메뉴 건너뛰기




Volumn 2016-January, Issue , 2016, Pages 1725-1731

Graph quality judgement: A large margin expedition

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; GRAPHIC METHODS; LEARNING ALGORITHMS; LEARNING SYSTEMS;

EID: 85006102738     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (48)

References (29)
  • 2
    • 77950343112 scopus 로고    scopus 로고
    • A discriminative model for semi-supervised learning
    • M. F. Balcan and A. Blum. A discriminative model for semi-supervised learning. Journal of the ACM, 57(3), 2010.
    • (2010) Journal of the ACM , vol.57 , Issue.3
    • Balcan, M.F.1    Blum, A.2
  • 3
    • 3142725535 scopus 로고    scopus 로고
    • Semi-supervised learning on riemannian manifolds
    • M. Belkin and P. Niyogi. Semi-Supervised Learning on Riemannian Manifolds. Machine Learning, 56: 209-239, 2004.
    • (2004) Machine Learning , vol.56 , pp. 209-239
    • Belkin, M.1    Niyogi, P.2
  • 4
    • 55449104028 scopus 로고    scopus 로고
    • Towards a theoretical foundation for laplacian-based manifold methods
    • M. Belkin and P. Niyogi. Towards a theoretical foundation for laplacian-based manifold methods. Journal of Computer and System Sciences, 74(8): 1289-1308, 2008.
    • (2008) Journal of Computer and System Sciences , vol.74 , Issue.8 , pp. 1289-1308
    • Belkin, M.1    Niyogi, P.2
  • 5
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7: 2399-2434, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 6
    • 77956501439 scopus 로고    scopus 로고
    • Does unlabeled data provably help worst-case analysis of the sample complexity of semi-supervised learning
    • Helsinki, Finland
    • S. Ben-David, T. Lu, and D. Pál. Does unlabeled data provably help worst-case analysis of the sample complexity of semi-supervised learning. In Proceedings of the 21st Annual Conference on Learning Theory, pages 33-44, Helsinki, Finland, 2008.
    • (2008) Proceedings of the 21st Annual Conference on Learning Theory , pp. 33-44
    • Ben-David, S.1    Lu, T.2    Pál, D.3
  • 13
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Bled, Slovenia
    • T. Joachims. Transductive inference for text classification using support vector machines. In Proceedings of the 16th International Conference on Machine Learning, pages 200-209, Bled, Slovenia, 1999.
    • (1999) Proceedings of the 16th International Conference on Machine Learning , pp. 200-209
    • Joachims, T.1
  • 20
    • 84865425579 scopus 로고    scopus 로고
    • Robust and scalable graph-based semisupervised learning
    • W. Liu, J. Wang, and S. F. Chang. Robust and scalable graph-based semisupervised learning. Proceedings of the IEEE, 100(9): 2624-2638, 2012.
    • (2012) Proceedings of the IEEE , vol.100 , Issue.9 , pp. 2624-2638
    • Liu, W.1    Wang, J.2    Chang, S.F.3
  • 28


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.