-
1
-
-
84975865504
-
De novo peroxisome biogenesis: Evolving concepts and conundrums
-
Agrawal, G., and S. Subramani. 2016. De novo peroxisome biogenesis: Evolving concepts and conundrums. Biochim. Biophys. Acta. 1863:892-901. http://dx.doi.org/10.1016/j.bbamcr.2015.09.014.
-
(2016)
Biochim. Biophys. Acta
, vol.1863
, pp. 892-901
-
-
Agrawal, G.1
Subramani, S.2
-
2
-
-
79959370908
-
Cell-free sorting of peroxisomal membrane proteins from the endoplasmic reticulum
-
Agrawal, G., S. Joshi, and S. Subramani. 2011. Cell-free sorting of peroxisomal membrane proteins from the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA. 108:9113-9118. http://dx.doi.org/10.1073/pnas.1018749108.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 9113-9118
-
-
Agrawal, G.1
Joshi, S.2
Subramani, S.3
-
3
-
-
84959453936
-
Distinct requirements for intra-ER sorting and budding of peroxisomal membrane proteins from the ER
-
Agrawal, G., S.N. Fassas, Z.J. Xia, and S. Subramani. 2016. Distinct requirements for intra-ER sorting and budding of peroxisomal membrane proteins from the ER. J. Cell Biol. 212:335-348. http://dx.doi.org/10.1083/jcb.201506141.
-
(2016)
J. Cell Biol
, vol.212
, pp. 335-348
-
-
Agrawal, G.1
Fassas, S.N.2
Xia, Z.J.3
Subramani, S.4
-
4
-
-
84861925930
-
The dynamin-like GTPase Sey1p mediates homotypic ER fusion in S. cerevisiae
-
Anwar, K., R.W. Klemm, A. Condon, K.N. Severin, M. Zhang, R. Ghirlando, J. Hu, T.A. Rapoport, and W.A. Prinz. 2012. The dynamin-like GTPase Sey1p mediates homotypic ER fusion in S. cerevisiae. J. Cell Biol. 197:209-217. http://dx.doi.org/10.1083/jcb.201111115.
-
(2012)
J. Cell Biol
, vol.197
, pp. 209-217
-
-
Anwar, K.1
Klemm, R.W.2
Condon, A.3
Severin, K.N.4
Zhang, M.5
Ghirlando, R.6
Hu, J.7
Rapoport, T.A.8
Prinz, W.A.9
-
5
-
-
70449246528
-
Phosphorus assay in column chromatography
-
Bartlett, G.R. 1959. Phosphorus assay in column chromatography. J. Biol. Chem. 234:466-468.
-
(1959)
J. Biol. Chem
, vol.234
, pp. 466-468
-
-
Bartlett, G.R.1
-
6
-
-
0037044768
-
Removal of Pex3p is an important initial stage in selective peroxisome degradation in Hansenula polymorpha
-
Bellu, A.R., F.A. Salomons, J.A. Kiel, M. Veenhuis, and I.J. Van Der Klei. 2002. Removal of Pex3p is an important initial stage in selective peroxisome degradation in Hansenula polymorpha. J. Biol. Chem. 277:42875-42880. http://dx.doi.org/10.1074/jbc.M205437200.
-
(2002)
J. Biol. Chem
, vol.277
, pp. 42875-42880
-
-
Bellu, A.R.1
Salomons, F.A.2
Kiel, J.A.3
Veenhuis, M.4
Van Der Klei, I.J.5
-
7
-
-
33745386112
-
Yeast nuclear envelope subdomains with distinct abilities to resist membrane expansion
-
Campbell, J.L., A. Lorenz, K.L. Witkin, T. Hays, J. Loidl, and O. Cohen-Fix. 2006. Yeast nuclear envelope subdomains with distinct abilities to resist membrane expansion. Mol. Biol. Cell. 17:1768-1778. http://dx.doi.org/10.1091/mbc.E05-09-0839.
-
(2006)
Mol. Biol. Cell
, vol.17
, pp. 1768-1778
-
-
Campbell, J.L.1
Lorenz, A.2
Witkin, K.L.3
Hays, T.4
Loidl, J.5
Cohen-Fix, O.6
-
8
-
-
84863195175
-
ER network formation requires a balance of the dynamin-like GTPase Sey1p and the Lunapark family member Lnp1p
-
Chen, S., P. Novick, and S. Ferro-Novick. 2012. ER network formation requires a balance of the dynamin-like GTPase Sey1p and the Lunapark family member Lnp1p. Nat. Cell Biol. 14:707-716. http://dx.doi.org/10.1038/ncb2523.
-
(2012)
Nat. Cell Biol
, vol.14
, pp. 707-716
-
-
Chen, S.1
Novick, P.2
Ferro-Novick, S.3
-
9
-
-
84920996700
-
Lunapark stabilizes nascent three-way junctions in the endoplasmic reticulum
-
Chen, S., T. Desai, J.A. McNew, P. Gerard, P.J. Novick, and S. Ferro-Novick. 2015. Lunapark stabilizes nascent three-way junctions in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA. 112:418-423. http://dx.doi.org/10.1073/pnas.1423026112.
-
(2015)
Proc. Natl. Acad. Sci. USA
, vol.112
, pp. 418-423
-
-
Chen, S.1
Desai, T.2
McNew, J.A.3
Gerard, P.4
Novick, P.J.5
Ferro-Novick, S.6
-
10
-
-
84971299729
-
A conserved family of proteins facilitates nascent lipid droplet budding from the ER
-
Choudhary, V., N. Ojha, A. Golden, and W.A. Prinz. 2015. A conserved family of proteins facilitates nascent lipid droplet budding from the ER. J. Cell Biol. 211:261-271. http://dx.doi.org/10.1083/jcb.201505067.
-
(2015)
J. Cell Biol
, vol.211
, pp. 261-271
-
-
Choudhary, V.1
Ojha, N.2
Golden, A.3
Prinz, W.A.4
-
11
-
-
84884369584
-
A combined approach of quantitative interaction proteomics and livecell imaging reveals a regulatory role for endoplasmic reticulum (ER) reticulon homology proteins in peroxisome biogenesis
-
David, C., J. Koch, S. Oeljeklaus, A. Laernsack, S. Melchior, S. Wiese, A. Schummer, R. Erdmann, B. Warscheid, and C. Brocard. 2013. A combined approach of quantitative interaction proteomics and livecell imaging reveals a regulatory role for endoplasmic reticulum (ER) reticulon homology proteins in peroxisome biogenesis. Mol. Cell. Proteomics. 12:2408-2425. http://dx.doi.org/10.1074/mcp.M112.017830.
-
(2013)
Mol. Cell. Proteomics
, vol.12
, pp. 2408-2425
-
-
David, C.1
Koch, J.2
Oeljeklaus, S.3
Laernsack, A.4
Melchior, S.5
Wiese, S.6
Schummer, A.7
Erdmann, R.8
Warscheid, B.9
Brocard, C.10
-
12
-
-
64749091534
-
ER membranebending proteins are necessary for de novo nuclear pore formation
-
Dawson, T.R., M.D. Lazarus, M.W. Hetzer, and S.R. Wente. 2009. ER membranebending proteins are necessary for de novo nuclear pore formation. J. Cell Biol. 184:659-675. http://dx.doi.org/10.1083/jcb.200806174.
-
(2009)
J. Cell Biol
, vol.184
, pp. 659-675
-
-
Dawson, T.R.1
Lazarus, M.D.2
Hetzer, M.W.3
Wente, S.R.4
-
13
-
-
84877149297
-
The role of the endoplasmic reticulum in peroxisome biogenesis
-
Dimitrov, L., S.K. Lam, and R. Schekman. 2013. The role of the endoplasmic reticulum in peroxisome biogenesis. Cold Spring Harb. Perspect. Biol. 5:a013243. http://dx.doi.org/10.1101/cshperspect.a013243.
-
(2013)
Cold Spring Harb. Perspect. Biol
, vol.5
-
-
Dimitrov, L.1
Lam, S.K.2
Schekman, R.3
-
14
-
-
84873358822
-
Rab10 GTPase regulates ER dynamics and morphology
-
English, A.R., and G.K. Voeltz. 2013. Rab10 GTPase regulates ER dynamics and morphology. Nat. Cell Biol. 15:169-178. http://dx.doi.org/10.1038./ncb2647.
-
(2013)
Nat. Cell Biol
, vol.15
, pp. 169-178
-
-
English, A.R.1
Voeltz, G.K.2
-
15
-
-
84880617526
-
Untangling the web: mechanisms underlying ER network formation
-
Goyal, U., and C. Blackstone. 2013. Untangling the web: mechanisms underlying ER network formation. Biochim. Biophys. Acta. 1833:2492-2498. http://dx.doi.org/10.1016/j.bbamcr.2013.04.009.
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 2492-2498
-
-
Goyal, U.1
Blackstone, C.2
-
16
-
-
33645070532
-
Reassembly of peroxisomes in Hansenula polymorpha pex3 cells on reintroduction of Pex3p involves the nuclear envelope
-
Haan, G.J., R.J. Baerends, A.M. Krikken, M. Otzen, M. Veenhuis, and I.J. van der Klei. 2006. Reassembly of peroxisomes in Hansenula polymorpha pex3 cells on reintroduction of Pex3p involves the nuclear envelope. FEMS Yeast Res. 6:186-194. http://dx.doi.org/10.1111/j.1567-1364.2006.00037.x
-
(2006)
FEMS Yeast Res
, vol.6
, pp. 186-194
-
-
Haan, G.J.1
Baerends, R.J.2
Krikken, A.M.3
Otzen, M.4
Veenhuis, M.5
van der Klei, I.J.6
-
17
-
-
22144465170
-
Contribution of the endoplasmic reticulum to peroxisome formation
-
Hoepfner, D., D. Schildknegt, I. Braakman, P. Philippsen, and H.F. Tabak. 2005. Contribution of the endoplasmic reticulum to peroxisome formation. Cell. 122:85-95. http://dx.doi.org/10.1016/j.cell.2005.04.025.
-
(2005)
Cell
, vol.122
, pp. 85-95
-
-
Hoepfner, D.1
Schildknegt, D.2
Braakman, I.3
Philippsen, P.4
Tabak, H.F.5
-
18
-
-
40049085592
-
Membrane proteins of the endoplasmic reticulum induce high-curvature tubules
-
Hu, J., Y. Shibata, C. Voss, T. Shemesh, Z. Li, M. Coughlin, M.M. Kozlov, T.A. Rapoport, and W.A. Prinz. 2008. Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science. 319:1247-1250. http://dx.doi.org/10.1126/science.1153634.
-
(2008)
Science
, vol.319
, pp. 1247-1250
-
-
Hu, J.1
Shibata, Y.2
Voss, C.3
Shemesh, T.4
Li, Z.5
Coughlin, M.6
Kozlov, M.M.7
Rapoport, T.A.8
Prinz, W.A.9
-
19
-
-
68049096310
-
A class of dynamin-like GTPases involved in the generation of the tubular ER network
-
Hu, J., Y. Shibata, P.P. Zhu, C. Voss, N. Rismanchi, W.A. Prinz, T.A. Rapoport, and C. Blackstone. 2009. A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell. 138:549-561. http://dx.doi.org/10.1016/j.cell.2009.05.025.
-
(2009)
Cell
, vol.138
, pp. 549-561
-
-
Hu, J.1
Shibata, Y.2
Zhu, P.P.3
Voss, C.4
Rismanchi, N.5
Prinz, W.A.6
Rapoport, T.A.7
Blackstone, C.8
-
20
-
-
84934449989
-
Regulation of endoplasmic reticulum turnover by selective autophagy
-
Khaminets, A., T. Heinrich, M. Mari, P. Grumati, A.K. Huebner, M. Akutsu, L. Liebmann, A. Stolz, S. Nietzsche, N. Koch, et al. 2015. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature. 522:354-358. http://dx.doi.org/10.1038/nature14498.
-
(2015)
Nature
, vol.522
, pp. 354-358
-
-
Khaminets, A.1
Heinrich, T.2
Mari, M.3
Grumati, P.4
Huebner, A.K.5
Akutsu, M.6
Liebmann, L.7
Stolz, A.8
Nietzsche, S.9
Koch, N.10
-
21
-
-
33646791462
-
The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER
-
Kim, P.K., R.T. Mullen, U. Schumann, and J. Lippincott-Schwartz. 2006. The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER. J. Cell Biol. 173:521-532. http://dx.doi.org/10.1083/jcb.200601036.
-
(2006)
J. Cell Biol
, vol.173
, pp. 521-532
-
-
Kim, P.K.1
Mullen, R.T.2
Schumann, U.3
Lippincott-Schwartz, J.4
-
22
-
-
84895750542
-
Preperoxisomal vesicles can form in the absence of Pex3
-
Knoops, K., S. Manivannan, M.N. Cepinska, A.M. Krikken, A.M. Kram, M. Veenhuis, and I.J. van der Klei. 2014. Preperoxisomal vesicles can form in the absence of Pex3. J. Cell Biol. 204:659-668. http://dx.doi.org/10.1083/jcb.201310148.
-
(2014)
J. Cell Biol
, vol.204
, pp. 659-668
-
-
Knoops, K.1
Manivannan, S.2
Cepinska, M.N.3
Krikken, A.M.4
Kram, A.M.5
Veenhuis, M.6
van der Klei, I.J.7
-
23
-
-
78650729949
-
A vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum
-
Lam, S.K., N. Yoda, and R. Schekman. 2010. A vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA. 107:21523-21528. http://dx.doi.org/10.1073/pnas.1013397107.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 21523-21528
-
-
Lam, S.K.1
Yoda, N.2
Schekman, R.3
-
24
-
-
0031820288
-
Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
-
Longtine, M.S., A. McKenzie III, D.J. Demarini, N.G. Shah, A. Wach, A. Brachat, P. Philippsen, and J.R. Pringle. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 14:953-961. http://dx.doi.org/10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
-
(1998)
Yeast
, vol.14
, pp. 953-961
-
-
Longtine, M.S.1
McKenzie, A.2
Demarini, D.J.3
Shah, N.G.4
Wach, A.5
Brachat, A.6
Philippsen, P.7
Pringle, J.R.8
-
25
-
-
84979609022
-
Peroxins Pex30 and Pex29. dynamically associate with reticulons to regulate peroxisome biogenesis from the endoplasmic reticulum
-
Mast, F.D., A. Jamakhandi, R.A. Saleem, D.J. Dilworth, R.S. Rogers, R.A. Rachubinski, and J.D. Aitchison. 2016. Peroxins Pex30 and Pex29. dynamically associate with reticulons to regulate peroxisome biogenesis from the endoplasmic reticulum. J. Biol. Chem. 291:15408-15427. http://dx.doi.org/10.1074/jbc.M116.728154.
-
(2016)
J. Biol. Chem
, vol.291
, pp. 15408-15427
-
-
Mast, F.D.1
Jamakhandi, A.2
Saleem, R.A.3
Dilworth, D.J.4
Rogers, R.S.5
Rachubinski, R.A.6
Aitchison, J.D.7
-
26
-
-
84934449988
-
Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus
-
Mochida, K., Y. Oikawa, Y. Kimura, H. Kirisako, H. Hirano, Y. Ohsumi, and H. Nakatogawa. 2015. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature. 522:359-362. http://dx.doi.org/10.1038/nature14506.
-
(2015)
Nature
, vol.522
, pp. 359-362
-
-
Mochida, K.1
Oikawa, Y.2
Kimura, Y.3
Kirisako, H.4
Hirano, H.5
Ohsumi, Y.6
Nakatogawa, H.7
-
27
-
-
34547595860
-
Yeast peroxisomes multiply by growth and division
-
Motley, A.M., and E.H. Hettema. 2007. Yeast peroxisomes multiply by growth and division. J. Cell Biol. 178:399-410. http://dx.doi.org/10.1083/jcb.200702167.
-
(2007)
J. Cell Biol
, vol.178
, pp. 399-410
-
-
Motley, A.M.1
Hettema, E.H.2
-
28
-
-
79851510200
-
Protein import machineries of peroxisomes
-
Rucktäschel, R., W. Girzalsky, and R. Erdmann. 2011. Protein import machineries of peroxisomes. Biochim. Biophys. Acta. 1808:892-900. http://dx.doi.org/10.1016/j.bbamem.2010.07.020.
-
(2011)
Biochim. Biophys. Acta
, vol.1808
, pp. 892-900
-
-
Rucktäschel, R.1
Girzalsky, W.2
Erdmann, R.3
-
29
-
-
21244480972
-
The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth
-
Santos-Rosa, H., J. Leung, N. Grimsey, S. Peak-Chew, and S. Siniossoglou. 2005. The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J. 24:1931-1941. http://dx.doi.org/10.1038/sj.emboj.7600672.
-
(2005)
EMBO J
, vol.24
, pp. 1931-1941
-
-
Santos-Rosa, H.1
Leung, J.2
Grimsey, N.3
Peak-Chew, S.4
Siniossoglou, S.5
-
30
-
-
84917711054
-
A model for the generation and interconversion of ER morphologies
-
Shemesh, T., R.W. Klemm, F.B. Romano, S. Wang, J. Vaughan, X. Zhuang, H. Tukachinsky, M.M. Kozlov, and T.A. Rapoport. 2014. A model for the generation and interconversion of ER morphologies. Proc. Natl. Acad. Sci. USA. 111:E5243-E5251. http://dx.doi.org/10.1073/pnas.1419997111.
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. E5243-E5251
-
-
Shemesh, T.1
Klemm, R.W.2
Romano, F.B.3
Wang, S.4
Vaughan, J.5
Zhuang, X.6
Tukachinsky, H.7
Kozlov, M.M.8
Rapoport, T.A.9
-
31
-
-
49649084487
-
The reticulon and DP1/Yop1p proteins form immobile oligomers in the tubular endoplasmic reticulum
-
Shibata, Y., C. Voss, J.M. Rist, J. Hu, T.A. Rapoport, W.A. Prinz, and G.K. Voeltz. 2008. The reticulon and DP1/Yop1p proteins form immobile oligomers in the tubular endoplasmic reticulum. J. Biol. Chem. 283:18892-18904. http://dx.doi.org/10.1074/jbc.M800986200.
-
(2008)
J. Biol. Chem
, vol.283
, pp. 18892-18904
-
-
Shibata, Y.1
Voss, C.2
Rist, J.M.3
Hu, J.4
Rapoport, T.A.5
Prinz, W.A.6
Voeltz, G.K.7
-
32
-
-
79251471434
-
Mechanisms determining the morphology of the peripheral ER
-
Shibata, Y., T. Shemesh, W.A. Prinz, A.F. Palazzo, M.M. Kozlov, and T.A. Rapoport. 2010. Mechanisms determining the morphology of the peripheral ER. Cell. 143:774-788. http://dx.doi.org/10.1016/j.cell.2010.11.007.
-
(2010)
Cell
, vol.143
, pp. 774-788
-
-
Shibata, Y.1
Shemesh, T.2
Prinz, W.A.3
Palazzo, A.F.4
Kozlov, M.M.5
Rapoport, T.A.6
-
33
-
-
77951710195
-
Requirements for transitional endoplasmic reticulum site structure and function in Saccharomyces cerevisiae
-
Shindiapina, P., and C. Barlowe. 2010. Requirements for transitional endoplasmic reticulum site structure and function in Saccharomyces cerevisiae. Mol. Biol. Cell. 21:1530-1545. http://dx.doi.org/10.1091/mbc.E09-07-0605.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 1530-1545
-
-
Shindiapina, P.1
Barlowe, C.2
-
34
-
-
37249073837
-
Overexpression of a plant reticulon remodels the lumen of the cortical endoplasmic reticulum but does not perturb protein transport
-
Tolley, N., I.A. Sparkes, P.R. Hunter, C.P. Craddock, J. Nuttall, L.M. Roberts, C. Hawes, E. Pedrazzini, and L. Frigerio. 2008. Overexpression of a plant reticulon remodels the lumen of the cortical endoplasmic reticulum but does not perturb protein transport. Traffic. 9:94-102. http://dx.doi.org/10.1111/j.1600-0854.2007.00670.x
-
(2008)
Traffic
, vol.9
, pp. 94-102
-
-
Tolley, N.1
Sparkes, I.A.2
Hunter, P.R.3
Craddock, C.P.4
Nuttall, J.5
Roberts, L.M.6
Hawes, C.7
Pedrazzini, E.8
Frigerio, L.9
-
35
-
-
77951052587
-
Myosindependent endoplasmic reticulum motility and F-actin organization in plant cells
-
Ueda, H., E. Yokota, N. Kutsuna, T. Shimada, K. Tamura, T. Shimmen, S. Hasezawa, V.V. Dolja, and I. Hara-Nishimura. 2010. Myosindependent endoplasmic reticulum motility and F-actin organization in plant cells. Proc. Natl. Acad. Sci. USA. 107:6894-6899. http://dx.doi.org/10.1073/pnas.0911482107.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 6894-6899
-
-
Ueda, H.1
Yokota, E.2
Kutsuna, N.3
Shimada, T.4
Tamura, K.5
Shimmen, T.6
Hasezawa, S.7
Dolja, V.V.8
Hara-Nishimura, I.9
-
36
-
-
77953507085
-
Peroxisomal membrane proteins insert into the endoplasmic reticulum
-
van der Zand, A., I. Braakman, and H.F. Tabak. 2010. Peroxisomal membrane proteins insert into the endoplasmic reticulum. Mol. Biol. Cell. 21:2057-2065. http://dx.doi.org/10.1091/mbc.E10-02-0082.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 2057-2065
-
-
van der Zand, A.1
Braakman, I.2
Tabak, H.F.3
-
37
-
-
77956867734
-
Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism
-
Van Veldhoven, P.P. 2010. Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J. Lipid Res. 51:2863-2895. http://dx.doi.org/10.1194/jlr.R005959.
-
(2010)
J. Lipid Res
, vol.51
, pp. 2863-2895
-
-
Van Veldhoven, P.P.1
-
38
-
-
16344366871
-
Phosphorylation controls CLI MP-63-mediated anchoring of the endoplasmic reticulum to microtubules
-
Vedrenne, C., D.R. Klopfenstein, and H.P. Hauri. 2005. Phosphorylation controls CLI MP-63-mediated anchoring of the endoplasmic reticulum to microtubules. Mol. Biol. Cell. 16:1928-1937. http://dx.doi.org/10.1091/mbc.E04-07-0554.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 1928-1937
-
-
Vedrenne, C.1
Klopfenstein, D.R.2
Hauri, H.P.3
-
39
-
-
0742288046
-
Pex30p, Pex31p, and Pex32p form a family of peroxisomal integral membrane proteins regulating peroxisome size and number in Saccharomyces cerevisiae
-
Vizeacoumar, F.J., J.C. Torres-Guzman, D. Bouard, J.D. Aitchison, and R.A. Rachubinski. 2004. Pex30p, Pex31p, and Pex32p form a family of peroxisomal integral membrane proteins regulating peroxisome size and number in Saccharomyces cerevisiae. Mol. Biol. Cell. 15:665-677. http://dx.doi.org/10.1091/mbc.E03-09-0681.
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 665-677
-
-
Vizeacoumar, F.J.1
Torres-Guzman, J.C.2
Bouard, D.3
Aitchison, J.D.4
Rachubinski, R.A.5
-
40
-
-
33744949079
-
Pex19p binds Pex30p and Pex32p at regions required for their peroxisomal localization but separate from their peroxisomal targeting signals
-
Vizeacoumar, F.J., W.N. Vreden, J.D. Aitchison, and R.A. Rachubinski. 2006. Pex19p binds Pex30p and Pex32p at regions required for their peroxisomal localization but separate from their peroxisomal targeting signals. J. Biol. Chem. 281:14805-14812. http://dx.doi.org/10.1074/jbc.M601808200.
-
(2006)
J. Biol. Chem
, vol.281
, pp. 14805-14812
-
-
Vizeacoumar, F.J.1
Vreden, W.N.2
Aitchison, J.D.3
Rachubinski, R.A.4
-
41
-
-
32044445021
-
A class of membrane proteins shaping the tubular endoplasmic reticulum
-
Voeltz, G.K., W.A. Prinz, Y. Shibata, J.M. Rist, and T.A. Rapoport. 2006. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell. 124:573-586. http://dx.doi.org/10.1016/j.cell.2005.11.047.
-
(2006)
Cell
, vol.124
, pp. 573-586
-
-
Voeltz, G.K.1
Prinz, W.A.2
Shibata, Y.3
Rist, J.M.4
Rapoport, T.A.5
-
42
-
-
84872202122
-
ER-shaping proteins facilitate lipid exchange between the ER and mitochondria in S. cerevisiae
-
Voss, C., S. Lahiri, B.P. Young, C.J. Loewen, and W.A. Prinz. 2012. ER-shaping proteins facilitate lipid exchange between the ER and mitochondria in S. cerevisiae. J. Cell Sci. 125:4791-4799. http://dx.doi.org/10.1242/jcs.105635.
-
(2012)
J. Cell Sci
, vol.125
, pp. 4791-4799
-
-
Voss, C.1
Lahiri, S.2
Young, B.P.3
Loewen, C.J.4
Prinz, W.A.5
-
43
-
-
0032474825
-
Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms
-
Waterman-Storer, C.M., and E.D. Salmon. 1998. Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms. Curr. Biol. 8:798-806. http://dx.doi.org/10.1016/S0960-9822(98)70321-5.
-
(1998)
Curr. Biol
, vol.8
, pp. 798-806
-
-
Waterman-Storer, C.M.1
Salmon, E.D.2
-
44
-
-
79955488489
-
A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature
-
West, M., N. Zurek, A. Hoenger, and G.K. Voeltz. 2011. A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature. J. Cell Biol. 193:333-346. http://dx.doi.org/10.1083/jcb.201011039.
-
(2011)
J. Cell Biol
, vol.193
, pp. 333-346
-
-
West, M.1
Zurek, N.2
Hoenger, A.3
Voeltz, G.K.4
-
45
-
-
84930736511
-
Form follows function: The importance of endoplasmic reticulum shape
-
Westrate, L.M., J.E. Lee, W.A. Prinz, and G.K. Voeltz. 2015. Form follows function: The importance of endoplasmic reticulum shape. Annu. Rev. Biochem. 84:791-811. http://dx.doi.org/10.1146/annurev-biochem-072711-163501.
-
(2015)
Annu. Rev. Biochem
, vol.84
, pp. 791-811
-
-
Westrate, L.M.1
Lee, J.E.2
Prinz, W.A.3
Voeltz, G.K.4
-
46
-
-
84882641004
-
Pexophagy-linked degradation of the peroxisomal membrane protein Pex3p involves the ubiquitin-proteasome system
-
Williams, C., and I.J. van der Klei. 2013. Pexophagy-linked degradation of the peroxisomal membrane protein Pex3p involves the ubiquitin-proteasome system. Biochem. Biophys. Res. Commun. 438:395-401. http://dx.doi.org/10.1016/j.bbrc.2013.07.086.
-
(2013)
Biochem. Biophys. Res. Commun
, vol.438
, pp. 395-401
-
-
Williams, C.1
van der Klei, I.J.2
-
47
-
-
84862655498
-
The budding yeast nuclear envelope adjacent to the nucleolus serves as a membrane sink during mitotic delay
-
Witkin, K.L., Y. Chong, S. Shao, M.T. Webster, S. Lahiri, A.D. Walters, B. Lee, J.L. Koh, W.A. Prinz, B.J. Andrews, and O. Cohen-Fix. 2012. The budding yeast nuclear envelope adjacent to the nucleolus serves as a membrane sink during mitotic delay. Curr. Biol. 22:1128-1133. http://dx.doi.org/10.1016/j.cub.2012.04.022.
-
(2012)
Curr. Biol
, vol.22
, pp. 1128-1133
-
-
Witkin, K.L.1
Chong, Y.2
Shao, S.3
Webster, M.T.4
Lahiri, S.5
Walters, A.D.6
Lee, B.7
Koh, J.L.8
Prinz, W.A.9
Andrews, B.J.10
Cohen-Fix, O.11
-
48
-
-
41649109400
-
Dysferlin domain-containing proteins, Pex30p and Pex31p, localized to two compartments, control the number and size of oleate-induced peroxisomes in Pichia pastoris
-
Yan, M., D.A. Rachubinski, S. Joshi, R.A. Rachubinski, and S. Subramani. 2008. Dysferlin domain-containing proteins, Pex30p and Pex31p, localized to two compartments, control the number and size of oleate-induced peroxisomes in Pichia pastoris. Mol. Biol. Cell. 19:885-898. http://dx.doi.org/10.1091/mbc.E07-10-1042.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 885-898
-
-
Yan, M.1
Rachubinski, D.A.2
Joshi, S.3
Rachubinski, R.A.4
Subramani, S.5
-
49
-
-
79961245517
-
Sec16B is involved in the endoplasmic reticulum export of the peroxisomal membrane biogenesis factor peroxin 16 (Pex16) in mammalian cells
-
Yonekawa, S., A. Furuno, T. Baba, Y. Fujiki, Y. Ogasawara, A. Yamamoto, M. Tagaya, and K. Tani. 2011. Sec16B is involved in the endoplasmic reticulum export of the peroxisomal membrane biogenesis factor peroxin 16 (Pex16) in mammalian cells. Proc. Natl. Acad. Sci. USA. 108:12746-12751. http://dx.doi.org/10.1073/pnas.1103283108
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 12746-12751
-
-
Yonekawa, S.1
Furuno, A.2
Baba, T.3
Fujiki, Y.4
Ogasawara, Y.5
Yamamoto, A.6
Tagaya, M.7
Tani, K.8
|