메뉴 건너뛰기




Volumn , Issue , 2013, Pages 669-678

Artificial Neural Network based methodologies for the spatial and temporal estimation of air temperature application in the greater area of Chania, Greece

Author keywords

Air temperature prediction; Artificial Neural Networks; Spatial interpolation; Time series forecasting

Indexed keywords

AIR TEMPERATURE; FUNCTION APPROXIMATORS; METHODOLOGICAL APPROACH; OPTIMUM ARCHITECTURES; RADIAL BASIS FUNCTIONS; SPATIAL INTERPOLATION; TEMPORAL AND SPATIAL VARIABILITY; TIME SERIES FORECASTING;

EID: 84878003535     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (10)

References (28)
  • 2
    • 84877965696 scopus 로고    scopus 로고
    • Analysis and comparison of spatial interpolation methods for temperature data in xinjiang uygur autonomous region, China
    • doi:10.4236/ns.2011.312125
    • Chai, H., Cheng, W., Zhou, C., Chen, X., Ma, X. & Zhao, S. (2011). Analysis and comparison of spatial interpolation methods for temperature data in Xinjiang Uygur Autonomous Region, China. Natural Science, 3(12), 999-1010. doi:10.4236/ns.2011.312125.
    • (2011) Natural Science , vol.3 , Issue.12 , pp. 999-1010
    • Chai, H.1    Cheng, W.2    Zhou, C.3    Chen, X.4    Ma, X.5    Zhao, S.6
  • 4
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • doi: 10.1007/BF02551274
    • Cybenco, G. (1989). Approximation by superposition of a sigmoidal function. Mathematics of Control Signals and Systems, 2(4), 303-314. doi: 10.1007/BF02551274.
    • (1989) Mathematics of Control Signals and Systems , vol.2 , Issue.4 , pp. 303-314
    • Cybenco, G.1
  • 6
    • 84884665078 scopus 로고    scopus 로고
    • Spatial interpolation methodologies in urban air pollution modeling: Application for the greater area of metropolitan athens, greece
    • F. Nejadkoorki (Ed.) Rijeka, Croatia: InTech Publishers. doi: 10.5772/17734
    • Deligiorgi, D., Philippopoulos, K. (2011). Spatial Interpolation Methodologies in Urban Air Pollution Modeling: Application for the Greater Area of Metropolitan Athens, Greece. In F. Nejadkoorki (Ed.) Advanced Air Pollution, Rijeka, Croatia: InTech Publishers. doi: 10.5772/17734.
    • (2011) Advanced Air Pollution
    • Deligiorgi, D.1    Philippopoulos, K.2
  • 8
    • 56049113721 scopus 로고    scopus 로고
    • Daily means ambient temperature prediction using artificial neural network method: A case study of Turkey
    • doi: 10.1016/j.renene.2008.07.007
    • Dombayc, O. & Golcu, M. (2009). Daily means ambient temperature prediction using artificial neural network method: A case study of Turkey. Renewable Energy, 34(3), 1158-1161. doi: 10.1016/j.renene.2008.07.007.
    • (2009) Renewable Energy , vol.34 , Issue.3 , pp. 1158-1161
    • Dombayc, O.1    Golcu, M.2
  • 10
    • 0019657520 scopus 로고
    • Judging air quality model performance
    • doi: 10.1175/1520-0477(1981)062<0599:Jaqmp>2.0.CO;2
    • Fox, D. G. (1981). Judging air quality model performance. Bulletin of the American Meteorological Society, 62(5), 599-609. doi: 10.1175/1520-0477(1981) 062<0599:Jaqmp>2.0.CO;2.
    • (1981) Bulletin of the American Meteorological Society , vol.62 , Issue.5 , pp. 599-609
    • Fox, D.G.1
  • 11
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron) - A review of applications in the atmospheric sciences
    • doi: 10.1016/S1352-2310(97)00447-0
    • Gardner, M. W. & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron)-A review of applications in the atmospheric sciences. Atmospheric Environment, 32(14-15), 2627-2636. doi: 10.1016/S1352-2310(97)00447-0.
    • (1998) Atmospheric Environment , vol.32 , Issue.14-15 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 13
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • doi: 10.1016/0893-6080(89)90020-8
    • Hornik, K., Stinchcombe, M. & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359-366. doi: 10.1016/0893-6080(89)90020-8.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 14
    • 0030104449 scopus 로고    scopus 로고
    • Artificial neural networks: A tutorial
    • doi:10.1109/2.485891
    • Jain, A. K., Mao, J. & Mohiuddin, K. M. (1996). Artificial neural networks: a tutorial. Computer 29(3), 31-44. doi:10.1109/2.485891.
    • (1996) Computer , vol.29 , Issue.3 , pp. 31-44
    • Jain, A.K.1    Mao, J.2    Mohiuddin, K.M.3
  • 15
    • 72449147241 scopus 로고    scopus 로고
    • The interaction of Northern wind flow with the complex topography of crete Island - Part 1: Observational study
    • doi: 10.5194/nhess-9-1845-2009
    • Koletsis, I., Lagouvardos, K., Kotroni, V. & Bartzokas, A., (2009). The interaction of northern wind flow with the complex topography of Crete island-Part 1: Observational study. Natural Hazards and Earth System Sciences, 9, 1845-1855. doi: 10.5194/nhess-9-1845-2009.
    • (2009) Natural Hazards and Earth System Sciences , vol.9 , pp. 1845-1855
    • Koletsis, I.1    Lagouvardos, K.2    Kotroni, V.3    Bartzokas, A.4
  • 16
    • 80052530058 scopus 로고    scopus 로고
    • The interaction of Northern wind flow with the complex topography of crete Island - Part 2: Numerical study
    • doi: 10.5194/nhess-10-1115-2010
    • Koletsis, I., Lagouvardos, K., Kotroni, V. & Bartzokas. A. (2010). The interaction of northern wind flow with the complex topography of Crete island-Part 2: Numerical study. Natural Hazards and Earth System Sciences 10, 1115-1127. doi: 10.5194/nhess-10-1115-2010.
    • (2010) Natural Hazards and Earth System Sciences , vol.10 , pp. 1115-1127
    • Koletsis, I.1    Lagouvardos, K.2    Kotroni, V.3    Bartzokas, A.4
  • 17
    • 0035386941 scopus 로고    scopus 로고
    • The effect of the Island of crete on the etesian winds over the aegean sea
    • doi: 10.1002/qj.49712757604
    • Kotroni, V., Lagouvardos, K. & Lalas, D. (2001). The effect of the island of Crete on the etesian winds over the Aegean sea. Quarterly Journal of the Royal Meteorological Society 127(576), 1917-1937. doi: 10.1002/qj. 49712757604.
    • (2001) Quarterly Journal of the Royal Meteorological Society , vol.127 , Issue.576 , pp. 1917-1937
    • Kotroni, V.1    Lagouvardos, K.2    Lalas, D.3
  • 18
    • 0036574086 scopus 로고    scopus 로고
    • Application of neural networks to the simulation of the heat Island over athens, greece, using synoptic types as a predictor
    • doi: 10.1175/1520-0450(2002)041<0519:AONNTT>2.0.CO;2
    • Mihalakakou, G., Flocas, H., Santamouris, M. & Helmis, C. (2002). Application of Neural Networks to the Simulation of the Heat Island over Athens, Greece, Using Synoptic Types as a Predictor. Journal of Applied Meteorology, 41(5), 519-527. doi: 10.1175/1520-0450(2002)041<0519:AONNTT>2.0.CO;2.
    • (2002) Journal of Applied Meteorology , vol.41 , Issue.5 , pp. 519-527
    • Mihalakakou, G.1    Flocas, H.2    Santamouris, M.3    Helmis, C.4
  • 19
    • 79953749287 scopus 로고    scopus 로고
    • Prediction of room temperature and relative humidity by autoregressive linear and nonlinear neural network models for an open office
    • doi: 10.1016/j.enbuild.2011.02. 007
    • Mustafaraj, G., Lowry, G. & Chen, J. (2011). Prediction of room temperature and relative humidity by autoregressive linear and nonlinear neural network models for an open office. Energy and Buildings, 43(6), 1452-1460. doi: 10.1016/j.enbuild.2011.02. 007
    • (2011) Energy and Buildings , vol.43 , Issue.6 , pp. 1452-1460
    • Mustafaraj, G.1    Lowry, G.2    Chen, J.3
  • 20
    • 0001355838 scopus 로고
    • Radial basis functions for multivariable interpolation: A review
    • Mason, J. C. & Cox, M. G. (Eds) Oxford: Clarendon Press
    • Powell, M. J. D. (1987). Radial basis functions for multivariable interpolation: a review. Mason, J. C. & Cox, M. G. (Eds) Algorithms for Approximation, Oxford: Clarendon Press.
    • (1987) Algorithms for Approximation
    • Powell, M.J.D.1
  • 21
    • 0034732051 scopus 로고    scopus 로고
    • A comparison of two statistical methods for spatial interpolation of canadian monthly mean climate data
    • doi:10.1016/S0168-1923(99)00169-0
    • Price, D. T., McKenney, D. W., Nalder, I.A., Hutchinson, M. F. & Kesteven, J. L. (2000). A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data. Agricultural and Forest Meteorology, 101(2-3), 81-94. doi:10.1016/S0168-1923(99)00169-0.
    • (2000) Agricultural and Forest Meteorology , vol.101 , Issue.2-3 , pp. 81-94
    • Price, D.T.1    McKenney, D.W.2    Nalder, I.A.3    Hutchinson, M.F.4    Kesteven, J.L.5
  • 22
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • doi: 10.1038/323533a0
    • Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature 323, 533-536. doi: 10.1038/323533a0
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 23
    • 67449132094 scopus 로고    scopus 로고
    • Artificial neural networks for automated year-round temperature prediction
    • doi: 10.1016/j.compag. 2009.04.003
    • Smith, B., Hoogenboom, G. & McClendon, R. (2009). Artificial neural networks for automated year-round temperature prediction. Computers and Electronics in Agriculture 68(1), 52-61. doi: 10.1016/j.compag. 2009.04.003.
    • (2009) Computers and Electronics in Agriculture , vol.68 , Issue.1 , pp. 52-61
    • Smith, B.1    Hoogenboom, G.2    McClendon, R.3
  • 24
    • 0033947480 scopus 로고    scopus 로고
    • Spatial interpolation of surface air temperatures using artificial neural networks: Evaluating their use for downscaling GCMs
    • doi: 0.1175/1520-0442(2000)013<0886: SIOSAT>2.0.CO;2
    • Snell, S., Gopal, S. & Kaufmann, R. (2000). Spatial Interpolation of Surface Air Temperatures Using Artificial Neural Networks: Evaluating Their Use for Downscaling GCMs. Journal of Climate, 13(5), 886-895. doi: 0.1175/1520-0442(2000)013<0886: SIOSAT>2.0.CO;2.
    • (2000) Journal of Climate , vol.13 , Issue.5 , pp. 886-895
    • Snell, S.1    Gopal, S.2    Kaufmann, R.3
  • 25
    • 0036532622 scopus 로고    scopus 로고
    • Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia
    • doi: 10.1016/S0960-1481(01)00082-9
    • Tasadduq, I., Rehman, S. & Bubshait, K. (2002). Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia. Renewable Energy, 25(4), 545-554. doi: 10.1016/S0960-1481(01)00082-9.
    • (2002) Renewable Energy , vol.25 , Issue.4 , pp. 545-554
    • Tasadduq, I.1    Rehman, S.2    Bubshait, K.3
  • 26
    • 0020386641 scopus 로고
    • Some comments on the evaluation of model performance
    • doi: 10. 1175/1520-0477(1982)063<1309:SCOTEO> 2.0.CO;2
    • Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin American Meteorological Society, 63(11), 1309-1313. doi: 10. 1175/1520-0477(1982)063<1309:SCOTEO> 2.0.CO;2.
    • (1982) Bulletin American Meteorological Society , vol.63 , Issue.11 , pp. 1309-1313
    • Willmott, C.J.1
  • 27
    • 84894609184 scopus 로고    scopus 로고
    • Levenberg-marquardt training
    • Wilamowski, B.M. & Irwin, J.D. (Eds) (2nd ed.). Boca Raton: CRC Press
    • Yu, H. & Wilamowski, B. M. (2011). Levenberg-Marquardt training. Wilamowski, B.M. & Irwin, J.D. (Eds) Industrial Electronics Handbook (2nd ed.). Boca Raton: CRC Press.
    • (2011) Industrial Electronics Handbook
    • Yu, H.1    Wilamowski, B.M.2
  • 28
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • doi: 10.1016/S0169-2070(97)00044-7
    • Zhang, G. P., Patuwo, E. & Hu, M. (1998). Forecasting with artificial neural networks: the state of the art. International Journal of Forecasting, 14(1), 35-62. doi: 10.1016/S0169-2070(97)00044-7.
    • (1998) International Journal of Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.P.1    Patuwo, E.2    Hu, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.