L.4
  • 45
    • 47149095417 scopus 로고    scopus 로고
    • Artificial intelligence techniques for photovoltaic applications: a review
    • [45] Mellit, A., Kalogirou, S., Artificial intelligence techniques for photovoltaic applications: a review. Prog Energy Comb Sci 34 (2008), 574–632.
    • (2008) Prog Energy Comb Sci , vol.34 , pp. 574-632
    • Mellit, A.1    Kalogirou, S.2
  • 47
    • 84924594616 scopus 로고    scopus 로고
    • YieldOpt, a model to predict the power output and energy yield for concentrating photovoltaic modules
    • [47] Steinner, M., Siefer, G., Hornung, T., Peharz, G., Bett, A., YieldOpt, a model to predict the power output and energy yield for concentrating photovoltaic modules. Prog Photovolt: Res Appl, 2014.
    • (2014) Prog Photovolt: Res Appl
    • Steinner, M.1    Siefer, G.2    Hornung, T.3    Peharz, G.4    Bett, A.5
  • 48
    • 79955490293 scopus 로고    scopus 로고
    • Concentrated solar energy applications using Fresnel lenses: a review
    • [48] Xie, W.T., Dai, Y., Wang, R., Sumathy, K., Concentrated solar energy applications using Fresnel lenses: a review. Renew Sustain Energy Rev 15:6 (2011), 2588–2606.
    • (2011) Renew Sustain Energy Rev , vol.15 , Issue.6 , pp. 2588-2606
    • Xie, W.T.1    Dai, Y.2    Wang, R.3    Sumathy, K.4
  • 49
    • 65149095633 scopus 로고    scopus 로고
    • Comparative analysis of different secondary optical elements for aspheric primary lenses
    • [49] Victoria, M., Doḿinguez, C., Ant́on, I., Sala, G., Comparative analysis of different secondary optical elements for aspheric primary lenses. Opt Express 17:9 (2009), 6487–6492.
    • (2009) Opt Express , vol.17 , Issue.9 , pp. 6487-6492
    • Victoria, M.1    Doḿinguez, C.2    Ant́on, I.3    Sala, G.4
  • 51
    • 79959937804 scopus 로고    scopus 로고
    • Evaluation and optimization of the optical performance of low-concentrating dielectric compound parabolic concentrator using ray-tracing methods
    • [51] Sarmah, N., Richards, B., Mallick, T., Evaluation and optimization of the optical performance of low-concentrating dielectric compound parabolic concentrator using ray-tracing methods. Appl Opt 50:19 (2011), 3303–3310.
    • (2011) Appl Opt , vol.50 , Issue.19 , pp. 3303-3310
    • Sarmah, N.1    Richards, B.2    Mallick, T.3
  • 52
    • 84955276585 scopus 로고    scopus 로고
    • Influence of spectrum and latitude on the annual optical performance of a dielectric based BICPV systemBaig
    • [52] Baig, H., Fernandez, E.F., Mallick, T., Influence of spectrum and latitude on the annual optical performance of a dielectric based BICPV systemBaig. Sol Energy 124 (2016), 268–277.
    • (2016) Sol Energy , vol.124 , pp. 268-277
    • Baig, H.1    Fernandez, E.F.2    Mallick, T.3
  • 53
    • 75449111025 scopus 로고    scopus 로고
    • Artificial Intelligence technique for modelling and forecasting of solar radiation data: a review
    • [53] Mellit, A., Artificial Intelligence technique for modelling and forecasting of solar radiation data: a review. Int J Artif Intell Soft Comput 1:1 (2008), 52–76.
    • (2008) Int J Artif Intell Soft Comput , vol.1 , Issue.1 , pp. 52-76
    • Mellit, A.1
  • 54
    • 85152075448 scopus 로고    scopus 로고
    • Chapter 8: overview of solar-forecasting methods and a metric for accuracy evaluation,”evaluation. In: Solar energy forecasting and resource assessment
    • Elsevier
    • [54] Coimbra, C.F., Kleissl, J., Marquéz, R., Chapter 8: overview of solar-forecasting methods and a metric for accuracy evaluation,”evaluation. In: Solar energy forecasting and resource assessment. 2013, Elsevier, 172–192.
    • (2013) , pp. 172-192
    • Coimbra, C.F.1    Kleissl, J.2    Marquéz, R.3
  • 55
    • 9944242270 scopus 로고    scopus 로고
    • Selection of input parameters to model direct solar irradiance by using artificial neural networks
    • [55] Lopez, G., Batlles, F., Tovar-Pescador, J., Selection of input parameters to model direct solar irradiance by using artificial neural networks. Energy 30 (2005), 1675–1684.
    • (2005) Energy , vol.30 , pp. 1675-1684
    • Lopez, G.1    Batlles, F.2    Tovar-Pescador, J.3
  • 56
    • 33745892901 scopus 로고    scopus 로고
    • Computation of beam solar radiation at normal incidence using artificial neural network
    • [56] Alam, S., Kaushik, S., Garg, S., Computation of beam solar radiation at normal incidence using artificial neural network. Renew Energy 31 (2006), 1483–1491.
    • (2006) Renew Energy , vol.31 , pp. 1483-1491
    • Alam, S.1    Kaushik, S.2    Garg, S.3
  • 57
    • 50349097252 scopus 로고    scopus 로고
    • Artificial neural network model for the estimation of direct solar radiation in the Indian zone
    • [57] Mishra, A., Kaushika, N., Zhang, G., Zhou, J., Artificial neural network model for the estimation of direct solar radiation in the Indian zone. Int J Sustain Energy 27:3 (2008), 95–103.
    • (2008) Int J Sustain Energy , vol.27 , Issue.3 , pp. 95-103
    • Mishra, A.1    Kaushika, N.2    Zhang, G.3    Zhou, J.4
  • 58
    • 75449088043 scopus 로고    scopus 로고
    • An adaptive model for predicting of global, direct and diffuse hourly solar irradiance
    • [58] Mellit, A., Eleuch, H., Benghanem, M., Elaoun, C., Pavan, A., An adaptive model for predicting of global, direct and diffuse hourly solar irradiance. Energy Convers Manag 51 (2010), 771–782.
    • (2010) Energy Convers Manag , vol.51 , pp. 771-782
    • Mellit, A.1    Eleuch, H.2    Benghanem, M.3    Elaoun, C.4    Pavan, A.5
  • 59
    • 84861063699 scopus 로고    scopus 로고
    • Using artificial neural networks to predict direct solar irradiation
    • [59] Mubiru, J., Using artificial neural networks to predict direct solar irradiation. Adv Artif Neural Syst 2011 (2011), 1–6.
    • (2011) Adv Artif Neural Syst , vol.2011 , pp. 1-6
    • Mubiru, J.1
  • 60
    • 79954613949 scopus 로고    scopus 로고
    • Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database
    • [60] Marquez, R., Coimbra, C., Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database. Sol Energy 85 (2011), 746–756.
    • (2011) Sol Energy , vol.85 , pp. 746-756
    • Marquez, R.1    Coimbra, C.2
  • 61
    • 85151919068 scopus 로고    scopus 로고
    • Artificial neural networks for the generation of direct normal solar annual irradiance synthetic series. in: AIP Conference In: Proceedings of the 8th international conference on concentrating photovoltaic systems: CPV-8. Toledo, Spain;
    • [61] J. Rodrigo, L. Hontoria, F. Almonacid, E. Fernández, P. Rodrigo and P. J. Pérez-Higueras, Artificial neural networks for the generation of direct normal solar annual irradiance synthetic series. in: AIP Conference In: Proceedings of the 8th international conference on concentrating photovoltaic systems: CPV-8. Toledo, Spain; 2012.
    • (2012)
    • Rodrigo, J.1    Hontoria, L.2    Almonacid, F.3    Fernández, E.4    Rodrigo, P.5    Pérez-Higueras, P.J.6
  • 62
    • 84863330878 scopus 로고    scopus 로고
    • Splitting global solar radiation into diffuse and direct normal fractions using artificial neural networks
    • [62] Rehman, S., Mohandes, M., Splitting global solar radiation into diffuse and direct normal fractions using artificial neural networks. Energy Sources 34:14 (2012), 1326–1336.
    • (2012) Energy Sources , vol.34 , Issue.14 , pp. 1326-1336
    • Rehman, S.1    Mohandes, M.2
  • 63
    • 84872511269 scopus 로고    scopus 로고
    • Artificial neural network based model for retrieval of the direct normal, diffuse horizontal and global horizontal irradiances using SEVIRI images
    • [63] Y, E., Marpu, P., Gherboudj, I., Ghedira, H., Taha, B.O., Chiesa, M., Artificial neural network based model for retrieval of the direct normal, diffuse horizontal and global horizontal irradiances using SEVIRI images. Sol Energy 89 (2013), 1–16.
    • (2013) Sol Energy , vol.89 , pp. 1-16
    • Y, E.1    Marpu, P.2    Gherboudj, I.3    Ghedira, H.4    Taha, B.O.5    Chiesa, M.6
  • 64
    • 84887950005 scopus 로고    scopus 로고
    • Hybrid intra-hour DNI forecasts with sky image processing enhanced by stochastic learning
    • [64] Chu, Y., Pedro, H.T., Coimbra, C.F., Hybrid intra-hour DNI forecasts with sky image processing enhanced by stochastic learning. Sol Energy 98 (2013), 592–603.
    • (2013) Sol Energy , vol.98 , pp. 592-603
    • Chu, Y.1    Pedro, H.T.2    Coimbra, C.F.3
  • 65
    • 84907936502 scopus 로고    scopus 로고
    • Mapping of the solar irradiance in the UAE using advanced artificial neural network ensemble
    • [65] Alobaidi, M.H., Marpu, P.R., Ouarda, T.B.M.J., Ghedira, H., Mapping of the solar irradiance in the UAE using advanced artificial neural network ensemble. IEEE J Sel Top Appl Earth Obs Remote Sens 7:8 (2014), 3668–3680.
    • (2014) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.7 , Issue.8 , pp. 3668-3680
    • Alobaidi, M.H.1    Marpu, P.R.2    Ouarda, T.B.M.J.3    Ghedira, H.4
  • 66
    • 84945249158 scopus 로고    scopus 로고
    • Artificial neural network models for predicting the solar radiation as input of a concentrating photovoltaic system
    • [66] Renno, C., Petito, F., Gatto, A., Artificial neural network models for predicting the solar radiation as input of a concentrating photovoltaic system. Energy Convers Manag 106 (2015), 999–1012.
    • (2015) Energy Convers Manag , vol.106 , pp. 999-1012
    • Renno, C.1    Petito, F.2    Gatto, A.3
  • 67
    • 0036532622 scopus 로고    scopus 로고
    • Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia
    • [67] Tasadduq, I., Rehman, S., Bubshait, K., Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia. Renew Energy 25 (2002), 545–554.
    • (2002) Renew Energy , vol.25 , pp. 545-554
    • Tasadduq, I.1    Rehman, S.2    Bubshait, K.3
  • 68
    • 3142691280 scopus 로고    scopus 로고
    • Hourly temperature forecasting using abductive networks
    • [68] Abdel-Aal, R., Hourly temperature forecasting using abductive networks. Eng Appl Artif Intell 17 (2004), 543–556.
    • (2004) Eng Appl Artif Intell , vol.17 , pp. 543-556
    • Abdel-Aal, R.1
  • 69
    • 67449132094 scopus 로고    scopus 로고
    • Artificial neural networks for automated year-round temperature prediction
    • [69] Smith, B.A., Hoogenbooma, G., McClendona, R., Artificial neural networks for automated year-round temperature prediction. Comput Electron Agric 68 (2009), 52–61.
    • (2009) Comput Electron Agric , vol.68 , pp. 52-61
    • Smith, B.A.1    Hoogenbooma, G.2    McClendona, R.3
  • 70
    • 56049113721 scopus 로고    scopus 로고
    • Daily means ambient temperature prediction using artificial neural network method: a case study of Turkey
    • [70] Dombaycı, Ö.A., Gölcü, M., Daily means ambient temperature prediction using artificial neural network method: a case study of Turkey. Renew Energy 34 (2009), 1158–1161.
    • (2009) Renew Energy , vol.34 , pp. 1158-1161
    • Dombaycı, Ö.A.1    Gölcü, M.2
  • 71
    • 84878003535 scopus 로고    scopus 로고
    • Artificial neural network based methodologies for the spatial and temporal estimation of air temperature: application in the Greater Area of Chania, Greece
    • [71] Deligiorgi, D., Philippopoulos, K., Kouroupetroglou, G., Artificial neural network based methodologies for the spatial and temporal estimation of air temperature: application in the Greater Area of Chania, Greece. Int Conf Pattern Recognit Appl Methods, 2013.
    • (2013) Int Conf Pattern Recognit Appl Methods
    • Deligiorgi, D.1    Philippopoulos, K.2    Kouroupetroglou, G.3
  • 72
    • 84867754607 scopus 로고    scopus 로고
    • Generation of ambient temperature hourly time series for some Spanish locations by artificial neural networks
    • [72] Almonacid, F., Pérez-Higueras, P., Rodrigo, P., Hontoria, L., Generation of ambient temperature hourly time series for some Spanish locations by artificial neural networks. Renew Energy 51 (2013), 285–291.
    • (2013) Renew Energy , vol.51 , pp. 285-291
    • Almonacid, F.1    Pérez-Higueras, P.2    Rodrigo, P.3    Hontoria, L.4
  • 74
    • 84891740898 scopus 로고    scopus 로고
    • Prediction of long-term monthly air temperature using geographical inputs
    • [74] Kisi, O., Shiri, J., Prediction of long-term monthly air temperature using geographical inputs. Int J Clim 34 (2014), 179–186.
    • (2014) Int J Clim , vol.34 , pp. 179-186
    • Kisi, O.1    Shiri, J.2
  • 75
    • 84891053883 scopus 로고    scopus 로고
    • A model based on artificial neuronal network for the prediction of the maximum power of a low concentration photovoltaic module for building integration
    • [75] Fernández, E.F., Almonacid, F., Sharma, N., Rodrigo, P., Mallik, T., Pérez-Higueras, P., A model based on artificial neuronal network for the prediction of the maximum power of a low concentration photovoltaic module for building integration. Sol Energy 100 (2014), 148–158.
    • (2014) Sol Energy , vol.100 , pp. 148-158
    • Fernández, E.F.1    Almonacid, F.2    Sharma, N.3    Rodrigo, P.4    Mallik, T.5    Pérez-Higueras, P.6
  • 76
    • 78651098366 scopus 로고    scopus 로고
    • Review of modelling details in relation to low-concentration solar concentrating photovoltaic
    • [76] Zahedi, A., Review of modelling details in relation to low-concentration solar concentrating photovoltaic. Renew Sustain Energy Rev 15:3 (2011), 1609–1614.
    • (2011) Renew Sustain Energy Rev , vol.15 , Issue.3 , pp. 1609-1614
    • Zahedi, A.1
  • 77
    • 84878192388 scopus 로고    scopus 로고
    • Outdoor evaluation of concentrator photovoltaic systems modules from different manufacturers: first results and steps
    • [77] Fernández, E.F., Pérez-Higueras, P., Garcia Loureiro, A., Vidal, P., Outdoor evaluation of concentrator photovoltaic systems modules from different manufacturers: first results and steps. Prog Photovolt: Res Appl 21:4 (2013), 693–701.
    • (2013) Prog Photovolt: Res Appl , vol.21 , Issue.4 , pp. 693-701
    • Fernández, E.F.1    Pérez-Higueras, P.2    Garcia Loureiro, A.3    Vidal, P.4
  • 78
    • 84888591771 scopus 로고    scopus 로고
    • Calculation of the cell temperature of a high concentrator photovoltaic (HCPV) module: a study and comparison of different methods
    • [78] Fernández, E.F., Almonacid, F., Rodrigo, P., Pérez-Higueras, P., Calculation of the cell temperature of a high concentrator photovoltaic (HCPV) module: a study and comparison of different methods. Sol Energy Mater Sol Cells 121 (2014), 144–151.
    • (2014) Sol Energy Mater Sol Cells , vol.121 , pp. 144-151
    • Fernández, E.F.1    Almonacid, F.2    Rodrigo, P.3    Pérez-Higueras, P.4
  • 79
    • 84876702149 scopus 로고    scopus 로고
    • A two subcell equivalent solar cell model for III–V triple junction solar cells under spectrum and temperature variations
    • [79] Fernández, E.F., Siefer, G., Almonacid, F., García Loureiro, A.J., Pérez-Higueras, P., A two subcell equivalent solar cell model for III–V triple junction solar cells under spectrum and temperature variations. Sol Energy 92 (2013), 221–229.
    • (2013) Sol Energy , vol.92 , pp. 221-229
    • Fernández, E.F.1    Siefer, G.2    Almonacid, F.3    García Loureiro, A.J.4    Pérez-Higueras, P.5
  • 80
    • 85151984966 scopus 로고    scopus 로고
    • Estimation of Dual-Junction solar cell characteristic using neural networks,
    • Proceedings of the 35th IEEE photovoltaic specialists conference, PVSC Honolulu, HI, United States; 2010.
    • [80] J. Patra and D. Maskell, Estimation of Dual-Junction solar cell characteristic using neural networks, In: Proceedings of the 35th IEEE photovoltaic specialists conference, PVSC 2010. Honolulu, HI, United States; 2010.
    • (2010)
    • Patra, J.1    Maskell, D.2
  • 81
    • 78650709097 scopus 로고    scopus 로고
    • Neural network-based model for dual-junction solar cells
    • [81] Patra, J., Neural network-based model for dual-junction solar cells. Prog Photovolt: Ressearch Appl 19 (2011), 33–44.
    • (2011) Prog Photovolt: Ressearch Appl , vol.19 , pp. 33-44
    • Patra, J.1
  • 82
    • 85152076680 scopus 로고    scopus 로고
    • [82] SILVACO, SILVACO, [Online]. Available: http://www.silvaco.com/products/tcad/device_simulation/atlas/atlas.html〉.
    • SILVACO1
  • 83
    • 79951945759 scopus 로고    scopus 로고
    • Chebyshev Neural network-based model for dual-junction solar cells
    • [83] Patra, J., Chebyshev Neural network-based model for dual-junction solar cells. IEEE Trans Energy Convers, 26:1 (2011), 132–139.
    • (2011) IEEE Trans Energy Convers , vol.26 , Issue.1 , pp. 132-139
    • Patra, J.1
  • 84
    • 84858276008 scopus 로고    scopus 로고
    • Modeling of multi-junction solar cells for estimation of EQE under influence of charged particles using artificial neural networks
    • [84] Patra, J., Maskell, D., Modeling of multi-junction solar cells for estimation of EQE under influence of charged particles using artificial neural networks. Renew Energy 44 (2012), 7–16.
    • (2012) Renew Energy , vol.44 , pp. 7-16
    • Patra, J.1    Maskell, D.2
  • 85
    • 84949238212 scopus 로고    scopus 로고
    • Multi-junction solar cells electrical characterization by neuronal networks under different irradiance, spectrum and cell temperature
    • [85] Fernández, E.F., Almonacid, F., Gracía-Loureiro, A., Multi-junction solar cells electrical characterization by neuronal networks under different irradiance, spectrum and cell temperature. Energy, 90 (2015), 846–856.
    • (2015) Energy , vol.90 , pp. 846-856
    • Fernández, E.F.1    Almonacid, F.2    Gracía-Loureiro, A.3
  • 86
    • 84927689924 scopus 로고    scopus 로고
    • Spectrally corrected direct normal irradiance based on artificial neural networks for high concentrator photovoltaic applications
    • [86] Fernández, E., Almonacid, F., Spectrally corrected direct normal irradiance based on artificial neural networks for high concentrator photovoltaic applications. Energy 74 (2014), 941–949.
    • (2014) Energy , vol.74 , pp. 941-949
    • Fernández, E.1    Almonacid, F.2
  • 87
    • 84938367305 scopus 로고    scopus 로고
    • A new procedure for estimating the cell temperature of a high concentrator photovoltaic grid connected system based on atmospheric parameters
    • [87] Fernández, E.F., Almonacid, F., A new procedure for estimating the cell temperature of a high concentrator photovoltaic grid connected system based on atmospheric parameters. Energy Convers Manag 103 (2015), 1031–1039.
    • (2015) Energy Convers Manag , vol.103 , pp. 1031-1039
    • Fernández, E.F.1    Almonacid, F.2
  • 89
    • 84856546923 scopus 로고    scopus 로고
    • Sandia National Laboratories. Photovoltaic array performance model SAND2004-3535
    • Albuquerque New Mexico, USA
    • [89] King, D.L., Boyson, W.E., Kratochvil, J.A., Sandia National Laboratories. Photovoltaic array performance model SAND2004-3535. 2004, Albuquerque, New Mexico, USA.
    • (2004)
    • King, D.L.1    Boyson, W.E.2    Kratochvil, J.A.3
  • 90
    • 84938588068 scopus 로고    scopus 로고
    • Applications of ANNs in the Field of the HCPV Technology. In: High Concentrator Photovoltaics: Fundamentals, Engineering and Power Plants
    • Springer
    • [90] Almonacid, F., Mellit, A., Kalogirou, S., Applications of ANNs in the Field of the HCPV Technology. In: High Concentrator Photovoltaics: Fundamentals, Engineering and Power Plants. 2015, Springer, 333–351.
    • (2015) , pp. 333-351
    • Almonacid, F.1    Mellit, A.2    Kalogirou, S.3
  • 91
    • 84876092251 scopus 로고    scopus 로고
    • Estimating the maximum power of a High Concentrator Photovoltaic (HCPV) module using an Artificial Neural Network
    • [91] Almonacid, F., Fernández, E.F., Rodrigo, P., Pérez-Higueras, P., Rus-Casas, C., Estimating the maximum power of a High Concentrator Photovoltaic (HCPV) module using an Artificial Neural Network,. Energy 53 (2013), 165–172.
    • (2013) Energy , vol.53 , pp. 165-172
    • Almonacid, F.1    Fernández, E.F.2    Rodrigo, P.3    Pérez-Higueras, P.4    Rus-Casas, C.5
  • 92
    • 84872038963 scopus 로고    scopus 로고
    • Characterization of concentrating Photovoltaic modules by cooperative competitive radial basis function networks
    • [92] Rivera, A., García-Domingo, B., Del Jesus, M., Aguilera, J., Characterization of concentrating Photovoltaic modules by cooperative competitive radial basis function networks. Expert Syst Appl 40:5 (2013), 1599–1608.
    • (2013) Expert Syst Appl , vol.40 , Issue.5 , pp. 1599-1608
    • Rivera, A.1    García-Domingo, B.2    Del Jesus, M.3    Aguilera, J.4
  • 93
    • 85152090502 scopus 로고    scopus 로고
    • Modeling long term module performance based on realistic reporting conditions with consideration to spectral effects., in: Proceedings of the world conference on photovoltaic energy conversion;
    • [93] S. Williams, T. Betts, T. Helf, R. Gottschalg, H. Beyer and D. Infield, Modeling long term module performance based on realistic reporting conditions with consideration to spectral effects., in: Proceedings of the world conference on photovoltaic energy conversion; 2003.
    • (2003)
    • Williams, S.1    Betts, T.2    Helf, T.3    Gottschalg, R.4    Beyer, H.5    Infield, D.6
  • 94
    • 67649425412 scopus 로고    scopus 로고
    • Uniqueness verification of solar spectrum index of average photon energy for evaluating outdoor performance of photovoltaic modules
    • [94] Takashi, M., Yasuhito, N., Hiroaki, T., Hideyuki, T., Uniqueness verification of solar spectrum index of average photon energy for evaluating outdoor performance of photovoltaic modules. Sol Energy 83 (2009), 1294–1299.
    • (2009) Sol Energy , vol.83 , pp. 1294-1299
    • Takashi, M.1    Yasuhito, N.2    Hiroaki, T.3    Hideyuki, T.4
  • 95
    • 84928436738 scopus 로고    scopus 로고
    • High concentrator photovoltaic module simulation by neuronal networks using spectrally corrected direct normal irradiance and cell temperature
    • [95] Almonacid, F., Fernández, E.F., Mallick, T., Pérez-Higueras, P., High concentrator photovoltaic module simulation by neuronal networks using spectrally corrected direct normal irradiance and cell temperature. Energy, 84 (2015), 336–343.
    • (2015) Energy , vol.84 , pp. 336-343
    • Almonacid, F.1    Fernández, E.F.2    Mallick, T.3    Pérez-Higueras, P.4
  • 96
    • 84921487342 scopus 로고    scopus 로고
    • CPV module electric characterisation by artificial neural networks
    • [96] García-Domingo, B., Piliougine, M., Elizondo, D., Aguilera, J., CPV module electric characterisation by artificial neural networks. Renew Energy 78 (2015), 173–181.
    • (2015) Renew Energy , vol.78 , pp. 173-181
    • García-Domingo, B.1    Piliougine, M.2    Elizondo, D.3    Aguilera, J.4
  • 97
    • 85006065074 scopus 로고    scopus 로고
    • Comparison of methods for estimating the solar cell temperature and their influence in the calculation of the electrical parameters in a HCPV module, AIP Conference Proceedings;
    • [97] E. F. Fernández, F. Almonacid, L. Micheli and T. Mallick, Comparison of methods for estimating the solar cell temperature and their influence in the calculation of the electrical parameters in a HCPV module, AIP Conference Proceedings; 2014: vol. 1616: 183–186.
    • (2014) , vol.1616 , pp. 183-186
    • Fernández, E.F.1    Almonacid, F.2    Micheli, L.3    Mallick, T.4
  • 98
    • 84928378222 scopus 로고    scopus 로고
    • Performance Analysis of models for calculating the maximum power of high concentrator photovoltaic modules
    • [98] Soria-Moya, A., Almonacid Cruz, F., Fernandez, E., Rodrigo, P., Mallick, T., Perez-Higueras, P., Performance Analysis of models for calculating the maximum power of high concentrator photovoltaic modules. IEEE J Photovolt 5:3 (2015), 947–955.
    • (2015) IEEE J Photovolt , vol.5 , Issue.3 , pp. 947-955
    • Soria-Moya, A.1    Almonacid Cruz, F.2    Fernandez, E.3    Rodrigo, P.4    Mallick, T.5    Perez-Higueras, P.6
  • 99
    • 84959365827 scopus 로고    scopus 로고
    • Determination of the current-voltage characteristics of concentrator systems by using different adapted conventional techniques
    • [99] Almonacid, F., Rodrigo, P., Fernández, E., Determination of the current-voltage characteristics of concentrator systems by using different adapted conventional techniques. Energy 101 (2016), 146–160.
    • (2016) Energy , vol.101 , pp. 146-160
    • Almonacid, F.1    Rodrigo, P.2    Fernández, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.