-
1
-
-
84864060454
-
Combining graph laplacians for semisupervised learning
-
MIT Press, Cambridge, MA
-
A. Argyriou, M. Herbster, and M. Pontil. Combining graph laplacians for semisupervised learning. In Advances in Neural Information Processing Systems 18, pages 67-74. MIT Press, Cambridge, MA, 2005.
-
(2005)
Advances in Neural Information Processing Systems
, vol.18
, pp. 67-74
-
-
Argyriou, A.1
Herbster, M.2
Pontil, M.3
-
2
-
-
77950343112
-
A discriminative model for semi-supervised learning
-
M. F. Balcan and A. Blum. A discriminative model for semi-supervised learning. Journal of the ACM, 57(3), 2010.
-
(2010)
Journal of the ACM
, vol.57
, Issue.3
-
-
Balcan, M.F.1
Blum, A.2
-
3
-
-
3142725535
-
Semi-supervised learning on riemannian manifolds
-
M. Belkin and P. Niyogi. Semi-Supervised Learning on Riemannian Manifolds. Machine Learning, 56: 209-239, 2004.
-
(2004)
Machine Learning
, vol.56
, pp. 209-239
-
-
Belkin, M.1
Niyogi, P.2
-
4
-
-
55449104028
-
Towards a theoretical foundation for laplacian-based manifold methods
-
M. Belkin and P. Niyogi. Towards a theoretical foundation for laplacian-based manifold methods. Journal of Computer and System Sciences, 74(8): 1289-1308, 2008.
-
(2008)
Journal of Computer and System Sciences
, vol.74
, Issue.8
, pp. 1289-1308
-
-
Belkin, M.1
Niyogi, P.2
-
5
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7: 2399-2434, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
6
-
-
77956501439
-
Does unlabeled data provably help worst-case analysis of the sample complexity of semi-supervised learning
-
Helsinki, Finland
-
S. Ben-David, T. Lu, and D. Pál. Does unlabeled data provably help worst-case analysis of the sample complexity of semi-supervised learning. In Proceedings of the 21st Annual Conference on Learning Theory, pages 33-44, Helsinki, Finland, 2008.
-
(2008)
Proceedings of the 21st Annual Conference on Learning Theory
, pp. 33-44
-
-
Ben-David, S.1
Lu, T.2
Pál, D.3
-
8
-
-
84898939894
-
Proximity graphs for clustering and manifold learning
-
MIT Press, Cambridge, MA
-
M. Á. Carreira-Perpiñán and R. S. Zemel. Proximity graphs for clustering and manifold learning. In Advances in Neural Information Processing Systems 17, pages 225-232. MIT Press, Cambridge, MA, 2005.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 225-232
-
-
Carreira-Perpiñán, M.Á.1
Zemel, R.S.2
-
10
-
-
1942515439
-
Unlabeled data can degrade classification performance of generative classifiers
-
Pensacola Beach, FL
-
F. G. Cozman, I. Cohen, and M. Cirelo. Unlabeled data can degrade classification performance of generative classifiers. In Proceedings of the 15th International Florida Artificial Intelligence Research Society Conference, pages 327-331, Pensacola Beach, FL, 2002.
-
(2002)
Proceedings of the 15th International Florida Artificial Intelligence Research Society Conference
, pp. 327-331
-
-
Cozman, F.G.1
Cohen, I.2
Cirelo, M.3
-
11
-
-
50949133669
-
Liblinear: A library for large linear classification
-
R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin. Liblinear: A library for large linear classification. Journal of Machine Learning Research, 9: 1871-1874, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1871-1874
-
-
Fan, R.E.1
Chang, K.W.2
Hsieh, C.J.3
Wang, X.R.4
Lin, C.J.5
-
12
-
-
71149102018
-
Graph construction and b-matching for semi-supervised learning
-
Montreal, Canada
-
T. Jebara, J. Wang, and S. F. Chang. Graph construction and b-matching for semi-supervised learning. In Proceedings of the 26th International Conference on Machine Learning, pages 441-448, Montreal, Canada, 2009.
-
(2009)
Proceedings of the 26th International Conference on Machine Learning
, pp. 441-448
-
-
Jebara, T.1
Wang, J.2
Chang, S.F.3
-
13
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
Bled, Slovenia
-
T. Joachims. Transductive inference for text classification using support vector machines. In Proceedings of the 16th International Conference on Machine Learning, pages 200-209, Bled, Slovenia, 1999.
-
(1999)
Proceedings of the 16th International Conference on Machine Learning
, pp. 200-209
-
-
Joachims, T.1
-
15
-
-
56449125402
-
Large scale manifold transduction
-
Helsinki, Finland
-
M. Karlen, J. Weston, A. Erkan, and R. Collobert. Large Scale Manifold Transduction. In Proceedings of the 25th International Conference on Machine Learning, pages 775-782, Helsinki, Finland, 2008.
-
(2008)
Proceedings of the 25th International Conference on Machine Learning
, pp. 775-782
-
-
Karlen, M.1
Weston, J.2
Erkan, A.3
Collobert, R.4
-
18
-
-
84883241774
-
Convex and scalable weakly label SVMs
-
Y.-F. Li, J. T. Kwok, I. Tsang, and Z.-H. Zhou. Convex and scalable weakly label SVMs. Journal of Machine Learning Research, 14: 2151-2188, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 2151-2188
-
-
Li, Y.-F.1
Kwok, J.T.2
Tsang, I.3
Zhou, Z.-H.4
-
20
-
-
84865425579
-
Robust and scalable graph-based semisupervised learning
-
W. Liu, J. Wang, and S. F. Chang. Robust and scalable graph-based semisupervised learning. Proceedings of the IEEE, 100(9): 2624-2638, 2012.
-
(2012)
Proceedings of the IEEE
, vol.100
, Issue.9
, pp. 2624-2638
-
-
Liu, W.1
Wang, J.2
Chang, S.F.3
-
21
-
-
0041875229
-
On spectral clustering: Analysis and an algorithm
-
MIT Press, Cambridge, MA
-
A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In Advances in Neural Information Processing Systems 14, pages 849-856. MIT Press, Cambridge, MA, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, vol.14
, pp. 849-856
-
-
Ng, A.Y.1
Jordan, M.I.2
Weiss, Y.3
-
24
-
-
34547987546
-
Maximum margin clustering made practical
-
Corvallis, OR
-
K. Zhang, I. W. Tsang, and J. T. Kwok. Maximum margin clustering made practical. In Proceedings of the 24th International Conference on Machine Learning, pages 1119-1126, Corvallis, OR, 2007.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning
, pp. 1119-1126
-
-
Zhang, K.1
Tsang, I.W.2
Kwok, J.T.3
-
25
-
-
84899006908
-
Learning with local and global consistency
-
MIT Press, Cambridge, MA
-
D. Zhou, O. Bousquet, T. Navin Lal, J. Weston, and B. Schölkopf. Learning with local and global consistency. In Advances in Neural Information Processing Systems 16, pages 595-602. MIT Press, Cambridge, MA, 2004.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
, pp. 595-602
-
-
Zhou, D.1
Bousquet, O.2
Navin Lal, T.3
Weston, J.4
Schölkopf, B.5
-
27
-
-
1942484430
-
Semi-supervised learning using Gaussian fields and harmonic functions
-
Washington, DC
-
X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaussian fields and harmonic functions. In Proceedings of the 20th International Conference on Machine learning, pages 912-919, Washington, DC, 2003.
-
(2003)
Proceedings of the 20th International Conference on Machine Learning
, pp. 912-919
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
-
28
-
-
84899028404
-
Nonparametric transforms of graph kernels for semi-supervised learning
-
MIT Press, Cambridge, MA
-
X. Zhu, J. Kandola, Z. Ghahramani, and J. Lafferty. Nonparametric transforms of graph kernels for semi-supervised learning. In Advances in Neural Information Processing Systems 17, pages 1641-1648. MIT Press, Cambridge, MA, 2005.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 1641-1648
-
-
Zhu, X.1
Kandola, J.2
Ghahramani, Z.3
Lafferty, J.4
|