-
1
-
-
84977606874
-
A search for top squarks with R-parity-violating decays to all-hadronic final states with the ATLAS detector in (Equation presented) proton-proton collisions
-
G. Aad, A search for top squarks with R-parity-violating decays to all-hadronic final states with the ATLAS detector in (Equation presented) proton-proton collisions, J High Energy Phys. 06 (2016) 067. 10.1007/JHEP06(2016)067.
-
J High Energy Phys.
, vol.2016
, Issue.6
, pp. 067
-
-
Aad, G.1
-
2
-
-
84967019329
-
Search for single production of a vectorlike quark via a heavy gluon in the (Equation presented) final state with the ATLAS detector in (Equation presented) collisions at (Equation presented)
-
G. Aad, Search for single production of a vectorlike quark via a heavy gluon in the (Equation presented) final state with the ATLAS detector in (Equation presented) collisions at (Equation presented), Phys. Lett. B 758, 249 (2016). PYLBAJ 0370-2693 10.1016/j.physletb.2016.04.061
-
(2016)
Phys. Lett. B
, vol.758
, pp. 249
-
-
Aad, G.1
-
3
-
-
50849086098
-
The RAVE/VERTIGO vertex reconstruction toolkit and framework
-
W. Waltenberger, W. Mitaroff, F. Moser, B. Pflugfelder, and H. V. Riedel, The RAVE/VERTIGO vertex reconstruction toolkit and framework, J. Phys. Conf. Ser. 119, 032037 (2008). JPCSDZ 1742-6588 10.1088/1742-6596/119/3/032037
-
(2008)
J. Phys. Conf. Ser.
, vol.119
, pp. 032037
-
-
Waltenberger, W.1
Mitaroff, W.2
Moser, F.3
Pflugfelder, B.4
Riedel, H.V.5
-
4
-
-
84966280659
-
Performance of (Equation presented)-jet identification in the ATLAS experiment
-
G. Aad, Performance of (Equation presented)-jet identification in the ATLAS experiment, J. Instrum. 11, P04008 (2016). JIONAS 1748-0221 10.1088/1748-0221/11/04/P04008
-
(2016)
J. Instrum.
, vol.11
, pp. P04008
-
-
Aad, G.1
-
5
-
-
84877788842
-
Identification of b-quark jets with the CMS experiment
-
S. Chatrchyan, Identification of b-quark jets with the CMS experiment, J. Instrum. 8, P04013 (2013). JIONAS 1748-0221 10.1088/1748-0221/8/04/P04013
-
(2013)
J. Instrum.
, vol.8
, pp. P04013
-
-
Chatrchyan, S.1
-
6
-
-
84903779279
-
Searching for exotic particles in high-energy physics with deep learning
-
P. Baldi, P. Sadowski, and D. Whiteson, Searching for exotic particles in high-energy physics with deep learning, Nat. Commun. 5, 4308 (2014). NCAOBW 2041-1723 10.1038/ncomms5308
-
(2014)
Nat. Commun.
, vol.5
, pp. 4308
-
-
Baldi, P.1
Sadowski, P.2
Whiteson, D.3
-
7
-
-
84925850651
-
Enhanced Higgs Boson to (Equation presented) Search with Deep Learning
-
P. Baldi, P. Sadowski, and D. Whiteson, Enhanced Higgs Boson to (Equation presented) Search with Deep Learning, Phys. Rev. Lett. 114, 111801 (2015). PRLTAO 0031-9007 10.1103/PhysRevLett.114.111801
-
(2015)
Phys. Rev. Lett.
, vol.114
, pp. 111801
-
-
Baldi, P.1
Sadowski, P.2
Whiteson, D.3
-
8
-
-
85016330948
-
Deep learning, dark knowledge, and dark matter
-
P. Sadowski, J. Collado, D. Whiteson, and P. Baldi, Deep learning, dark knowledge, and dark matter, J. Mach. Learn. Res. 42, 81 (2015). 1532-4435
-
(2015)
J. Mach. Learn. Res.
, vol.42
, pp. 81
-
-
Sadowski, P.1
Collado, J.2
Whiteson, D.3
Baldi, P.4
-
9
-
-
84971602519
-
Jet substructure classification in high-energy physics with deep neural networks
-
P. Baldi, K. Bauer, C. Eng, P. Sadowski, and D. Whiteson, Jet substructure classification in high-energy physics with deep neural networks, Phys. Rev. D 93, 094034 (2016). 10.1103/PhysRevD.93.094034
-
(2016)
Phys. Rev. D
, vol.93
, pp. 094034
-
-
Baldi, P.1
Bauer, K.2
Eng, C.3
Sadowski, P.4
Whiteson, D.5
-
10
-
-
0030266582
-
Hybrid modeling, hmm/nn architectures, and protein applications
-
P. Baldi and Y. Chauvin, Hybrid modeling, hmm/nn architectures, and protein applications, Neural Comput. 8, 1541 (1996). NEUCEB 0899-7667 10.1162/neco.1996.8.7.1541
-
(1996)
Neural Comput.
, vol.8
, pp. 1541
-
-
Baldi, P.1
Chauvin, Y.2
-
11
-
-
0029727454
-
Learning task-dependent distributed representations by backpropagation through structure
-
C. Goller and A Kuchler, Learning task-dependent distributed representations by backpropagation through structure, IEEE Int. Conf. Neural Networks 1, 347 (1996). 65XSA8 1098-7576 10.1109/ICNN.1996.548916
-
(1996)
IEEE Int. Conf. Neural Networks
, vol.1
, pp. 347
-
-
Goller, C.1
Kuchler, A.2
-
12
-
-
0032165969
-
A general framework for adaptive processing of data structures
-
P. Frasconi, M. Gori, and A. Sperduti, A general framework for adaptive processing of data structures, Trans. Neur. Netw. 9, 768 (1998). 10.1109/72.712151
-
(1998)
Trans. Neur. Netw.
, vol.9
, pp. 768
-
-
Frasconi, P.1
Gori, M.2
Sperduti, A.3
-
13
-
-
0034293152
-
Learning to forget: Continual prediction with lstms
-
F. A. Gers, J. Schmidhuber, and F. Cummins, Learning to forget: Continual prediction with lstms, Neural Comput. 12, 2451 (2000). NEUCEB 0899-7667 10.1162/089976600300015015
-
(2000)
Neural Comput.
, vol.12
, pp. 2451
-
-
Gers, F.A.1
Schmidhuber, J.2
Cummins, F.3
-
14
-
-
2542420004
-
The principled design of large-scale recursive neural network architectures - Dag-rnns and the protein structure prediction problem
-
P. Baldi and G. Pollastri, The principled design of large-scale recursive neural network architectures-dag-rnns and the protein structure prediction problem, J. Mach. Learn. Res. 4, 575 (2003). 1532-4435 10.1162/153244304773936054
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 575
-
-
Baldi, P.1
Pollastri, G.2
-
15
-
-
84905394616
-
-
R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C Potts, in Proceedings of the conference on empirical methods in natural language processing (2013), Vol. 1631, p. 1642, http://www.aclweb.org/portal/content/2013-conference-empirical-methods-natural-language-processing.
-
(2013)
Proceedings of the Conference on Empirical Methods in Natural Language Processing
, vol.1631
, pp. 1642
-
-
Socher, R.1
Perelygin, A.2
Wu, J.Y.3
Chuang, J.4
Manning, C.D.5
Ng, A.Y.6
Potts, C.7
-
16
-
-
0033369033
-
Exploiting the past and the future in protein secondary structure prediction
-
P. Baldi, S. Brunak, P. Frasconi, G. Pollastri, and G. Soda, Exploiting the past and the future in protein secondary structure prediction, Bioinformatics 15, 937 (1999). BOINFP 1367-4803 10.1093/bioinformatics/15.11.937
-
(1999)
Bioinformatics
, vol.15
, pp. 937
-
-
Baldi, P.1
Brunak, S.2
Frasconi, P.3
Pollastri, G.4
Soda, G.5
-
17
-
-
67849110005
-
Nncon: Improved protein contact map prediction using 2d-recursive neural networks
-
A. N. Tegge, Z. Wang, J. Eickholt, and J. Cheng, Nncon: Improved protein contact map prediction using 2d-recursive neural networks, Nucleic Acids Res. 37, W515 (2009). NARHAD 0305-1048 10.1093/nar/gkp305
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. W515
-
-
Tegge, A.N.1
Wang, Z.2
Eickholt, J.3
Cheng, J.4
-
18
-
-
84867316765
-
Deep architectures for protein contact map prediction
-
P. Di Lena, K. Nagata, and P. Baldi, Deep architectures for protein contact map prediction, Bioinformatics 28, 2449 (2012). BOINFP 1367-4803 10.1093/bioinformatics/bts475
-
(2012)
Bioinformatics
, vol.28
, pp. 2449
-
-
Di Lena, P.1
Nagata, K.2
Baldi, P.3
-
19
-
-
84907487648
-
Sspro/accpro 5: Almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning, and structural similarity
-
C. N. Magnan and P. Baldi, Sspro/accpro 5: Almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning, and structural similarity, Bioinformatics 30, 2592 (2014). BOINFP 1367-4803 10.1093/bioinformatics/btu352
-
(2014)
Bioinformatics
, vol.30
, pp. 2592
-
-
Magnan, C.N.1
Baldi, P.2
-
20
-
-
84880542260
-
Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules
-
A. Lusci, G. Pollastri, and P. Baldi, Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules, J. Chem. Information Modeling 53, 1563 (2013). 10.1021/ci400187y
-
(2013)
J. Chem. Information Modeling
, vol.53
, pp. 1563
-
-
Lusci, A.1
Pollastri, G.2
Baldi, P.3
-
21
-
-
84965159799
-
Convolutional networks on graphs for learning molecular fingerprints
-
in, edited by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (Curran Associates, Inc.), pp.
-
D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams, Convolutional networks on graphs for learning molecular fingerprints, in Advances in Neural Information Processing Systems 28, edited by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (Curran Associates, Inc., 2015), pp. 2215-2223.
-
(2015)
Advances in Neural Information Processing Systems 28
, pp. 2215-2223
-
-
Duvenaud, D.K.1
Maclaurin, D.2
Iparraguirre, J.3
Bombarell, R.4
Hirzel, T.5
Aspuru-Guzik, A.6
Adams, R.P.7
-
22
-
-
54849419315
-
Learning to play go using recursive neural networks
-
L. Wu and P. Baldi, Learning to play go using recursive neural networks, Neural Netw. 21, 1392 (2008). NNETEB 0893-6080 10.1016/j.neunet.2008.02.002
-
(2008)
Neural Netw.
, vol.21
, pp. 1392
-
-
Wu, L.1
Baldi, P.2
-
23
-
-
85002063736
-
-
DataScience@LHC
-
L. de Oliveira, https://indico.cern.ch/event/395374/, DataScience@LHC, 2015.
-
(2015)
-
-
De Oliveira, L.1
-
24
-
-
85001906290
-
-
DataScience@LHC
-
P. Baldi, https://indico.cern.ch/event/395374/, DataScience@LHC, 2015.
-
(2015)
-
-
Baldi, P.1
-
25
-
-
84904754026
-
The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations
-
J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 07 (2014) 079. JHEPFG 1029-8479 10.1007/JHEP07(2014)079
-
J. High Energy Phys.
, vol.2014
, Issue.7
, pp. 079
-
-
Alwall, J.1
Frederix, R.2
Frixione, S.3
Hirschi, V.4
Maltoni, F.5
Mattelaer, O.6
Shao, H.S.7
Stelzer, T.8
Torrielli, P.9
Zaro, M.10
-
26
-
-
84891110181
-
Pythia 6.4 physics and manual
-
T. Sjostrand, S. Mrenna, and P. Skands, pythia 6.4 physics and manual, J. High Energy Phys. 05 (2006) 026. JHEPFG 1029-8479 10.1088/1126-6708/2006/05/026
-
J. High Energy Phys.
, vol.2006
, Issue.5
, pp. 026
-
-
Sjostrand, T.1
Mrenna, S.2
Skands, P.3
-
27
-
-
84255175083
-
-
S. Ovyn, X. Rouby, and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, 2009, https://arxiv.org/abs/0903.2225.
-
(2009)
DELPHES, A Framework for Fast Simulation of A Generic Collider Experiment
-
-
Ovyn, S.1
Rouby, X.2
Lemaitre, V.3
-
32
-
-
68449087196
-
The ATLAS experiment at the CERN Large Hadron Collider
-
G. Aad, The ATLAS experiment at the CERN Large Hadron Collider, J. Instrum. 3, S08003 (2008). JIONAS 1748-0221 10.1088/1748-0221/3/08/S08003
-
(2008)
J. Instrum.
, vol.3
, pp. S08003
-
-
Aad, G.1
-
33
-
-
84856393274
-
Anti-k(t) jet clustering algorithm
-
M. Cacciari, G. P. Salam, and G. Soyez, Anti-k(t) jet clustering algorithm, J. High Energy Phys. 04 (2008) 063. JHEPFG 1029-8479 10.1088/1126-6708/2008/04/063
-
J. High Energy Phys.
, vol.2008
, Issue.4
, pp. 063
-
-
Cacciari, M.1
Salam, G.P.2
Soyez, G.3
-
34
-
-
84858019473
-
FastJet User Manual
-
M. Cacciari, G. P. Salam, and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72, 1896 (2012). EPCFFB 1434-6044 10.1140/epjc/s10052-012-1896-2
-
(2012)
Eur. Phys. J. C
, vol.72
, pp. 1896
-
-
Cacciari, M.1
Salam, G.P.2
Soyez, G.3
-
35
-
-
79954569777
-
RAVE: A detector-independent toolkit to reconstruct vertices
-
W. Waltenberger, RAVE: A detector-independent toolkit to reconstruct vertices, IEEE Trans. Nucl. Sci. 58, 434 (2011). IETNAE 0018-9499 10.1109/TNS.2011.2119492
-
(2011)
IEEE Trans. Nucl. Sci.
, vol.58
, pp. 434
-
-
Waltenberger, W.1
-
37
-
-
85002386865
-
-
http://mlphysics.ics.uci.edu/
-
-
-
-
38
-
-
84971471904
-
-
arXiv:1207.0580
-
G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, arXiv:1207.0580.
-
Improving Neural Networks by Preventing Co-adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
39
-
-
84896507538
-
The dropout learning algorithm
-
P. Baldi and P. Sadowski, The dropout learning algorithm, Artif. Intell. 210, 78 (2014). AINTBB 0004-3702 10.1016/j.artint.2014.02.004
-
(2014)
Artif. Intell.
, vol.210
, pp. 78
-
-
Baldi, P.1
Sadowski, P.2
-
40
-
-
84872555593
-
Deep sparse rectifier neural networks
-
(JMLR, Fort Lauderdale, FL)
-
X. Glorot, A. Bordes, and Y. Bengio, Deep sparse rectifier neural networks, in Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS) (JMLR, Fort Lauderdale, FL, 2011).
-
(2011)
Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS)
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
41
-
-
77953183471
-
-
K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, What is the best multistage architecture for object recognition? in the 2009 IEEE 12th International Conference on Computer Vision (2009), pp. 2146-2153.
-
(2009)
What Is the Best Multistage Architecture for Object Recognition? in the 2009 IEEE 12th International Conference on Computer Vision
, pp. 2146-2153
-
-
Jarrett, K.1
Kavukcuoglu, K.2
Ranzato, M.3
LeCun, Y.4
-
44
-
-
0034293152
-
Learning to forget: Continual prediction with lstm
-
F. A. Gers, J. Schmidhuber, and F. Cummins, Learning to forget: Continual prediction with lstm, Neural Comput. 12, 2451 (2000). NEUCEB 0899-7667 10.1162/089976600300015015
-
(2000)
Neural Comput.
, vol.12
, pp. 2451
-
-
Gers, F.A.1
Schmidhuber, J.2
Cummins, F.3
-
45
-
-
84943739264
-
-
arXiv:1503.04069
-
K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber, Lstm: A search space odyssey, arXiv:1503.04069.
-
Lstm: A Search Space Odyssey
-
-
Greff, K.1
Srivastava, R.K.2
Koutník, J.3
Steunebrink, B.R.4
Schmidhuber, J.5
-
47
-
-
85002497431
-
-
Keras, GitHub
-
F. Chollet, Keras, GitHub, 2015.
-
(2015)
-
-
Chollet, F.1
|