-
1
-
-
84885358006
-
Emerging role of the endoplasmic reticulum in peroxisome biogenesis
-
Agrawal, G., and S. Subramani. 2013. Emerging role of the endoplasmic reticulum in peroxisome biogenesis. Front. Physiol. 4:286. http://dx.doi.org/10.3389/fphys.2013.00286
-
(2013)
Front. Physiol.
, vol.4
, pp. 286
-
-
Agrawal, G.1
Subramani, S.2
-
2
-
-
84975865504
-
De novo peroxisome biogenesis: Evolving concepts and conundrums
-
Agrawal, G., and S. Subramani. 2015. De novo peroxisome biogenesis: Evolving concepts and conundrums. Biochim. Biophys. Acta. http://dx.doi.org/10.1016/j.bbamcr.2015.09.014
-
(2015)
Biochim. Biophys. Acta.
-
-
Agrawal, G.1
Subramani, S.2
-
3
-
-
79959370908
-
Cell-free sorting of peroxisomal membrane proteins from the endoplasmic reticulum
-
Agrawal, G., S. Joshi, and S. Subramani. 2011. Cell-free sorting of peroxisomal membrane proteins from the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA. 108:9113-9118. http://dx.doi.org/10.1073/pnas.1018749108
-
(2011)
Proc. Natl. Acad. Sci. USA.
, vol.108
, pp. 9113-9118
-
-
Agrawal, G.1
Joshi, S.2
Subramani, S.3
-
4
-
-
0017184389
-
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
-
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. http://dx.doi.org/10.1016/0003-2697(76)90527-3
-
(1976)
Anal. Biochem.
, vol.72
, pp. 248-254
-
-
Bradford, M.M.1
-
5
-
-
84925776380
-
Peroxisomal Pex3 activates selective autophagy of peroxisomes via interaction with the pexophagy receptor Atg30
-
Burnett, S.F., J.-C. Farré, T.Y. Nazarko, and S. Subramani. 2015. Peroxisomal Pex3 activates selective autophagy of peroxisomes via interaction with the pexophagy receptor Atg30. J. Biol. Chem. 290:8623-8631. http://dx.doi.org/10.1074/jbc. M114.619338
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 8623-8631
-
-
Burnett, S.F.1
Farré, J.-C.2
Nazarko, T.Y.3
Subramani, S.4
-
6
-
-
0031930956
-
Two AAA family peroxins, PpPex1p and PpPex6p, interact with each other in an ATP-dependent manner and are associated with different subcellular membranous structures distinct from peroxisomes
-
Faber, K.N., J.A. Heyman, and S. Subramani. 1998. Two AAA family peroxins, PpPex1p and PpPex6p, interact with each other in an ATP-dependent manner and are associated with different subcellular membranous structures distinct from peroxisomes. Mol. Cell. Biol. 18:936-943. http://dx.doi.org/10.1128/MCB.18.2.936
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 936-943
-
-
Faber, K.N.1
Heyman, J.A.2
Subramani, S.3
-
7
-
-
84964902417
-
Intra-ER sorting of the peroxisomal membrane protein Pex3 relies on its luminal domain
-
Fakieh, M.H., P.J.M. Drake, J. Lacey, J.M. Munck, A.M. Motley, and E.H. Hettema. 2013. Intra-ER sorting of the peroxisomal membrane protein Pex3 relies on its luminal domain. Biol. Open. 2:829-837. http://dx.doi.org/10.1242/bio.20134788
-
(2013)
Biol. Open.
, vol.2
, pp. 829-837
-
-
Fakieh, M.H.1
Drake, P.J.M.2
Lacey, J.3
Munck, J.M.4
Motley, A.M.5
Hettema, E.H.6
-
8
-
-
1642394134
-
PEX3 functions as a PEX19 docking factor in the import of class I peroxisomal membrane proteins
-
Fang, Y., J.C. Morrell, J.M. Jones, and S.J. Gould. 2004. PEX3 functions as a PEX19 docking factor in the import of class I peroxisomal membrane proteins. J. Cell Biol. 164:863-875. http://dx.doi.org/10.1083/jcb.200311131
-
(2004)
J. Cell Biol.
, vol.164
, pp. 863-875
-
-
Fang, Y.1
Morrell, J.C.2
Jones, J.M.3
Gould, S.J.4
-
9
-
-
42049094041
-
PpAtg30 tags peroxisomes for turnover by selective autophagy
-
Farré, J.-C., R. Manjithaya, R.D. Mathewson, and S. Subramani. 2008. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell. 14:365-376. http://dx.doi.org/10.1016/j.devcel.2007.12.011
-
(2008)
Dev. Cell.
, vol.14
, pp. 365-376
-
-
Farré, J.-C.1
Manjithaya, R.2
Mathewson, R.D.3
Subramani, S.4
-
10
-
-
13844281618
-
Analysis of human Pex19p's domain structure by pentapeptide scanning mutagenesis
-
Fransen, M., I. Vastiau, C. Brees, V. Brys, G.P. Mannaerts, and P.P. Van Veldhoven. 2005. Analysis of human Pex19p's domain structure by pentapeptide scanning mutagenesis. J. Mol. Biol. 346:1275-1286. http://dx.doi.org/10.1016/j.jmb.2005.01.013
-
(2005)
J. Mol. Biol.
, vol.346
, pp. 1275-1286
-
-
Fransen, M.1
Vastiau, I.2
Brees, C.3
Brys, V.4
Mannaerts, G.P.5
Van Veldhoven, P.P.6
-
11
-
-
84906491186
-
Peroxisome biogenesis in mammalian cells
-
Fujiki, Y., K. Okumoto, S. Mukai, M. Honsho, and S. Tamura. 2014. Peroxisome biogenesis in mammalian cells. Front. Physiol. 5:307. http://dx.doi.org/10.3389/fphys.2014.00307
-
(2014)
Front. Physiol.
, vol.5
, pp. 307
-
-
Fujiki, Y.1
Okumoto, K.2
Mukai, S.3
Honsho, M.4
Tamura, S.5
-
12
-
-
0027033721
-
Reconstitution of endoplasmic reticulum to Golgi transport in yeast: In vitro assay to characterize secretory mutants and functional transport vesicles
-
Groesch, M.E., G. Rossi, and S. Ferro-Novick. 1992. Reconstitution of endoplasmic reticulum to Golgi transport in yeast: In vitro assay to characterize secretory mutants and functional transport vesicles. Methods Enzymol. 219:137-152. http://dx.doi.org/10.1016/0076-6879(92)19016-Y
-
(1992)
Methods Enzymol.
, vol.219
, pp. 137-152
-
-
Groesch, M.E.1
Rossi, G.2
Ferro-Novick, S.3
-
13
-
-
0036668807
-
Peroxisome remnants in pex3delta cells and the requirement of Pex3p for interactions between the peroxisomal docking and translocation subcomplexes
-
Hazra, P.P., I. Suriapranata, W.B. Snyder, and S. Subramani. 2002. Peroxisome remnants in pex3delta cells and the requirement of Pex3p for interactions between the peroxisomal docking and translocation subcomplexes. Traffic. 3:560-574. http://dx.doi.org/10.1034/j.1600-0854.2002.30806.x
-
(2002)
Traffic.
, vol.3
, pp. 560-574
-
-
Hazra, P.P.1
Suriapranata, I.2
Snyder, W.B.3
Subramani, S.4
-
14
-
-
22144465170
-
Contribution of the endoplasmic reticulum to peroxisome formation
-
Hoepfner, D., D. Schildknegt, I. Braakman, P. Philippsen, and H.F. Tabak. 2005. Contribution of the endoplasmic reticulum to peroxisome formation. Cell. 122:85-95. http://dx.doi.org/10.1016/j.cell.2005.04.025
-
(2005)
Cell.
, vol.122
, pp. 85-95
-
-
Hoepfner, D.1
Schildknegt, D.2
Braakman, I.3
Philippsen, P.4
Tabak, H.F.5
-
15
-
-
84938154115
-
Identification and functional characterization of Trypanosoma brucei peroxin 16
-
Kalel, V.C., W. Schliebs, and R. Erdmann. 2015. Identification and functional characterization of Trypanosoma brucei peroxin 16. Biochim. Biophys. Acta. 1853(10, 10 Pt A):2326-2337. http://dx.doi.org/10.1016/j.bbamcr.2015.05.024
-
(2015)
Biochim. Biophys. Acta.
, vol.1853
, Issue.10
, pp. 2326-2337
-
-
Kalel, V.C.1
Schliebs, W.2
Erdmann, R.3
-
16
-
-
28844440461
-
Role of Pex19p in the targeting of PMP70 to peroxisome
-
Kashiwayama, Y., K. Asahina, H. Shibata, M. Morita, A.C. Muntau, A.A. Roscher, R.J.A. Wanders, N. Shimozawa, M. Sakaguchi, H. Kato, and T. Imanaka. 2005. Role of Pex19p in the targeting of PMP70 to peroxisome. Biochim. Biophys. Acta. 1746:116-128. http://dx.doi.org/10.1016/j.bbamcr.2005.10.006
-
(2005)
Biochim. Biophys. Acta.
, vol.1746
, pp. 116-128
-
-
Kashiwayama, Y.1
Asahina, K.2
Shibata, H.3
Morita, M.4
Muntau, A.C.5
Roscher, A.A.6
Wanders, R.J.A.7
Shimozawa, N.8
Sakaguchi, M.9
Kato, H.10
Imanaka, T.11
-
17
-
-
84924236204
-
Multiple pathways for protein transport to peroxisomes
-
Kim, P.K., and E.H. Hettema. 2015. Multiple pathways for protein transport to peroxisomes. J. Mol. Biol. 427(6, 6 Pt A):1176-1190. http://dx.doi.org/10.1016/j.jmb.2015.02.005
-
(2015)
J. Mol. Biol.
, vol.427
, Issue.6
, pp. 1176-1190
-
-
Kim, P.K.1
Hettema, E.H.2
-
18
-
-
33646791462
-
The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER
-
Kim, P.K., R.T. Mullen, U. Schumann, and J. Lippincott-Schwartz. 2006. The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER. J. Cell Biol. 173:521-532. http://dx.doi.org/10.1083/jcb.200601036
-
(2006)
J. Cell Biol.
, vol.173
, pp. 521-532
-
-
Kim, P.K.1
Mullen, R.T.2
Schumann, U.3
Lippincott-Schwartz, J.4
-
19
-
-
84924662737
-
Sharing the cell's bounty-organelle inheritance in yeast
-
Knoblach, B., and R.A. Rachubinski. 2015. Sharing the cell's bounty-organelle inheritance in yeast. J. Cell Sci. 128:621-630. http://dx.doi.org/10.1242/jcs.151423
-
(2015)
J. Cell Sci.
, vol.128
, pp. 621-630
-
-
Knoblach, B.1
Rachubinski, R.A.2
-
20
-
-
78650729949
-
A vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum
-
Lam, S.K., N. Yoda, and R. Schekman. 2010. A vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA. 107:21523-21528. http://dx.doi.org/10.1073/pnas.1013397107
-
(2010)
Proc. Natl. Acad. Sci. USA.
, vol.107
, pp. 21523-21528
-
-
Lam, S.K.1
Yoda, N.2
Schekman, R.3
-
21
-
-
0024363899
-
Peroxisome biogenesis
-
Lazarow, P.B.P. 1989. Peroxisome biogenesis. Curr. Opin. Cell Biol. 1:630-634. http://dx.doi.org/10.1016/0955-0674(89)90026-4
-
(1989)
Curr. Opin. Cell Biol.
, vol.1
, pp. 630-634
-
-
Lazarow, P.B.P.1
-
22
-
-
0022163730
-
Biogenesis of peroxisomes
-
Lazarow, P.B., and Y. Fujiki. 1985. Biogenesis of peroxisomes. Annu. Rev. Cell Biol. 1:489-530. http://dx.doi.org/10.1146/annurev.cb.01.110185.002421
-
(1985)
Annu. Rev. Cell Biol.
, vol.1
, pp. 489-530
-
-
Lazarow, P.B.1
Fujiki, Y.2
-
23
-
-
84863843241
-
Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae
-
Motley, A.M., J.M. Nuttall, and E.H. Hettema. 2012. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J. 31:2852-2868. http://dx.doi.org/10.1038/emboj.2012.151
-
(2012)
EMBO J.
, vol.31
, pp. 2852-2868
-
-
Motley, A.M.1
Nuttall, J.M.2
Hettema, E.H.3
-
24
-
-
78650269198
-
Structural basis for docking of peroxisomal membrane protein carrier Pex19p onto its receptor Pex3p
-
Sato, Y., H. Shibata, T. Nakatsu, H. Nakano, Y. Kashiwayama, T. Imanaka, and H. Kato. 2010. Structural basis for docking of peroxisomal membrane protein carrier Pex19p onto its receptor Pex3p. EMBO J. 29:4083-4093. http://dx.doi.org/10.1038/emboj.2010.293
-
(2010)
EMBO J.
, vol.29
, pp. 4083-4093
-
-
Sato, Y.1
Shibata, H.2
Nakatsu, T.3
Nakano, H.4
Kashiwayama, Y.5
Imanaka, T.6
Kato, H.7
-
25
-
-
77955430895
-
The peroxisomal receptor Pex19p forms a helical mPTS recognition domain
-
Schueller, N., S.J. Holton, K. Fodor, M. Milewski, P. Konarev, W.A. Stanley, J. Wolf, R. Erdmann, W. Schliebs, Y.H. Song, and M. Wilmanns. 2010. The peroxisomal receptor Pex19p forms a helical mPTS recognition domain. EMBO J. 29:2491-2500. http://dx.doi.org/10.1038/emboj.2010.115
-
(2010)
EMBO J.
, vol.29
, pp. 2491-2500
-
-
Schueller, N.1
Holton, S.J.2
Fodor, K.3
Milewski, M.4
Konarev, P.5
Stanley, W.A.6
Wolf, J.7
Erdmann, R.8
Schliebs, W.9
Song, Y.H.10
Wilmanns, M.11
-
26
-
-
4644250692
-
Domain architecture and activity of human Pex19p, a chaperone-like protein for intracellular trafficking of peroxisomal membrane proteins
-
Shibata, H., Y. Kashiwayama, T. Imanaka, and H. Kato. 2004. Domain architecture and activity of human Pex19p, a chaperone-like protein for intracellular trafficking of peroxisomal membrane proteins. J. Biol. Chem. 279:38486-38494. http://dx.doi.org/10.1074/jbc. M402204200
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 38486-38494
-
-
Shibata, H.1
Kashiwayama, Y.2
Imanaka, T.3
Kato, H.4
-
27
-
-
0034641098
-
The peroxin Pex19p interacts with multiple, integral membrane proteins at the peroxisomal membrane
-
Snyder, W.B., A. Koller, A.J. Choy, and S. Subramani. 2000. The peroxin Pex19p interacts with multiple, integral membrane proteins at the peroxisomal membrane. J. Cell Biol. 149:1171-1178. http://dx.doi.org/10.1083/jcb.149.6.1171
-
(2000)
J. Cell Biol.
, vol.149
, pp. 1171-1178
-
-
Snyder, W.B.1
Koller, A.2
Choy, A.J.3
Subramani, S.4
-
28
-
-
84878954796
-
Peroxisome formation and maintenance are dependent on the endoplasmic reticulum
-
Tabak, H.F., I. Braakman, and A. van der Zand. 2013. Peroxisome formation and maintenance are dependent on the endoplasmic reticulum. Annu. Rev. Biochem. 82:723-744. http://dx.doi.org/10.1146/annurev-biochem-081111-125123
-
(2013)
Annu. Rev. Biochem.
, vol.82
, pp. 723-744
-
-
Tabak, H.F.1
Braakman, I.2
van der Zand, A.3
-
29
-
-
27144457472
-
Pex3p initiates the formation of a preperoxisomal compartment from a subdomain of the endoplasmic reticulum in Saccharomyces cerevisiae
-
Tam, Y.Y., A. Fagarasanu, M. Fagarasanu, and R.A. Rachubinski. 2005. Pex3p initiates the formation of a preperoxisomal compartment from a subdomain of the endoplasmic reticulum in Saccharomyces cerevisiae. J. Biol. Chem. 280:34933-34939. http://dx.doi.org/10.1074/jbc. M506208200
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 34933-34939
-
-
Tam, Y.Y.1
Fagarasanu, A.2
Fagarasanu, M.3
Rachubinski, R.A.4
-
30
-
-
0031895522
-
Mutants of the yeast Yarrowia lipolytica defective in protein exit from the endoplasmic reticulum are also defective in peroxisome biogenesis
-
Titorenko, V.I., and R.A. Rachubinski. 1998. Mutants of the yeast Yarrowia lipolytica defective in protein exit from the endoplasmic reticulum are also defective in peroxisome biogenesis. Mol. Cell. Biol. 18:2789-2803. http://dx.doi.org/10.1128/MCB.18.5.2789
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 2789-2803
-
-
Titorenko, V.I.1
Rachubinski, R.A.2
-
31
-
-
0034698778
-
Peroxisomal membrane fusion requires two AAA family ATPases, Pex1p and Pex6p
-
Titorenko, V.I., and R.A. Rachubinski. 2000. Peroxisomal membrane fusion requires two AAA family ATPases, Pex1p and Pex6p. J. Cell Biol. 150:881-886. http://dx.doi.org/10.1083/jcb.150.4.881
-
(2000)
J. Cell Biol.
, vol.150
, pp. 881-886
-
-
Titorenko, V.I.1
Rachubinski, R.A.2
-
32
-
-
77953507085
-
Peroxisomal membrane proteins insert into the endoplasmic reticulum
-
van der Zand, A., I. Braakman, and H.F. Tabak. 2010. Peroxisomal membrane proteins insert into the endoplasmic reticulum. Mol. Biol. Cell. 21:2057-2065. http://dx.doi.org/10.1091/mbc. E10-02-0082
-
(2010)
Mol. Biol. Cell.
, vol.21
, pp. 2057-2065
-
-
van der Zand, A.1
Braakman, I.2
Tabak, H.F.3
-
33
-
-
84859745968
-
Biochemically distinct vesicles from the endoplasmic reticulum fuse to form peroxisomes
-
van der Zand, A., J. Gent, I. Braakman, and H.F. Tabak. 2012. Biochemically distinct vesicles from the endoplasmic reticulum fuse to form peroxisomes. Cell. 149:397-409. http://dx.doi.org/10.1016/j.cell.2012.01.054
-
(2012)
Cell.
, vol.149
, pp. 397-409
-
-
van der Zand, A.1
Gent, J.2
Braakman, I.3
Tabak, H.F.4
-
34
-
-
41649109400
-
Dysferlin domain-containing proteins, Pex30p and Pex31p, localized to two compartments, control the number and size of oleate-induced peroxisomes in Pichia pastoris
-
Yan, M., D.A. Rachubinski, S. Joshi, R.A. Rachubinski, and S. Subramani. 2008. Dysferlin domain-containing proteins, Pex30p and Pex31p, localized to two compartments, control the number and size of oleate-induced peroxisomes in Pichia pastoris. Mol. Biol. Cell. 19:885-898. http://dx.doi.org/10.1091/mbc. E07-10-1042
-
(2008)
Mol. Biol. Cell.
, vol.19
, pp. 885-898
-
-
Yan, M.1
Rachubinski, D.A.2
Joshi, S.3
Rachubinski, R.A.4
Subramani, S.5
-
35
-
-
79961245517
-
Sec16B is involved in the endoplasmic reticulum export of the peroxisomal membrane biogenesis factor peroxin 16 (Pex16) in mammalian cells
-
Yonekawa, S., A. Furuno, T. Baba, Y. Fujiki, Y. Ogasawara, A. Yamamoto, M. Tagaya, and K. Tani. 2011. Sec16B is involved in the endoplasmic reticulum export of the peroxisomal membrane biogenesis factor peroxin 16 (Pex16) in mammalian cells. Proc. Natl. Acad. Sci. USA. 108:12746-12751. http://dx.doi.org/10.1073/pnas.1103283108
-
(2011)
Proc. Natl. Acad. Sci. USA.
, vol.108
, pp. 12746-12751
-
-
Yonekawa, S.1
Furuno, A.2
Baba, T.3
Fujiki, Y.4
Ogasawara, Y.5
Yamamoto, A.6
Tagaya, M.7
Tani, K.8
|