메뉴 건너뛰기




Volumn 2016-January, Issue , 2016, Pages 1753-1759

Towards convolutional neural networks compression via global error reconstruction

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; ARTIFICIAL INTELLIGENCE; BACKPROPAGATION; COMPACTION; CONVOLUTION; DATA COMPRESSION; DIGITAL STORAGE; ELECTRIC DISTORTION; ERRORS; IMAGE CODING; NEURAL NETWORKS; SIGNAL DISTORTION;

EID: 85006100269     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (56)

References (29)
  • 1
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • I. Sutskever A. Krizhevsky and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012.
    • (2012) NIPS , pp. 1097-1105
    • Sutskever, I.1    Krizhevsky, A.2    Hinton, G.3
  • 3
    • 84937961091 scopus 로고    scopus 로고
    • Do deep nets really need to be deep
    • L. Ba and R. Caruana. Do deep nets really need to be deep In NIPS, pages 2654-2662, 2014.
    • (2014) NIPS , pp. 2654-2662
    • Ba, L.1    Caruana, R.2
  • 5
    • 0019152630 scopus 로고
    • Neocognitron: A selforganizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • K. Fukushima. Neocognitron: A selforganizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4): 193-202, 1980.
    • (1980) Biological Cybernetics , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 8
    • 85198028989 scopus 로고    scopus 로고
    • Imagenet: A large-scale hierarchical image database
    • R. Socher L. Li K. Li J. Deng, W. Dong and F. Li. Imagenet: A large-scale hierarchical image database. In CVPR, pages 248-255, 2009.
    • (2009) CVPR , pp. 248-255
    • Socher, R.1    Li, L.2    Li, K.3    Deng, J.4    Dong, W.5    Li, F.6
  • 9
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • K. Yu F. Lv T. Huang J. Wang, J. Yang and Y. Gong. Locality-constrained linear coding for image classification. In CVPR, pages 3360-3367, 2010.
    • (2010) CVPR , pp. 3360-3367
    • Yu, K.1    Lv, F.2    Huang, T.3    Wang, J.4    Yang, J.5    Gong, Y.6
  • 10
    • 84906508687 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • S. Ren K. He, X. Zhang and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, pages 346-361. 2014.
    • (2014) ECCV , pp. 346-361
    • Ren, S.1    He, K.2    Zhang, X.3    Sun, J.4
  • 13
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann machines
    • V. Nair and G. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML, pages 807-814, 2010.
    • (2010) ICML , pp. 807-814
    • Nair, V.1    Hinton, G.2
  • 15
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • T. Darrell R. Girshick, J. Donahue and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, pages 580-587, 2014.
    • (2014) CVPR , pp. 580-587
    • Darrell, T.1    Girshick, R.2    Donahue, J.3    Malik, J.4
  • 16
    • 84965140688 scopus 로고    scopus 로고
    • Learning both weights and connections for efficient neural network
    • J. Tran S. Han, J. Pool and W. Dally. Learning both weights and connections for efficient neural network. In NIPS, pages 1135-1143, 2015.
    • (2015) NIPS , pp. 1135-1143
    • Tran Han S, J.1    Pool, J.2    Dally, W.3
  • 19
    • 34548234612 scopus 로고    scopus 로고
    • Regularized linear and kernel redundancy analysis
    • Y. Takane and H. Hwang. Regularized linear and kernel redundancy analysis. Computational Statistics & Data Analysis, 52(1): 394-405, 2007.
    • (2007) Computational Statistics & Data Analysis , vol.52 , Issue.1 , pp. 394-405
    • Takane, Y.1    Hwang, H.2
  • 20
    • 42149161970 scopus 로고    scopus 로고
    • Generalized constrained redundancy analysis
    • Y. Takane and S. Jung. Generalized constrained redundancy analysis. Behaviormetrika, 33(2): 179-192, 2006.
    • (2006) Behaviormetrika , vol.33 , Issue.2 , pp. 179-192
    • Takane, Y.1    Jung, S.2
  • 22
    • 84959238721 scopus 로고    scopus 로고
    • Efficient and accurate approximations of nonlinear convolutional networks
    • X. Ming K. He X. Zhang, J. Zou and J. Sun. Efficient and accurate approximations of nonlinear convolutional networks. In CVPR, 2015.
    • (2015) CVPR
    • Ming He Zhang K, X.1    Zou, J.2    Sun, J.3
  • 23
    • 84973890879 scopus 로고    scopus 로고
    • An exploration of parameter redundancy in deep networks with circulant projections
    • R. Feris S. Kumar A. Choudhary Y. Cheng, F. Yu and S. Chang. An exploration of parameter redundancy in deep networks with circulant projections. In ICCV, pages 2857-2865, 2015.
    • (2015) ICCV , pp. 2857-2865
    • Feris, R.1    Kumar, S.2    Choudhary, A.3    Cheng, Y.4    Yu, F.5    Chang, S.6
  • 25
    • 84906352772 scopus 로고    scopus 로고
    • Multi-scale orderless pooling of deep convolutional activation features
    • R. Guo Y. Gong, L. Wang and S. Lazebnik. Multi-scale orderless pooling of deep convolutional activation features. In ECCV, pages 392-407. 2014.
    • (2014) ECCV , pp. 392-407
    • Guo Gong Y, R.1    Wang, L.2    Lazebnik, S.3
  • 27
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. Bengio Y. LeCun, L. Bottou and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11): 2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Bengio, Y.1    LeCun, Y.2    Bottou, L.3    Haffner, P.4
  • 29
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, pages 818-833, 2014.
    • (2014) ECCV , pp. 818-833
    • Zeiler, M.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.