메뉴 건너뛰기




Volumn 94, Issue 11, 2016, Pages

Jet flavor classification in high-energy physics with deep neural networks

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85002406555     PISSN: 24700010     EISSN: 24700029     Source Type: Journal    
DOI: 10.1103/PhysRevD.94.112002     Document Type: Article
Times cited : (256)

References (47)
  • 1
    • 84977606874 scopus 로고    scopus 로고
    • A search for top squarks with R-parity-violating decays to all-hadronic final states with the ATLAS detector in (Equation presented) proton-proton collisions
    • G. Aad, A search for top squarks with R-parity-violating decays to all-hadronic final states with the ATLAS detector in (Equation presented) proton-proton collisions, J High Energy Phys. 06 (2016) 067. 10.1007/JHEP06(2016)067.
    • J High Energy Phys. , vol.2016 , Issue.6 , pp. 067
    • Aad, G.1
  • 2
    • 84967019329 scopus 로고    scopus 로고
    • Search for single production of a vectorlike quark via a heavy gluon in the (Equation presented) final state with the ATLAS detector in (Equation presented) collisions at (Equation presented)
    • G. Aad, Search for single production of a vectorlike quark via a heavy gluon in the (Equation presented) final state with the ATLAS detector in (Equation presented) collisions at (Equation presented), Phys. Lett. B 758, 249 (2016). PYLBAJ 0370-2693 10.1016/j.physletb.2016.04.061
    • (2016) Phys. Lett. B , vol.758 , pp. 249
    • Aad, G.1
  • 3
  • 4
    • 84966280659 scopus 로고    scopus 로고
    • Performance of (Equation presented)-jet identification in the ATLAS experiment
    • G. Aad, Performance of (Equation presented)-jet identification in the ATLAS experiment, J. Instrum. 11, P04008 (2016). JIONAS 1748-0221 10.1088/1748-0221/11/04/P04008
    • (2016) J. Instrum. , vol.11 , pp. P04008
    • Aad, G.1
  • 5
    • 84877788842 scopus 로고    scopus 로고
    • Identification of b-quark jets with the CMS experiment
    • S. Chatrchyan, Identification of b-quark jets with the CMS experiment, J. Instrum. 8, P04013 (2013). JIONAS 1748-0221 10.1088/1748-0221/8/04/P04013
    • (2013) J. Instrum. , vol.8 , pp. P04013
    • Chatrchyan, S.1
  • 6
    • 84903779279 scopus 로고    scopus 로고
    • Searching for exotic particles in high-energy physics with deep learning
    • P. Baldi, P. Sadowski, and D. Whiteson, Searching for exotic particles in high-energy physics with deep learning, Nat. Commun. 5, 4308 (2014). NCAOBW 2041-1723 10.1038/ncomms5308
    • (2014) Nat. Commun. , vol.5 , pp. 4308
    • Baldi, P.1    Sadowski, P.2    Whiteson, D.3
  • 7
    • 84925850651 scopus 로고    scopus 로고
    • Enhanced Higgs Boson to (Equation presented) Search with Deep Learning
    • P. Baldi, P. Sadowski, and D. Whiteson, Enhanced Higgs Boson to (Equation presented) Search with Deep Learning, Phys. Rev. Lett. 114, 111801 (2015). PRLTAO 0031-9007 10.1103/PhysRevLett.114.111801
    • (2015) Phys. Rev. Lett. , vol.114 , pp. 111801
    • Baldi, P.1    Sadowski, P.2    Whiteson, D.3
  • 9
    • 84971602519 scopus 로고    scopus 로고
    • Jet substructure classification in high-energy physics with deep neural networks
    • P. Baldi, K. Bauer, C. Eng, P. Sadowski, and D. Whiteson, Jet substructure classification in high-energy physics with deep neural networks, Phys. Rev. D 93, 094034 (2016). 10.1103/PhysRevD.93.094034
    • (2016) Phys. Rev. D , vol.93 , pp. 094034
    • Baldi, P.1    Bauer, K.2    Eng, C.3    Sadowski, P.4    Whiteson, D.5
  • 10
    • 0030266582 scopus 로고    scopus 로고
    • Hybrid modeling, hmm/nn architectures, and protein applications
    • P. Baldi and Y. Chauvin, Hybrid modeling, hmm/nn architectures, and protein applications, Neural Comput. 8, 1541 (1996). NEUCEB 0899-7667 10.1162/neco.1996.8.7.1541
    • (1996) Neural Comput. , vol.8 , pp. 1541
    • Baldi, P.1    Chauvin, Y.2
  • 11
    • 0029727454 scopus 로고    scopus 로고
    • Learning task-dependent distributed representations by backpropagation through structure
    • C. Goller and A Kuchler, Learning task-dependent distributed representations by backpropagation through structure, IEEE Int. Conf. Neural Networks 1, 347 (1996). 65XSA8 1098-7576 10.1109/ICNN.1996.548916
    • (1996) IEEE Int. Conf. Neural Networks , vol.1 , pp. 347
    • Goller, C.1    Kuchler, A.2
  • 12
    • 0032165969 scopus 로고    scopus 로고
    • A general framework for adaptive processing of data structures
    • P. Frasconi, M. Gori, and A. Sperduti, A general framework for adaptive processing of data structures, Trans. Neur. Netw. 9, 768 (1998). 10.1109/72.712151
    • (1998) Trans. Neur. Netw. , vol.9 , pp. 768
    • Frasconi, P.1    Gori, M.2    Sperduti, A.3
  • 13
    • 0034293152 scopus 로고    scopus 로고
    • Learning to forget: Continual prediction with lstms
    • F. A. Gers, J. Schmidhuber, and F. Cummins, Learning to forget: Continual prediction with lstms, Neural Comput. 12, 2451 (2000). NEUCEB 0899-7667 10.1162/089976600300015015
    • (2000) Neural Comput. , vol.12 , pp. 2451
    • Gers, F.A.1    Schmidhuber, J.2    Cummins, F.3
  • 14
    • 2542420004 scopus 로고    scopus 로고
    • The principled design of large-scale recursive neural network architectures - Dag-rnns and the protein structure prediction problem
    • P. Baldi and G. Pollastri, The principled design of large-scale recursive neural network architectures-dag-rnns and the protein structure prediction problem, J. Mach. Learn. Res. 4, 575 (2003). 1532-4435 10.1162/153244304773936054
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 575
    • Baldi, P.1    Pollastri, G.2
  • 16
    • 0033369033 scopus 로고    scopus 로고
    • Exploiting the past and the future in protein secondary structure prediction
    • P. Baldi, S. Brunak, P. Frasconi, G. Pollastri, and G. Soda, Exploiting the past and the future in protein secondary structure prediction, Bioinformatics 15, 937 (1999). BOINFP 1367-4803 10.1093/bioinformatics/15.11.937
    • (1999) Bioinformatics , vol.15 , pp. 937
    • Baldi, P.1    Brunak, S.2    Frasconi, P.3    Pollastri, G.4    Soda, G.5
  • 17
    • 67849110005 scopus 로고    scopus 로고
    • Nncon: Improved protein contact map prediction using 2d-recursive neural networks
    • A. N. Tegge, Z. Wang, J. Eickholt, and J. Cheng, Nncon: Improved protein contact map prediction using 2d-recursive neural networks, Nucleic Acids Res. 37, W515 (2009). NARHAD 0305-1048 10.1093/nar/gkp305
    • (2009) Nucleic Acids Res. , vol.37 , pp. W515
    • Tegge, A.N.1    Wang, Z.2    Eickholt, J.3    Cheng, J.4
  • 18
    • 84867316765 scopus 로고    scopus 로고
    • Deep architectures for protein contact map prediction
    • P. Di Lena, K. Nagata, and P. Baldi, Deep architectures for protein contact map prediction, Bioinformatics 28, 2449 (2012). BOINFP 1367-4803 10.1093/bioinformatics/bts475
    • (2012) Bioinformatics , vol.28 , pp. 2449
    • Di Lena, P.1    Nagata, K.2    Baldi, P.3
  • 19
    • 84907487648 scopus 로고    scopus 로고
    • Sspro/accpro 5: Almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning, and structural similarity
    • C. N. Magnan and P. Baldi, Sspro/accpro 5: Almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning, and structural similarity, Bioinformatics 30, 2592 (2014). BOINFP 1367-4803 10.1093/bioinformatics/btu352
    • (2014) Bioinformatics , vol.30 , pp. 2592
    • Magnan, C.N.1    Baldi, P.2
  • 20
    • 84880542260 scopus 로고    scopus 로고
    • Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules
    • A. Lusci, G. Pollastri, and P. Baldi, Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules, J. Chem. Information Modeling 53, 1563 (2013). 10.1021/ci400187y
    • (2013) J. Chem. Information Modeling , vol.53 , pp. 1563
    • Lusci, A.1    Pollastri, G.2    Baldi, P.3
  • 21
  • 22
    • 54849419315 scopus 로고    scopus 로고
    • Learning to play go using recursive neural networks
    • L. Wu and P. Baldi, Learning to play go using recursive neural networks, Neural Netw. 21, 1392 (2008). NNETEB 0893-6080 10.1016/j.neunet.2008.02.002
    • (2008) Neural Netw. , vol.21 , pp. 1392
    • Wu, L.1    Baldi, P.2
  • 23
    • 85002063736 scopus 로고    scopus 로고
    • DataScience@LHC
    • L. de Oliveira, https://indico.cern.ch/event/395374/, DataScience@LHC, 2015.
    • (2015)
    • De Oliveira, L.1
  • 24
    • 85001906290 scopus 로고    scopus 로고
    • DataScience@LHC
    • P. Baldi, https://indico.cern.ch/event/395374/, DataScience@LHC, 2015.
    • (2015)
    • Baldi, P.1
  • 25
    • 84904754026 scopus 로고    scopus 로고
    • The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations
    • J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 07 (2014) 079. JHEPFG 1029-8479 10.1007/JHEP07(2014)079
    • J. High Energy Phys. , vol.2014 , Issue.7 , pp. 079
    • Alwall, J.1    Frederix, R.2    Frixione, S.3    Hirschi, V.4    Maltoni, F.5    Mattelaer, O.6    Shao, H.S.7    Stelzer, T.8    Torrielli, P.9    Zaro, M.10
  • 26
    • 84891110181 scopus 로고    scopus 로고
    • Pythia 6.4 physics and manual
    • T. Sjostrand, S. Mrenna, and P. Skands, pythia 6.4 physics and manual, J. High Energy Phys. 05 (2006) 026. JHEPFG 1029-8479 10.1088/1126-6708/2006/05/026
    • J. High Energy Phys. , vol.2006 , Issue.5 , pp. 026
    • Sjostrand, T.1    Mrenna, S.2    Skands, P.3
  • 32
    • 68449087196 scopus 로고    scopus 로고
    • The ATLAS experiment at the CERN Large Hadron Collider
    • G. Aad, The ATLAS experiment at the CERN Large Hadron Collider, J. Instrum. 3, S08003 (2008). JIONAS 1748-0221 10.1088/1748-0221/3/08/S08003
    • (2008) J. Instrum. , vol.3 , pp. S08003
    • Aad, G.1
  • 33
    • 84856393274 scopus 로고    scopus 로고
    • Anti-k(t) jet clustering algorithm
    • M. Cacciari, G. P. Salam, and G. Soyez, Anti-k(t) jet clustering algorithm, J. High Energy Phys. 04 (2008) 063. JHEPFG 1029-8479 10.1088/1126-6708/2008/04/063
    • J. High Energy Phys. , vol.2008 , Issue.4 , pp. 063
    • Cacciari, M.1    Salam, G.P.2    Soyez, G.3
  • 34
    • 84858019473 scopus 로고    scopus 로고
    • FastJet User Manual
    • M. Cacciari, G. P. Salam, and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72, 1896 (2012). EPCFFB 1434-6044 10.1140/epjc/s10052-012-1896-2
    • (2012) Eur. Phys. J. C , vol.72 , pp. 1896
    • Cacciari, M.1    Salam, G.P.2    Soyez, G.3
  • 35
    • 79954569777 scopus 로고    scopus 로고
    • RAVE: A detector-independent toolkit to reconstruct vertices
    • W. Waltenberger, RAVE: A detector-independent toolkit to reconstruct vertices, IEEE Trans. Nucl. Sci. 58, 434 (2011). IETNAE 0018-9499 10.1109/TNS.2011.2119492
    • (2011) IEEE Trans. Nucl. Sci. , vol.58 , pp. 434
    • Waltenberger, W.1
  • 37
    • 85002386865 scopus 로고    scopus 로고
    • http://mlphysics.ics.uci.edu/
  • 39
    • 84896507538 scopus 로고    scopus 로고
    • The dropout learning algorithm
    • P. Baldi and P. Sadowski, The dropout learning algorithm, Artif. Intell. 210, 78 (2014). AINTBB 0004-3702 10.1016/j.artint.2014.02.004
    • (2014) Artif. Intell. , vol.210 , pp. 78
    • Baldi, P.1    Sadowski, P.2
  • 44
    • 0034293152 scopus 로고    scopus 로고
    • Learning to forget: Continual prediction with lstm
    • F. A. Gers, J. Schmidhuber, and F. Cummins, Learning to forget: Continual prediction with lstm, Neural Comput. 12, 2451 (2000). NEUCEB 0899-7667 10.1162/089976600300015015
    • (2000) Neural Comput. , vol.12 , pp. 2451
    • Gers, F.A.1    Schmidhuber, J.2    Cummins, F.3
  • 47
    • 85002497431 scopus 로고    scopus 로고
    • Keras, GitHub
    • F. Chollet, Keras, GitHub, 2015.
    • (2015)
    • Chollet, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.