메뉴 건너뛰기




Volumn 66-67, Issue , 2016, Pages 679-698

Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications

Author keywords

Fault diagnosis; Prognostics; Rotating machines; Spectral kurtosis

Indexed keywords

FAILURE ANALYSIS; HIGHER ORDER STATISTICS; ROTATING MACHINERY; SIGNAL DETECTION; SIGNAL PROCESSING; SYSTEMS ENGINEERING;

EID: 84945246972     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2015.04.039     Document Type: Review
Times cited : (437)

References (123)
  • 1
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • A.K.S. Jardine, D. Lin, and D. Banjevic A review on machinery diagnostics and prognostics implementing condition-based maintenance Mech. Syst. Signal Process. 20 7 2006 1483 1510
    • (2006) Mech. Syst. Signal Process. , vol.20 , Issue.7 , pp. 1483-1510
    • Jardine, A.K.S.1    Lin, D.2    Banjevic, D.3
  • 2
    • 0023331071 scopus 로고
    • Machine condition monitoring using vibration analyses
    • J. Mathew Machine condition monitoring using vibration analyses Acoust. Aust. 15 1 1987 7 13
    • (1987) Acoust. Aust. , vol.15 , Issue.1 , pp. 7-13
    • Mathew, J.1
  • 3
    • 30644462025 scopus 로고    scopus 로고
    • Development of acoustic emission technology for condition monitoring and diagnosis of rotating machines: Bearings, pumps, gearboxes, engines, and rotating structures
    • D. Mba, and R.B.K.N. Rao Development of acoustic emission technology for condition monitoring and diagnosis of rotating machines: bearings, pumps, gearboxes, engines, and rotating structures Shock Vib. Digest 38 1 2006 3 16
    • (2006) Shock Vib. Digest , vol.38 , Issue.1 , pp. 3-16
    • Mba, D.1    Rao, R.B.K.N.2
  • 4
    • 84859086892 scopus 로고    scopus 로고
    • Wind turbine generator condition-monitoring using temperature trend analysis
    • G. Peng, D. Infield, and Y. Xiyun Wind turbine generator condition-monitoring using temperature trend analysis IEEE Trans. Sustain. Energy 3 1 2012 124 133
    • (2012) IEEE Trans. Sustain. Energy , vol.3 , Issue.1 , pp. 124-133
    • Peng, G.1    Infield, D.2    Xiyun, Y.3
  • 5
    • 84873201284 scopus 로고    scopus 로고
    • Advancement and current status of wear debris analysis for machine condition monitoring: A review
    • M. Kumar, P.S. Mukherjee, and N.M. Misra Advancement and current status of wear debris analysis for machine condition monitoring: a review Ind. Lubr. Tribol. 65 1 2013 3 11
    • (2013) Ind. Lubr. Tribol. , vol.65 , Issue.1 , pp. 3-11
    • Kumar, M.1    Mukherjee, P.S.2    Misra, N.M.3
  • 6
    • 42149097121 scopus 로고    scopus 로고
    • Bearing signature analysis as a medium for fault detection: A review
    • M.S. Patil, J. Mathew, and P.K. RajendraKumar Bearing signature analysis as a medium for fault detection: a review J. Tribol.-Trans. ASME 130 1 2008
    • (2008) J. Tribol.-Trans. ASME , vol.130 , Issue.1
    • Patil, M.S.1    Mathew, J.2    RajendraKumar, P.K.3
  • 7
    • 0346306460 scopus 로고    scopus 로고
    • Application of the wavelet transform in machine condition monitoring and fault diagnostics: A review with bibliography
    • Z.K. Peng, and F.L. Chu Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography Mech. Syst. Signal Process. 18 2 2004 199 221
    • (2004) Mech. Syst. Signal Process. , vol.18 , Issue.2 , pp. 199-221
    • Peng, Z.K.1    Chu, F.L.2
  • 8
    • 84889096899 scopus 로고    scopus 로고
    • Multiwavelet transform and its applications in mechanical fault diagnosis - A review
    • H. Sun, Z. He, Y. Zi, J. Yuan, X. Wang, J. Chen, and S. He Multiwavelet transform and its applications in mechanical fault diagnosis - a review Mech. Syst. Signal Process. 43 1-2 2014 1 24
    • (2014) Mech. Syst. Signal Process. , vol.43 , Issue.1-2 , pp. 1-24
    • Sun, H.1    He, Z.2    Zi, Y.3    Yuan, J.4    Wang, X.5    Chen, J.6    He, S.7
  • 9
    • 84870404381 scopus 로고    scopus 로고
    • A review on empirical mode decomposition in fault diagnosis of rotating machinery
    • Y. Lei, J. Lin, Z. He, and M.J. Zuo A review on empirical mode decomposition in fault diagnosis of rotating machinery Mech. Syst. Signal Process. 35 1-2 2013 108 126
    • (2013) Mech. Syst. Signal Process. , vol.35 , Issue.1-2 , pp. 108-126
    • Lei, Y.1    Lin, J.2    He, Z.3    Zuo, M.J.4
  • 10
    • 84876940227 scopus 로고    scopus 로고
    • Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples
    • Z. Feng, M. Liang, and F. Chu Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples Mech. Syst. Signal Process. 38 1 2013 165 205
    • (2013) Mech. Syst. Signal Process. , vol.38 , Issue.1 , pp. 165-205
    • Feng, Z.1    Liang, M.2    Chu, F.3
  • 14
    • 53049083760 scopus 로고    scopus 로고
    • Condition monitoring and fault detection of wind turbines and related algorithms: A review
    • Z. Hameed, Y.S. Hong, Y.M. Cho, S.H. Ahn, and C.K. Song Condition monitoring and fault detection of wind turbines and related algorithms: a review Renew. Sust. Energ. Rev. 13 1 2009 1 39
    • (2009) Renew. Sust. Energ. Rev. , vol.13 , Issue.1 , pp. 1-39
    • Hameed, Z.1    Hong, Y.S.2    Cho, Y.M.3    Ahn, S.H.4    Song, C.K.5
  • 15
    • 65749101864 scopus 로고    scopus 로고
    • A review on fault diagnosis of induction machines
    • C.J. Verucchi, G.G. Acosta, and F.A. Benger A review on fault diagnosis of induction machines Lat. Am. Appl. Res. 38 2 2008 113 121
    • (2008) Lat. Am. Appl. Res. , vol.38 , Issue.2 , pp. 113-121
    • Verucchi, C.J.1    Acosta, G.G.2    Benger, F.A.3
  • 16
    • 29244467991 scopus 로고    scopus 로고
    • Condition monitoring and fault diagnosis of electrical motors - A review
    • S. Nandi, H.A. Toliyat, and X.D. Li Condition monitoring and fault diagnosis of electrical motors - a review IEEE Trans. Energy Convers. 20 4 2005 719 729
    • (2005) IEEE Trans. Energy Convers. , vol.20 , Issue.4 , pp. 719-729
    • Nandi, S.1    Toliyat, H.A.2    Li, X.D.3
  • 18
    • 84887056149 scopus 로고    scopus 로고
    • Prognostics and health management design for rotary machinery systems - Reviews, methodology and applications
    • J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao, and D. Siegel Prognostics and health management design for rotary machinery systems - reviews, methodology and applications Mech. Syst. Signal Process. 42 1-2 2014 314 334
    • (2014) Mech. Syst. Signal Process. , vol.42 , Issue.1-2 , pp. 314-334
    • Lee, J.1    Wu, F.2    Zhao, W.3    Ghaffari, M.4    Liao, L.5    Siegel, D.6
  • 19
    • 30344454699 scopus 로고    scopus 로고
    • Vibration monitoring for defect diagnosis of rolling element bearings as a predictive maintenance tool: Comprehensive case studies
    • S. Orhan, N. Akturk, and V. Celik Vibration monitoring for defect diagnosis of rolling element bearings as a predictive maintenance tool: comprehensive case studies NDT&E. Int. 39 4 2006 293 298
    • (2006) NDT&E. Int. , vol.39 , Issue.4 , pp. 293-298
    • Orhan, S.1    Akturk, N.2    Celik, V.3
  • 20
    • 33751399694 scopus 로고    scopus 로고
    • Fault diagnosis using dynamic trend analysis: A review and recent developments
    • R. Rengaswamy, M.R. Maurya, and V. Venkatasubramanian Fault diagnosis using dynamic trend analysis: a review and recent developments Eng. Appl. Artif. Intell. 20 2 2007 133 146
    • (2007) Eng. Appl. Artif. Intell. , vol.20 , Issue.2 , pp. 133-146
    • Rengaswamy, R.1    Maurya, M.R.2    Venkatasubramanian, V.3
  • 21
    • 77958041293 scopus 로고    scopus 로고
    • Current status of machine prognostics in condition-based maintenance: A review
    • Y. Peng, M. Dong, and M.J. Zuo Current status of machine prognostics in condition-based maintenance: a review Int. J. Adv. Manuf. Technol. 50 1-4 2010 297 313
    • (2010) Int. J. Adv. Manuf. Technol. , vol.50 , Issue.1-4 , pp. 297-313
    • Peng, Y.1    Dong, M.2    Zuo, M.J.3
  • 22
    • 0020599969 scopus 로고
    • Detection of non-Gaussian signals by frequency domain kurtosis estimation
    • R. Dwyer Detection of non-Gaussian signals by frequency domain kurtosis estimation Proc. IEEE ICASSP 8 1983 607 610
    • (1983) Proc. IEEE ICASSP , vol.8 , pp. 607-610
    • Dwyer, R.1
  • 23
    • 0022086947 scopus 로고
    • Asymptotic detection performance of discrete power and higher-order spectra estimates
    • R.F. Dwyer Asymptotic detection performance of discrete power and higher-order spectra estimates IEEE. J. Ocean. Eng. 10 3 1985 303 315
    • (1985) IEEE. J. Ocean. Eng. , vol.10 , Issue.3 , pp. 303-315
    • Dwyer, R.F.1
  • 24
    • 0021410447 scopus 로고
    • Use of the kurtosis statistic in the frequency-domain as an aid in detecting random signals
    • R.F. Dwyer Use of the kurtosis statistic in the frequency-domain as an aid in detecting random signals IEEE. J. Ocean. Eng. 9 2 1984 85 92
    • (1984) IEEE. J. Ocean. Eng. , vol.9 , Issue.2 , pp. 85-92
    • Dwyer, R.F.1
  • 26
    • 0028767493 scopus 로고
    • Modified frequency domain kurtosis for signal processing
    • C. Ottonello, and S. Pagnan Modified frequency domain kurtosis for signal processing Electron. Lett. 30 14 1994 1117 1118
    • (1994) Electron. Lett. , vol.30 , Issue.14 , pp. 1117-1118
    • Ottonello, C.1    Pagnan, S.2
  • 29
    • 84881585929 scopus 로고    scopus 로고
    • The spectral kurtosis of nonstationary signals: Formalisation, some properties, and application
    • Vienna, Austria
    • J. Antoni, The spectral kurtosis of nonstationary signals: formalisation, some properties, and application, in: 12th European Signal Processing Conference, Vienna, Austria, 2004.
    • (2004) 12th European Signal Processing Conference
    • Antoni, J.1
  • 30
    • 77952079473 scopus 로고    scopus 로고
    • Statistics of the Spectral Kurtosis Estimator
    • G.M. Nita, and D.E. Gary Statistics of the Spectral Kurtosis Estimator Publ. Astron. Soc. Pac. 122 891 2010 595 607
    • (2010) Publ. Astron. Soc. Pac. , vol.122 , Issue.891 , pp. 595-607
    • Nita, G.M.1    Gary, D.E.2
  • 31
    • 79952472165 scopus 로고    scopus 로고
    • The generalized spectral kurtosis estimator
    • G.M. Nita, and D.E. Gary The generalized spectral kurtosis estimator Mon. Not. R. Astron. Soc. 406 1 2010 L60 L64
    • (2010) Mon. Not. R. Astron. Soc. , vol.406 , Issue.1 , pp. L60-L64
    • Nita, G.M.1    Gary, D.E.2
  • 32
    • 78651346533 scopus 로고    scopus 로고
    • Circularity of the STFT and spectral kurtosis for time-frequency segmentation in Gaussian environment
    • F. Millioz, and N. Martin Circularity of the STFT and spectral kurtosis for time-frequency segmentation in Gaussian environment IEEE Trans. Signal Process. 59 2 2011 515 524
    • (2011) IEEE Trans. Signal Process. , vol.59 , Issue.2 , pp. 515-524
    • Millioz, F.1    Martin, N.2
  • 33
    • 0041880035 scopus 로고    scopus 로고
    • Gearbox fault diagnosis using adaptive wavelet filter
    • J. Lin, and M.J. Zuo Gearbox fault diagnosis using adaptive wavelet filter Mech. Syst. Signal Process. 17 6 2003 1250 1269
    • (2003) Mech. Syst. Signal Process. , vol.17 , Issue.6 , pp. 1250-1269
    • Lin, J.1    Zuo, M.J.2
  • 34
    • 84881292566 scopus 로고    scopus 로고
    • Joint kurtosis-based adaptive bandstop filtering and iterative autocorrelation approach to bearing fault detection
    • Y. Zhang, M. Liang, C. Li, and S. Hou Joint kurtosis-based adaptive bandstop filtering and iterative autocorrelation approach to bearing fault detection J. Vib. Acoust. 135 5 2013
    • (2013) J. Vib. Acoust. , vol.135 , Issue.5
    • Zhang, Y.1    Liang, M.2    Li, C.3    Hou, S.4
  • 35
    • 84875419423 scopus 로고    scopus 로고
    • Fault diagnosis in gearbox using adaptive wavelet filtering and shock response spectrum features extraction
    • S. Hussain, and H.A. Gabbar Fault diagnosis in gearbox using adaptive wavelet filtering and shock response spectrum features extraction Struct. Health. Monit. 12 2 2013 169 180
    • (2013) Struct. Health. Monit. , vol.12 , Issue.2 , pp. 169-180
    • Hussain, S.1    Gabbar, H.A.2
  • 36
    • 33846262061 scopus 로고    scopus 로고
    • An alternative time-domain index for condition monitoring of rolling element bearings - A comparison study
    • B. Tao, L. Zhu, H. Ding, and Y. Xiong An alternative time-domain index for condition monitoring of rolling element bearings - a comparison study Reliab. Eng. Syst. Saf. 92 5 2007 660 670
    • (2007) Reliab. Eng. Syst. Saf. , vol.92 , Issue.5 , pp. 660-670
    • Tao, B.1    Zhu, L.2    Ding, H.3    Xiong, Y.4
  • 37
    • 84889079481 scopus 로고    scopus 로고
    • The relationship between kurtosis- and envelope-based indexes for the diagnostic of rolling element bearings
    • P. Borghesani, P. Pennacchi, and S. Chatterton The relationship between kurtosis- and envelope-based indexes for the diagnostic of rolling element bearings Mech. Syst. Signal Process. 43 1-2 2014 25 43
    • (2014) Mech. Syst. Signal Process. , vol.43 , Issue.1-2 , pp. 25-43
    • Borghesani, P.1    Pennacchi, P.2    Chatterton, S.3
  • 39
    • 38149111939 scopus 로고    scopus 로고
    • Avoidance of speckle noise in laser vibrometry by the use of kurtosis ratio: Application to mechanical fault diagnostics
    • J. Vass, R. Smid, R.B. Randall, P. Sovka, C. Cristalli, and B. Torcianti Avoidance of speckle noise in laser vibrometry by the use of kurtosis ratio: application to mechanical fault diagnostics Mech. Syst. Signal Process. 22 2008 647 671
    • (2008) Mech. Syst. Signal Process. , vol.22 , pp. 647-671
    • Vass, J.1    Smid, R.2    Randall, R.B.3    Sovka, P.4    Cristalli, C.5    Torcianti, B.6
  • 40
    • 84872743749 scopus 로고    scopus 로고
    • An energy kurtosis demodulation technique for signal denoising and bearing fault detection
    • W. Wang, and H. Lee An energy kurtosis demodulation technique for signal denoising and bearing fault detection Meas. Sci. Technol. 24 2 2013
    • (2013) Meas. Sci. Technol. , vol.24 , Issue.2
    • Wang, W.1    Lee, H.2
  • 42
    • 27744587461 scopus 로고    scopus 로고
    • The spectral kurtosis: A useful tool for characterising non-stationary signals
    • J. Antoni The spectral kurtosis: a useful tool for characterising non-stationary signals Mech. Syst. Signal Process. 20 2 2006 282 307
    • (2006) Mech. Syst. Signal Process. , vol.20 , Issue.2 , pp. 282-307
    • Antoni, J.1
  • 43
    • 27744553270 scopus 로고    scopus 로고
    • The spectral kurtosis: Application to the vibratory surveillance and diagnostics of rotating machines
    • J. Antoni, and R.B. Randall The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines Mech. Syst. Signal Process. 20 2 2006 308 331
    • (2006) Mech. Syst. Signal Process. , vol.20 , Issue.2 , pp. 308-331
    • Antoni, J.1    Randall, R.B.2
  • 44
    • 33749508107 scopus 로고    scopus 로고
    • Fast computation of the kurtogram for the detection of transient faults
    • J. Antoni Fast computation of the kurtogram for the detection of transient faults Mech. Syst. Signal Process. 21 1 2007 108 124
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.1 , pp. 108-124
    • Antoni, J.1
  • 45
    • 83655164502 scopus 로고    scopus 로고
    • On the performance of superposition window
    • Y. Wang, J. Xiang, Z. Jiang, and L. Yang On the performance of superposition window J. Vibroeng. 13 4 2011 719 728
    • (2011) J. Vibroeng. , vol.13 , Issue.4 , pp. 719-728
    • Wang, Y.1    Xiang, J.2    Jiang, Z.3    Yang, L.4
  • 46
    • 79953874236 scopus 로고    scopus 로고
    • An adaptive SK technique and its application for fault detection of rolling element bearings
    • Y. Wang, and M. Liang An adaptive SK technique and its application for fault detection of rolling element bearings Mech. Syst. Signal Process. 25 5 2011 1750 1764
    • (2011) Mech. Syst. Signal Process. , vol.25 , Issue.5 , pp. 1750-1764
    • Wang, Y.1    Liang, M.2
  • 47
    • 78349312157 scopus 로고    scopus 로고
    • A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram
    • T. Barszcz, and A. Jablonski A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram Mech. Syst. Signal Process. 25 1 2011 431 451
    • (2011) Mech. Syst. Signal Process. , vol.25 , Issue.1 , pp. 431-451
    • Barszcz, T.1    Jablonski, A.2
  • 48
    • 80055012780 scopus 로고    scopus 로고
    • Identification of multiple transient faults based on the adaptive spectral kurtosis method
    • Y. Wang, and M. Liang Identification of multiple transient faults based on the adaptive spectral kurtosis method J. Sound Vib. 331 2 2012 470 486
    • (2012) J. Sound Vib. , vol.331 , Issue.2 , pp. 470-486
    • Wang, Y.1    Liang, M.2
  • 49
    • 78649600770 scopus 로고    scopus 로고
    • Rolling element bearing diagnostics - A tutorial
    • R.B. Randall, and J. Antoni Rolling element bearing diagnostics - a tutorial Mech. Syst. Signal Process. 25 2 2011 485 520
    • (2011) Mech. Syst. Signal Process. , vol.25 , Issue.2 , pp. 485-520
    • Randall, R.B.1    Antoni, J.2
  • 51
    • 34249733540 scopus 로고    scopus 로고
    • Applications of spectral kurtosis in machine diagnostics and prognostics
    • R.B. Randall Applications of spectral kurtosis in machine diagnostics and prognostics Damage Assess. Struct. VI 293-294 2005 21 30
    • (2005) Damage Assess. Struct. VI , vol.293-294 , pp. 21-30
    • Randall, R.B.1
  • 52
    • 47649115191 scopus 로고    scopus 로고
    • Simulating gear and bearing interactions in the presence of faults - Part I. the combined gear bearing dynamic model and the simulation of localised bearing faults
    • N. Sawalhi, and R.B. Randall Simulating gear and bearing interactions in the presence of faults - Part I. The combined gear bearing dynamic model and the simulation of localised bearing faults Mech. Syst. Signal Process. 22 8 2008 1924 1951
    • (2008) Mech. Syst. Signal Process. , vol.22 , Issue.8 , pp. 1924-1951
    • Sawalhi, N.1    Randall, R.B.2
  • 53
    • 84869101439 scopus 로고    scopus 로고
    • Real time automatic detection of bearing fault in induction machine using kurtogram analysis
    • F. Tafinine, and K. Mokrani Real time automatic detection of bearing fault in induction machine using kurtogram analysis J. Acoust. Soc. Am. 132 5 2012 EL405 EL410
    • (2012) J. Acoust. Soc. Am. , vol.132 , Issue.5 , pp. EL405-EL410
    • Tafinine, F.1    Mokrani, K.2
  • 55
    • 84887452967 scopus 로고    scopus 로고
    • Adaptive spectral kurtosis filtering based on Morlet wavelet and its application for signal transients detection
    • H. Liu, W. Huang, S. Wang, and Z. Zhu Adaptive spectral kurtosis filtering based on Morlet wavelet and its application for signal transients detection Signal Process. 96 2014 118 124
    • (2014) Signal Process. , vol.96 , pp. 118-124
    • Liu, H.1    Huang, W.2    Wang, S.3    Zhu, Z.4
  • 57
    • 79953838303 scopus 로고    scopus 로고
    • Application of an improved kurtogram method for fault diagnosis of rolling element bearings
    • Y.G. Lei, J. Lin, Z.J. He, and Y.Y. Zi Application of an improved kurtogram method for fault diagnosis of rolling element bearings Mech. Syst. Signal Process. 25 5 2011 1738 1749
    • (2011) Mech. Syst. Signal Process. , vol.25 , Issue.5 , pp. 1738-1749
    • Lei, Y.G.1    Lin, J.2    He, Z.J.3    Zi, Y.Y.4
  • 58
    • 84863390334 scopus 로고    scopus 로고
    • Improved spectral kurtosis with adaptive redundant multiwavelet packet and its applications for rotating machinery fault detection
    • J. Chen, Y. Zi, Z. He, and J. Yuan Improved spectral kurtosis with adaptive redundant multiwavelet packet and its applications for rotating machinery fault detection Meas. Sci. Technol. 23 4 2012
    • (2012) Meas. Sci. Technol. , vol.23 , Issue.4
    • Chen, J.1    Zi, Y.2    He, Z.3    Yuan, J.4
  • 59
    • 84876708997 scopus 로고    scopus 로고
    • A kurtosis-guided adaptive demodulation technique for bearing fault detection based on tunable-Q wavelet transform
    • J. Luo, D. Yu, and M. Liang A kurtosis-guided adaptive demodulation technique for bearing fault detection based on tunable-Q wavelet transform Meas. Sci. Technol. 24 5 2013
    • (2013) Meas. Sci. Technol. , vol.24 , Issue.5
    • Luo, J.1    Yu, D.2    Liang, M.3
  • 60
    • 84881312436 scopus 로고    scopus 로고
    • Detecting of transient vibration signatures using an improved fast spatial-spectral ensemble kurtosis kurtogram and its applications to mechanical signature analysis of short duration data from rotating machinery
    • B. Chen, Z. Zhang, Y. Zi, Z. He, and C. Sun Detecting of transient vibration signatures using an improved fast spatial-spectral ensemble kurtosis kurtogram and its applications to mechanical signature analysis of short duration data from rotating machinery Mech. Syst. Signal Process. 40 1 2013 1 37
    • (2013) Mech. Syst. Signal Process. , vol.40 , Issue.1 , pp. 1-37
    • Chen, B.1    Zhang, Z.2    Zi, Y.3    He, Z.4    Sun, C.5
  • 61
    • 70349272168 scopus 로고    scopus 로고
    • Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using dual-tree complex wavelet transform
    • Y. Wang, Z. He, and Y. Zi Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using dual-tree complex wavelet transform Mech. Syst. Signal Process. 24 1 2010 119 137
    • (2010) Mech. Syst. Signal Process. , vol.24 , Issue.1 , pp. 119-137
    • Wang, Y.1    He, Z.2    Zi, Y.3
  • 62
    • 77951429900 scopus 로고    scopus 로고
    • Spectral kurtosis of multiwavelet for fault diagnosis of rolling bearing
    • X. Wang, Z. He, and Y. Zi Spectral kurtosis of multiwavelet for fault diagnosis of rolling bearing J. Xi'an Jiaotong Univ. 44 3 2010 77 81
    • (2010) J. Xi'An Jiaotong Univ. , vol.44 , Issue.3 , pp. 77-81
    • Wang, X.1    He, Z.2    Zi, Y.3
  • 63
    • 77951147585 scopus 로고    scopus 로고
    • Superposition frames for adaptive time-frequency analysis and fast reconstruction
    • D. Rudoy, P. Basu, and P.J. Wolfe Superposition frames for adaptive time-frequency analysis and fast reconstruction IEEE Trans. Image Process. 58 5 2010 2581 2596
    • (2010) IEEE Trans. Image Process. , vol.58 , Issue.5 , pp. 2581-2596
    • Rudoy, D.1    Basu, P.2    Wolfe, P.J.3
  • 64
    • 84859163659 scopus 로고    scopus 로고
    • Faulty bearing signal recovery from large noise using a hybrid method based on spectral kurtosis and ensemble empirical mode decomposition
    • G. Wei, P.W. Tse, and A. Djordjevich Faulty bearing signal recovery from large noise using a hybrid method based on spectral kurtosis and ensemble empirical mode decomposition Measurement 45 5 2012 1308 1322
    • (2012) Measurement , vol.45 , Issue.5 , pp. 1308-1322
    • Wei, G.1    Tse, P.W.2    Djordjevich, A.3
  • 65
    • 84864979881 scopus 로고    scopus 로고
    • A new procedure for extracting fault feature of multi-frequency signal from rotating machinery
    • X. Xin, Y. Shixi, and G. Chunbiao A new procedure for extracting fault feature of multi-frequency signal from rotating machinery Mech. Syst. Signal Process. 32 2012 306 319
    • (2012) Mech. Syst. Signal Process. , vol.32 , pp. 306-319
    • Xin, X.1    Shixi, Y.2    Chunbiao, G.3
  • 67
    • 84867155883 scopus 로고    scopus 로고
    • Fault feature extracting for rotating machinery vibration based on blind deconvolution and spectral kurtosis
    • W. Huang, H. Liu, Z. Zhu, and Z. He Fault feature extracting for rotating machinery vibration based on blind deconvolution and spectral kurtosis J. Theor. Appl. Inf. Technol. 43 2 2012 261 266
    • (2012) J. Theor. Appl. Inf. Technol. , vol.43 , Issue.2 , pp. 261-266
    • Huang, W.1    Liu, H.2    Zhu, Z.3    He, Z.4
  • 68
    • 34249733154 scopus 로고    scopus 로고
    • The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis
    • N. Sawalhi, R.B. Randall, and H. Endo The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis Mech. Syst. Signal Process. 21 6 2007 2616 2633
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.6 , pp. 2616-2633
    • Sawalhi, N.1    Randall, R.B.2    Endo, H.3
  • 69
    • 84878307806 scopus 로고    scopus 로고
    • Tracking and removing modulated sinusoidal components: A solution based on the kurtosis and the Extended Kalman Filter
    • J.-L. Dion, C. Stephan, G. Chevallier, and H. Festjens Tracking and removing modulated sinusoidal components: A solution based on the kurtosis and the Extended Kalman Filter Mech. Syst. Signal Process. 38 2 2013 428 439
    • (2013) Mech. Syst. Signal Process. , vol.38 , Issue.2 , pp. 428-439
    • Dion, J.-L.1    Stephan, C.2    Chevallier, G.3    Festjens, H.4
  • 70
    • 77955655247 scopus 로고    scopus 로고
    • Detection of lubrication starved bearings in electrical motors by means of vibration analysis
    • P. Boškoski, J. Petrovčič, B. Musizza, and D. Juričić Detection of lubrication starved bearings in electrical motors by means of vibration analysis Tribol. Int. 43 9 2010 1683 1692
    • (2010) Tribol. Int. , vol.43 , Issue.9 , pp. 1683-1692
    • Boškoski, P.1    Petrovčič, J.2    Musizza, B.3    Juričić, D.4
  • 71
    • 84885624558 scopus 로고    scopus 로고
    • A new statistical modeling and detection method for rolling element bearing faults based on alpha-stable distribution
    • G. Yu, C. Li, and J. Zhang A new statistical modeling and detection method for rolling element bearing faults based on alpha-stable distribution Mech. Syst. Signal Process. 41 1-2 2013 155 175
    • (2013) Mech. Syst. Signal Process. , vol.41 , Issue.1-2 , pp. 155-175
    • Yu, G.1    Li, C.2    Zhang, J.3
  • 72
    • 84865691630 scopus 로고    scopus 로고
    • Envelope order tracking for fault detection in rolling element bearings
    • Y. Guo, T.-W. Liu, J. Na, and R.-F. Fung Envelope order tracking for fault detection in rolling element bearings J. Sound. Vib. 331 25 2012 5644 5654
    • (2012) J. Sound. Vib. , vol.331 , Issue.25 , pp. 5644-5654
    • Guo, Y.1    Liu, T.-W.2    Na, J.3    Fung, R.-F.4
  • 73
    • 84859156228 scopus 로고    scopus 로고
    • Defect detection in deep groove ball bearing in presence of external vibration using envelope analysis and Duffing oscillator
    • V.N. Patel, N. Tandon, and R.K. Pandey Defect detection in deep groove ball bearing in presence of external vibration using envelope analysis and Duffing oscillator Measurement 45 5 2012 960 970
    • (2012) Measurement , vol.45 , Issue.5 , pp. 960-970
    • Patel, V.N.1    Tandon, N.2    Pandey, R.K.3
  • 74
    • 84863182429 scopus 로고    scopus 로고
    • Spectral kurtosis based on AR model for fault diagnosis and condition monitoring of rolling bearing
    • F. Cong, J. Chen, and G. Dong Spectral kurtosis based on AR model for fault diagnosis and condition monitoring of rolling bearing J. Mech. Sci. Technol. 26 2 2012 301 306
    • (2012) J. Mech. Sci. Technol. , vol.26 , Issue.2 , pp. 301-306
    • Cong, F.1    Chen, J.2    Dong, G.3
  • 75
    • 84870401853 scopus 로고    scopus 로고
    • An enhanced Kurtogram method for fault diagnosis of rolling element bearings
    • D. Wang, P.W. Tse, and K.L. Tsui An enhanced Kurtogram method for fault diagnosis of rolling element bearings Mech. Syst. Signal Process. 35 1-2 2013 176 199
    • (2013) Mech. Syst. Signal Process. , vol.35 , Issue.1-2 , pp. 176-199
    • Wang, D.1    Tse, P.W.2    Tsui, K.L.3
  • 76
    • 63449106876 scopus 로고    scopus 로고
    • Rolling element bearing fault diagnosis based on the combination of genetic algorithms and fast kurtogram
    • Y. Zhang, and R.B. Randall Rolling element bearing fault diagnosis based on the combination of genetic algorithms and fast kurtogram Mech. Syst. Signal Process. 23 5 2009 1509 1517
    • (2009) Mech. Syst. Signal Process. , vol.23 , Issue.5 , pp. 1509-1517
    • Zhang, Y.1    Randall, R.B.2
  • 78
    • 84883276769 scopus 로고    scopus 로고
    • Multi-scale bistable stochastic resonance array: A novel weak signal detection method and application in machine fault diagnosis
    • X. Zhang, N. Hu, L. Hu, and Z. Cheng Multi-scale bistable stochastic resonance array: A novel weak signal detection method and application in machine fault diagnosis Sci. China-Tech. Sci. 56 9 2013 2115 2123
    • (2013) Sci. China-Tech. Sci. , vol.56 , Issue.9 , pp. 2115-2123
    • Zhang, X.1    Hu, N.2    Hu, L.3    Cheng, Z.4
  • 79
    • 84874981247 scopus 로고    scopus 로고
    • Abrasion modeling of multiple-point defect dynamics for machine condition monitoring
    • M.F. Yaqub, I. Gondal, J. Kamruzzaman, and K.A. Loparo Abrasion modeling of multiple-point defect dynamics for machine condition monitoring IEEE Trans. Reliab. 62 1 2013 171 182
    • (2013) IEEE Trans. Reliab. , vol.62 , Issue.1 , pp. 171-182
    • Yaqub, M.F.1    Gondal, I.2    Kamruzzaman, J.3    Loparo, K.A.4
  • 80
    • 27644480038 scopus 로고    scopus 로고
    • Blind separation of vibration components: Principles and demonstrations
    • J. Antoni Blind separation of vibration components: Principles and demonstrations Mech. Syst. Signal Process. 19 6 2005 1166 1180
    • (2005) Mech. Syst. Signal Process. , vol.19 , Issue.6 , pp. 1166-1180
    • Antoni, J.1
  • 81
    • 24144440092 scopus 로고    scopus 로고
    • Feature separation using ICA for a one-dimensional time series and its application in fault detection
    • M.J. Zuo, J. Lin, and X.F. Fan Feature separation using ICA for a one-dimensional time series and its application in fault detection J. Sound Vib. 287 3 2005 614 624
    • (2005) J. Sound Vib. , vol.287 , Issue.3 , pp. 614-624
    • Zuo, M.J.1    Lin, J.2    Fan, X.F.3
  • 82
    • 34548035641 scopus 로고    scopus 로고
    • Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine
    • S. Abbasion, A. Rafsanjani, A. Farshidianfar, and N. Irani Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine Mech. Syst. Signal Process. 21 7 2007 2933 2945
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.7 , pp. 2933-2945
    • Abbasion, S.1    Rafsanjani, A.2    Farshidianfar, A.3    Irani, N.4
  • 83
    • 24344500897 scopus 로고    scopus 로고
    • Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition
    • V. Purushotham, S. Narayanan, and S.A.N. Prasad Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition NDT&E Int. 38 8 2005 654 664
    • (2005) NDT&E Int. , vol.38 , Issue.8 , pp. 654-664
    • Purushotham, V.1    Narayanan, S.2    Prasad, S.A.N.3
  • 84
    • 84875269406 scopus 로고    scopus 로고
    • An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis
    • H. Jiang, C. Li, and H. Li An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis Mech. Syst. Signal Process. 36 2 2013 225 239
    • (2013) Mech. Syst. Signal Process. , vol.36 , Issue.2 , pp. 225-239
    • Jiang, H.1    Li, C.2    Li, H.3
  • 85
    • 84876906121 scopus 로고    scopus 로고
    • Compound faults detection of rotating machinery using improved adaptive redundant lifting multiwavelet
    • J. Chen, Y. Zi, Z. He, and J. Yuan Compound faults detection of rotating machinery using improved adaptive redundant lifting multiwavelet Mech. Syst. Signal Process. 38 1 2013 36 54
    • (2013) Mech. Syst. Signal Process. , vol.38 , Issue.1 , pp. 36-54
    • Chen, J.1    Zi, Y.2    He, Z.3    Yuan, J.4
  • 87
    • 70350426577 scopus 로고    scopus 로고
    • Detection of generalized-roughness bearing fault by spectral-Kurtosis energy of vibration or current signals
    • F. Immovilli, M. Cocconcelli, A. Bellini, and R. Rubini Detection of generalized-roughness bearing fault by spectral-Kurtosis energy of vibration or current signals IEEE. Trans. Ind. Electron. 56 11 2009 4710 4717
    • (2009) IEEE. Trans. Ind. Electron. , vol.56 , Issue.11 , pp. 4710-4717
    • Immovilli, F.1    Cocconcelli, M.2    Bellini, A.3    Rubini, R.4
  • 88
    • 79551718353 scopus 로고    scopus 로고
    • Spectral Kurtosis against SVM for best frequency selection in bearing diagnostics
    • A. Fasana, S. Marchesiello, M. Pirra, L. Garibaldi, and A. Torri Spectral Kurtosis against SVM for best frequency selection in bearing diagnostics Mec. Ind. 11 6 2010 489 494
    • (2010) Mec. Ind. , vol.11 , Issue.6 , pp. 489-494
    • Fasana, A.1    Marchesiello, S.2    Pirra, M.3    Garibaldi, L.4    Torri, A.5
  • 89
    • 78349312373 scopus 로고    scopus 로고
    • The application of spectral kurtosis on Acoustic Emission and vibrations from a defective bearing
    • B. Eftekharnejad, M.R. Carrasco, B. Charnley, and D. Mba The application of spectral kurtosis on Acoustic Emission and vibrations from a defective bearing Mech. Syst. Signal Process. 25 1 2011 266 284
    • (2011) Mech. Syst. Signal Process. , vol.25 , Issue.1 , pp. 266-284
    • Eftekharnejad, B.1    Carrasco, M.R.2    Charnley, B.3    Mba, D.4
  • 91
    • 58049188515 scopus 로고    scopus 로고
    • Optimal filtering of gear signals for early damage detection based on the spectral kurtosis
    • F. Combet, and L. Gelman Optimal filtering of gear signals for early damage detection based on the spectral kurtosis Mech. Syst. Signal Process. 23 3 2009 652 668
    • (2009) Mech. Syst. Signal Process. , vol.23 , Issue.3 , pp. 652-668
    • Combet, F.1    Gelman, L.2
  • 92
    • 58949090476 scopus 로고    scopus 로고
    • Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine
    • T. Barszcz, and R.B. Randall Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine Mech. Syst. Signal Process. 23 4 2009 1352 1365
    • (2009) Mech. Syst. Signal Process. , vol.23 , Issue.4 , pp. 1352-1365
    • Barszcz, T.1    Randall, R.B.2
  • 93
    • 79952312568 scopus 로고    scopus 로고
    • A novel method for real time gear fault detection based on pulse shape analysis
    • S. Hussain, and H.A. Gabbar A novel method for real time gear fault detection based on pulse shape analysis Mech. Syst. Signal Process. 25 4 2011 1287 1298
    • (2011) Mech. Syst. Signal Process. , vol.25 , Issue.4 , pp. 1287-1298
    • Hussain, S.1    Gabbar, H.A.2
  • 94
    • 84865624808 scopus 로고    scopus 로고
    • Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection
    • G.L. McDonald, Q. Zhao, and M.J. Zuo Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection Mech. Syst. Signal Process. 33 2012 237 255
    • (2012) Mech. Syst. Signal Process. , vol.33 , pp. 237-255
    • McDonald, G.L.1    Zhao, Q.2    Zuo, M.J.3
  • 95
    • 84885572174 scopus 로고    scopus 로고
    • Sparsity-enabled signal decomposition using tunable Q-factor wavelet transform for fault feature extraction of gearbox
    • G.G. Cai, X.F. Chen, and Z.J. He Sparsity-enabled signal decomposition using tunable Q-factor wavelet transform for fault feature extraction of gearbox Mech. Syst. Signal Process. 41 1-2 2013 34 53
    • (2013) Mech. Syst. Signal Process. , vol.41 , Issue.1-2 , pp. 34-53
    • Cai, G.G.1    Chen, X.F.2    He, Z.J.3
  • 96
    • 84883871688 scopus 로고    scopus 로고
    • Construction and selection of lifting-based multiwavelets for mechanical fault detection
    • J. Yuan, Z.J. He, Y.Y. Zi, and Y. Wei Construction and selection of lifting-based multiwavelets for mechanical fault detection Mech. Syst. Signal Process. 40 2 2013 571 588
    • (2013) Mech. Syst. Signal Process. , vol.40 , Issue.2 , pp. 571-588
    • Yuan, J.1    He, Z.J.2    Zi, Y.Y.3    Wei, Y.4
  • 97
    • 84893166249 scopus 로고    scopus 로고
    • Defect detection for wheel-bearings with time-spectral kurtosis and entropy
    • B. Chen, Z. Yan, and W. Chen Defect detection for wheel-bearings with time-spectral kurtosis and entropy Entropy 16 2014 607 626
    • (2014) Entropy , vol.16 , pp. 607-626
    • Chen, B.1    Yan, Z.2    Chen, W.3
  • 98
    • 84901495480 scopus 로고    scopus 로고
    • Use of spectral kurtosis for improving signal to noise ratio of acoustic emission signal from defective bearings
    • C. Ruiz-Carcel, E. Hernani-Ros, Y. Cao, and D. Mba Use of spectral kurtosis for improving signal to noise ratio of acoustic emission signal from defective bearings J. Fail. Anal. Prevent. 14 3 2014 363 371
    • (2014) J. Fail. Anal. Prevent. , vol.14 , Issue.3 , pp. 363-371
    • Ruiz-Carcel, C.1    Hernani-Ros, E.2    Cao, Y.3    Mba, D.4
  • 99
    • 84881312345 scopus 로고    scopus 로고
    • Application of spectral kurtosis to the detection of tip vortex cavitation noise in marine propeller
    • J.-H. Lee, and J.-S. Seo Application of spectral kurtosis to the detection of tip vortex cavitation noise in marine propeller Mech. Syst. Signal Process. 40 1 2013 222 236
    • (2013) Mech. Syst. Signal Process. , vol.40 , Issue.1 , pp. 222-236
    • Lee, J.-H.1    Seo, J.-S.2
  • 100
    • 84865149471 scopus 로고    scopus 로고
    • The recognition study of impulse and oscillation transient based on spectral kurtosis and neural network, advances in neural networks - ISNN 2012
    • Q. Zhang, Z. Liu, G. Chen, The recognition study of impulse and oscillation transient based on spectral kurtosis and neural network, advances in neural networks - ISNN 2012, in: Proceedings 9th International Symposium on Neural Networks, 2012, pp. 56-63.
    • (2012) Proceedings 9th International Symposium on Neural Networks , pp. 56-63
    • Zhang, Q.1    Liu, Z.2    Chen, G.3
  • 101
    • 84888021544 scopus 로고    scopus 로고
    • A new classification method for transient power quality combining spectral kurtosis with neural network
    • Z. Liu, Q. Zhang, Z. Han, and G. Chen A new classification method for transient power quality combining spectral kurtosis with neural network Neurocomputing 125 2014 95 101
    • (2014) Neurocomputing , vol.125 , pp. 95-101
    • Liu, Z.1    Zhang, Q.2    Han, Z.3    Chen, G.4
  • 102
    • 84890563640 scopus 로고    scopus 로고
    • An approach to recognize the transient disturbances with spectral kurtosis
    • Z. Liu, and Q. Zhang An approach to recognize the transient disturbances with spectral kurtosis IEEE. Trans. Instrum. Meas. 63 1 2014 46 55
    • (2014) IEEE. Trans. Instrum. Meas. , vol.63 , Issue.1 , pp. 46-55
    • Liu, Z.1    Zhang, Q.2
  • 103
    • 80055002509 scopus 로고    scopus 로고
    • Harmonic component detection: Optimized Spectral Kurtosis for operational modal analysis
    • J.L. Dion, I. Tawfiq, and G. Chevallier Harmonic component detection: Optimized Spectral Kurtosis for operational modal analysis Mech. Syst. Signal Process. 26 2012 24 33
    • (2012) Mech. Syst. Signal Process. , vol.26 , pp. 24-33
    • Dion, J.L.1    Tawfiq, I.2    Chevallier, G.3
  • 104
    • 58949090453 scopus 로고    scopus 로고
    • Cyclostationarity by examples
    • J. Antoni Cyclostationarity by examples Mech. Syst. Signal Process. 23 4 2009 987 1036
    • (2009) Mech. Syst. Signal Process. , vol.23 , Issue.4 , pp. 987-1036
    • Antoni, J.1
  • 105
    • 84901693579 scopus 로고    scopus 로고
    • Selection of informative frequency band in local damage detection in rotating machinery
    • J. Obuchowski, A. Wylomanska, and R. Zimroz Selection of informative frequency band in local damage detection in rotating machinery Mech. Syst. Signal Process. 48 1-2 2014 138 152
    • (2014) Mech. Syst. Signal Process. , vol.48 , Issue.1-2 , pp. 138-152
    • Obuchowski, J.1    Wylomanska, A.2    Zimroz, R.3
  • 106
    • 84883889623 scopus 로고    scopus 로고
    • The automatic selection of an optimal wavelet filter and its enhancement by the new sparsogram for bearing fault detection: Part 2 of the two related manuscripts that have a joint title as "two automatic vibration-based fault diagnostic methods using the novel sparsity measurement - Parts 1 and 2", Mech
    • P.W. Tse, D. Wang, The automatic selection of an optimal wavelet filter and its enhancement by the new sparsogram for bearing fault detection: Part 2 of the two related manuscripts that have a joint title as "Two automatic vibration-based fault diagnostic methods using the novel sparsity measurement - Parts 1 and 2", Mech. Syst. Signal Process. 40(2), 2013, pp. 520-544.
    • (2013) Syst. Signal Process. , vol.40 , Issue.2 , pp. 520-544
    • Tse, P.W.1    Wang, D.2
  • 107
    • 84857371664 scopus 로고    scopus 로고
    • Detection of signal component modulations using modulation intensity distribution
    • J. Urbanek, J. Antoni, and T. Barszcz Detection of signal component modulations using modulation intensity distribution Mech. Syst. Signal Process. 28 2012 399 413
    • (2012) Mech. Syst. Signal Process. , vol.28 , pp. 399-413
    • Urbanek, J.1    Antoni, J.2    Barszcz, T.3
  • 108
    • 84887433963 scopus 로고    scopus 로고
    • Wavelets for fault diagnosis of rotary machines: A review with applications
    • R. Yan, R.X. Gao, and X. Chen Wavelets for fault diagnosis of rotary machines: a review with applications Signal Process. 96 2014 1 15
    • (2014) Signal Process. , vol.96 , pp. 1-15
    • Yan, R.1    Gao, R.X.2    Chen, X.3
  • 109
    • 34548745146 scopus 로고    scopus 로고
    • Validating prognostic algorithms: A case study using comprehensive bearing fault data
    • N. Lybeck, S. Marble, B. Morton, Validating prognostic algorithms: a case study using comprehensive bearing fault data, in: 2007 IEEE Aerospace Conference, 2007, pp. 3858-3866.
    • (2007) 2007 IEEE Aerospace Conference , pp. 3858-3866
    • Lybeck, N.1    Marble, S.2    Morton, B.3
  • 110
    • 84865350102 scopus 로고    scopus 로고
    • A monotonic degradation assessment index of rolling bearings using fuzzy support vector data description and running time
    • Z. Shen, Z. He, X. Chen, C. Sun, and Z. Liu A monotonic degradation assessment index of rolling bearings using fuzzy support vector data description and running time Sensors 12 8 2012 10109 10135
    • (2012) Sensors , vol.12 , Issue.8 , pp. 10109-10135
    • Shen, Z.1    He, Z.2    Chen, X.3    Sun, C.4    Liu, Z.5
  • 111
    • 84870241112 scopus 로고    scopus 로고
    • Bearing performance degradation assessment based on the rough support vector data description
    • X. Zhu, Y. Zhang, and Y. Zhu Bearing performance degradation assessment based on the rough support vector data description Mech. Syst. Signal Process. 34 1-2 2013 203 217
    • (2013) Mech. Syst. Signal Process. , vol.34 , Issue.1-2 , pp. 203-217
    • Zhu, X.1    Zhang, Y.2    Zhu, Y.3
  • 112
    • 77955244093 scopus 로고    scopus 로고
    • Prognostics of machine condition using energy based monitoring index and computational intelligence
    • B. Samanta, and C. Nataraj Prognostics of machine condition using energy based monitoring index and computational intelligence J. Comput. Inf. Sci. Eng. 9 4 2009
    • (2009) J. Comput. Inf. Sci. Eng. , vol.9 , Issue.4
    • Samanta, B.1    Nataraj, C.2
  • 113
    • 70350764824 scopus 로고    scopus 로고
    • Bearing performance degradation assessment based on lifting wavelet packet decomposition and fuzzy c-means
    • Y. Pan, J. Chen, and X. Li Bearing performance degradation assessment based on lifting wavelet packet decomposition and fuzzy c-means Mech. Syst. Signal Process. 24 2 2010 559 566
    • (2010) Mech. Syst. Signal Process. , vol.24 , Issue.2 , pp. 559-566
    • Pan, Y.1    Chen, J.2    Li, X.3
  • 114
    • 84875254721 scopus 로고    scopus 로고
    • Dynamic degradation observer for bearing fault by MTS-SOM system
    • J. Hu, L. Zhang, and W. Liang Dynamic degradation observer for bearing fault by MTS-SOM system Mech. Syst. Signal Process. 36 2 2013 385 400
    • (2013) Mech. Syst. Signal Process. , vol.36 , Issue.2 , pp. 385-400
    • Hu, J.1    Zhang, L.2    Liang, W.3
  • 115
    • 84862824347 scopus 로고    scopus 로고
    • Novel method for rolling element bearing health assessment - A tachometer-less synchronously averaged envelope feature extraction technique
    • D. Siegel, H. Al-Atat, V. Shauche, L. Liao, J. Snyder, and J. Lee Novel method for rolling element bearing health assessment - a tachometer-less synchronously averaged envelope feature extraction technique Mech. Syst. Signal Process. 29 2012 362 376
    • (2012) Mech. Syst. Signal Process. , vol.29 , pp. 362-376
    • Siegel, D.1    Al-Atat, H.2    Shauche, V.3    Liao, L.4    Snyder, J.5    Lee, J.6
  • 116
    • 84894548034 scopus 로고    scopus 로고
    • Diagnostics of bearings in presence of strong operating conditions non-stationarity - A procedure of load-dependent features processing with application to wind turbine bearings
    • R. Zimroz, W. Bartelmus, T. Barszcz, and J. Urbanek Diagnostics of bearings in presence of strong operating conditions non-stationarity - a procedure of load-dependent features processing with application to wind turbine bearings Mech. Syst. Signal Process. 46 1 2014 16 27
    • (2014) Mech. Syst. Signal Process. , vol.46 , Issue.1 , pp. 16-27
    • Zimroz, R.1    Bartelmus, W.2    Barszcz, T.3    Urbanek, J.4
  • 117
    • 33644547646 scopus 로고    scopus 로고
    • Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics
    • H. Qiu, J. Lee, J. Lin, and G. Yu Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics J. Sound. Vib. 289 4-5 2006 1066 1090
    • (2006) J. Sound. Vib. , vol.289 , Issue.4-5 , pp. 1066-1090
    • Qiu, H.1    Lee, J.2    Lin, J.3    Yu, G.4
  • 118
    • 84870534284 scopus 로고    scopus 로고
    • Methodology and framework for predicting helicopter rolling element bearing failure
    • D. Siegel, C. Ly, and J. Lee Methodology and framework for predicting helicopter rolling element bearing failure IEEE Trans. Reliab. 61 4 2012 846 857
    • (2012) IEEE Trans. Reliab. , vol.61 , Issue.4 , pp. 846-857
    • Siegel, D.1    Ly, C.2    Lee, J.3
  • 120
    • 33751399694 scopus 로고    scopus 로고
    • Fault diagnosis using dynamic trend analysis: A review and recent developments
    • M.R. Maurya, R. Rengaswamy, and V. Venkatasubramanian Fault diagnosis using dynamic trend analysis: a review and recent developments Eng. Appl. Artif. Intell. 20 2 2007 133 146
    • (2007) Eng. Appl. Artif. Intell. , vol.20 , Issue.2 , pp. 133-146
    • Maurya, M.R.1    Rengaswamy, R.2    Venkatasubramanian, V.3
  • 121
    • 36148977164 scopus 로고    scopus 로고
    • Higher-order cumulants and spectral kurtosis for early detection of subterranean termites
    • J.J. Gonzalez de la Rosa, and A.M. Munoz Higher-order cumulants and spectral kurtosis for early detection of subterranean termites Mech. Syst. Signal Process. 22 2 2008 279 294
    • (2008) Mech. Syst. Signal Process. , vol.22 , Issue.2 , pp. 279-294
    • Gonzalez De La Rosa, J.J.1    Munoz, A.M.2
  • 122
    • 77957839455 scopus 로고    scopus 로고
    • On-site non-destructive measurement of termite activity using the spectral kurtosis and the discrete wavelet transform
    • J.J.G. de la Rosa, A. Moreno-Munoz, A. Gallego, R. Piotrkowski, and E. Castro On-site non-destructive measurement of termite activity using the spectral kurtosis and the discrete wavelet transform Measurement 43 10 2010 1472 1488
    • (2010) Measurement , vol.43 , Issue.10 , pp. 1472-1488
    • De La Rosa, J.J.G.1    Moreno-Munoz, A.2    Gallego, A.3    Piotrkowski, R.4    Castro, E.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.