-
1
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
I. Sutskever A. Krizhevsky and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012.
-
(2012)
NIPS
, pp. 1097-1105
-
-
Sutskever, I.1
Krizhevsky, A.2
Hinton, G.3
-
3
-
-
84937961091
-
Do deep nets really need to be deep
-
L. Ba and R. Caruana. Do deep nets really need to be deep In NIPS, pages 2654-2662, 2014.
-
(2014)
NIPS
, pp. 2654-2662
-
-
Ba, L.1
Caruana, R.2
-
4
-
-
85006108254
-
Going deeper with convolutions
-
Y. Jia P. Sermanet S. Reed D. Anguelov D. Erhan V. Vanhoucke C. Szegedy, W. Liu and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015.
-
(2015)
CVPR
-
-
Jia, Y.1
Sermanet, P.2
Reed, S.3
Anguelov, D.4
Erhan, D.5
Vanhoucke, V.6
Szegedy, C.7
Liu, W.8
Rabinovich, A.9
-
5
-
-
0019152630
-
Neocognitron: A selforganizing neural network model for a mechanism of pattern recognition unaffected by shift in position
-
K. Fukushima. Neocognitron: A selforganizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4): 193-202, 1980.
-
(1980)
Biological Cybernetics
, vol.36
, Issue.4
, pp. 193-202
-
-
Fukushima, K.1
-
8
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
R. Socher L. Li K. Li J. Deng, W. Dong and F. Li. Imagenet: A large-scale hierarchical image database. In CVPR, pages 248-255, 2009.
-
(2009)
CVPR
, pp. 248-255
-
-
Socher, R.1
Li, L.2
Li, K.3
Deng, J.4
Dong, W.5
Li, F.6
-
9
-
-
77955996870
-
Locality-constrained linear coding for image classification
-
K. Yu F. Lv T. Huang J. Wang, J. Yang and Y. Gong. Locality-constrained linear coding for image classification. In CVPR, pages 3360-3367, 2010.
-
(2010)
CVPR
, pp. 3360-3367
-
-
Yu, K.1
Lv, F.2
Huang, T.3
Wang, J.4
Yang, J.5
Gong, Y.6
-
10
-
-
84906508687
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
S. Ren K. He, X. Zhang and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, pages 346-361. 2014.
-
(2014)
ECCV
, pp. 346-361
-
-
Ren, S.1
He, K.2
Zhang, X.3
Sun, J.4
-
13
-
-
77956509090
-
Rectified linear units improve restricted boltzmann machines
-
V. Nair and G. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML, pages 807-814, 2010.
-
(2010)
ICML
, pp. 807-814
-
-
Nair, V.1
Hinton, G.2
-
14
-
-
84906347546
-
-
arXiv preprint arXiv: 1312. 6229
-
X. Zhang M. Mathieu R. Fergus P. Sermanet, D. Eigen and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv: 1312. 6229, 2013.
-
(2013)
Overfeat: Integrated Recognition, Localization and Detection Using Convolutional Networks
-
-
Zhang, X.1
Mathieu, M.2
Fergus, R.3
Sermanet, P.4
Eigen, D.5
LeCun, Y.6
-
15
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
T. Darrell R. Girshick, J. Donahue and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, pages 580-587, 2014.
-
(2014)
CVPR
, pp. 580-587
-
-
Darrell, T.1
Girshick, R.2
Donahue, J.3
Malik, J.4
-
16
-
-
84965140688
-
Learning both weights and connections for efficient neural network
-
J. Tran S. Han, J. Pool and W. Dally. Learning both weights and connections for efficient neural network. In NIPS, pages 1135-1143, 2015.
-
(2015)
NIPS
, pp. 1135-1143
-
-
Tran Han S, J.1
Pool, J.2
Dally, W.3
-
20
-
-
42149161970
-
Generalized constrained redundancy analysis
-
Y. Takane and S. Jung. Generalized constrained redundancy analysis. Behaviormetrika, 33(2): 179-192, 2006.
-
(2006)
Behaviormetrika
, vol.33
, Issue.2
, pp. 179-192
-
-
Takane, Y.1
Jung, S.2
-
22
-
-
84959238721
-
Efficient and accurate approximations of nonlinear convolutional networks
-
X. Ming K. He X. Zhang, J. Zou and J. Sun. Efficient and accurate approximations of nonlinear convolutional networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Ming He Zhang K, X.1
Zou, J.2
Sun, J.3
-
23
-
-
84973890879
-
An exploration of parameter redundancy in deep networks with circulant projections
-
R. Feris S. Kumar A. Choudhary Y. Cheng, F. Yu and S. Chang. An exploration of parameter redundancy in deep networks with circulant projections. In ICCV, pages 2857-2865, 2015.
-
(2015)
ICCV
, pp. 2857-2865
-
-
Feris, R.1
Kumar, S.2
Choudhary, A.3
Cheng, Y.4
Yu, F.5
Chang, S.6
-
25
-
-
84906352772
-
Multi-scale orderless pooling of deep convolutional activation features
-
R. Guo Y. Gong, L. Wang and S. Lazebnik. Multi-scale orderless pooling of deep convolutional activation features. In ECCV, pages 392-407. 2014.
-
(2014)
ECCV
, pp. 392-407
-
-
Guo Gong Y, R.1
Wang, L.2
Lazebnik, S.3
-
26
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
J. Donahue S. Karayev J. Long R. Girshick S. Guadarrama Y. Jia, E. Shelhamer and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In ACM Multimedia, pages 675-678, 2014.
-
(2014)
ACM Multimedia
, pp. 675-678
-
-
Donahue, J.1
Karayev, S.2
Long, J.3
Girshick, R.4
Guadarrama, S.5
Jia, Y.6
Shelhamer, E.7
Darrell, T.8
-
27
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. Bengio Y. LeCun, L. Bottou and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11): 2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Bengio, Y.1
LeCun, Y.2
Bottou, L.3
Haffner, P.4
-
29
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
M. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, pages 818-833, 2014.
-
(2014)
ECCV
, pp. 818-833
-
-
Zeiler, M.1
Fergus, R.2
|