메뉴 건너뛰기




Volumn 15, Issue , 2013, Pages 327-357

Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer

Author keywords

biomechanical modeling; breast cancer; classification; computer aided detection; computer aided diagnosis; image processing; image registration; medical imaging; risk assessment

Indexed keywords

BIOMECHANICAL MODELING; BREAST CANCER; CANCER RISK ASSESSMENTS; COMPUTER-AIDED DETECTION; FEATURE EXTRACTION TECHNIQUES; IMAGE ANALYSIS METHOD; KINETIC CHARACTERISTICS; QUANTITATIVE IMAGE ANALYSIS;

EID: 84880524177     PISSN: 15239829     EISSN: 15454274     Source Type: Book Series    
DOI: 10.1146/annurev-bioeng-071812-152416     Document Type: Review
Times cited : (197)

References (148)
  • 1
    • 56749181253 scopus 로고    scopus 로고
    • Anniversary paper: History and status of cad and quantitative image analysis: The role of medical physics and aapm
    • GigerM, Chan H, Boone J. 2008. Anniversary paper: History and status of CAD and quantitative image analysis: The role of medical physics and AAPM. Med. Phys. 35:5799-820
    • (2008) Med. Phys , vol.35 , pp. 5799-5820
    • Giger, M.1    Chan, H.2    Boone, J.3
  • 2
    • 66449127098 scopus 로고    scopus 로고
    • CADx of mammographic masses and clustered microcalcifications: A review
    • Elter M, Horsch A. 2009. CADx of mammographic masses and clustered microcalcifications: A review. Med. Phys. 36:2052-68
    • (2009) Med. Phys , vol.36 , pp. 2052-2068
    • Elter, M.1    Horsch, A.2
  • 4
    • 0030956370 scopus 로고    scopus 로고
    • Thickness-equalization processing for mammographic images
    • Byng JW, Critten JP, Yaffe MJ. 1997. Thickness-equalization processing for mammographic images. Radiology 203:564-68
    • (1997) Radiology , vol.203 , pp. 564-568
    • Byng, J.W.1    Critten, J.P.2    Yaffe, M.J.3
  • 5
    • 3142729244 scopus 로고    scopus 로고
    • Thickness correction ofmammographic images bymeans of a global parameter model of the compressed breast
    • Snoeren PR, Karssemeijer N. 2004. Thickness correction ofmammographic images bymeans of a global parameter model of the compressed breast. IEEE Trans. Med. Imaging 23:799-806
    • (2004) IEEE Trans Med. Imaging , vol.23 , pp. 799-806
    • Snoeren, P.R.1    Karssemeijer, N.2
  • 8
    • 72049121164 scopus 로고    scopus 로고
    • Single X-ray absorptiometrymethod for the quantitative mammographic measure of fibroglandular tissue volume
    • Malkov S, Wang J, KerlikowskeK,Cummings S, Shepherd J. 2009. Single X-ray absorptiometrymethod for the quantitative mammographic measure of fibroglandular tissue volume. Med. Phys. 36:5525-36
    • (2009) Med. Phys , vol.36 , pp. 5525-5536
    • Malkov, S.1    Wang, J.2    Kerlikowske, K.3    Cummings, S.4    Shepherd, J.5
  • 9
    • 77952391417 scopus 로고    scopus 로고
    • Validation of a method for measuring the volumetric breast density from digital mammograms
    • Alonzo-Proulx O, Packard N, Boone JM, Al-Mayah A, Brock KK, et al. 2010. Validation of a method for measuring the volumetric breast density from digital mammograms. Phys. Med. Biol. 55:3027-44
    • (2010) Phys. Med. Biol , vol.55 , pp. 3027-3044
    • Alonzo-Proulx, O.1    Packard, N.2    Boone, J.M.3    Al-Mayah, A.4    Brock, K.K.5
  • 11
    • 0017082939 scopus 로고
    • Risk for breast cancer development determined bymammographic parenchymal pattern
    • Wolfe JN. 1976. Risk for breast cancer development determined bymammographic parenchymal pattern. Cancer 37:2486-92
    • (1976) Cancer , vol.37 , pp. 2486-2492
    • Wolfe, J.N.1
  • 12
    • 0031060766 scopus 로고    scopus 로고
    • The tabár classification of mammographic parenchymal patterns
    • Gram IT, Funkhouser E, Tabár L. 1997. The Tabár classification of mammographic parenchymal patterns. Eur. J. Radiol. 24:131-36
    • (1997) Eur. J. Radiol , vol.24 , pp. 131-136
    • Gram, I.T.1    Funkhouser, E.2    Tabár, L.3
  • 13
    • 0036830333 scopus 로고    scopus 로고
    • Computerized analysis of digitized mammograms of BRCA1 and BRCA2 gene mutation carriers
    • Huo Z, Giger M, Olopade O, Wolverton D, Weber B, et al. 2002. Computerized analysis of digitized mammograms of BRCA1 and BRCA2 gene mutation carriers. Radiology 225:519-26
    • (2002) Radiology , vol.225 , pp. 519-526
    • Huo, Z.1    Giger, M.2    Olopade, O.3    Wolverton, D.4    Weber, B.5
  • 14
    • 79959572211 scopus 로고    scopus 로고
    • Association of computerized mammographic parenchymal pattern measure with breast cancer risk: A pilot case-control study
    • Wei J, Chan H, Wu Y, Zhou C, Helvie M, et al. 2011. Association of computerized mammographic parenchymal pattern measure with breast cancer risk: A pilot case-control study. Radiology 260:42-49
    • (2011) Radiology , vol.260 , pp. 42-49
    • Wei, J.1    Chan, H.2    Wu, Y.3    Zhou, C.4    Helvie, M.5
  • 15
    • 34047275404 scopus 로고    scopus 로고
    • Fractal analysis of mammographic parenchymal patterns in breast cancer risk assessment
    • Li H, Giger M, Olopade O, Lan L. 2007. Fractal analysis of mammographic parenchymal patterns in breast cancer risk assessment. Acad. Radiol. 14:513-21
    • (2007) Acad. Radiol , vol.14 , pp. 513-521
    • Li, H.1    Giger, M.2    Olopade, O.3    Lan, L.4
  • 17
    • 79960572789 scopus 로고    scopus 로고
    • A novel and automatic mammographic texture resemblance marker is an independent risk factor for breast cancer
    • NielsenM, KaremoreG, Loog M, Raundahl J, Karssemeijer N, et al. 2011. A novel and automatic mammographic texture resemblance marker is an independent risk factor for breast cancer. Cancer Epidemiol. 35:381-87
    • (2011) Cancer Epidemiol , vol.35 , pp. 381-387
    • Nielsen, M.1    Karemore, G.2    Loog, M.3    Raundahl, J.4    Karssemeijer, N.5
  • 18
    • 79551668784 scopus 로고    scopus 로고
    • Detection of clustered microcalcifications using spatial point process modeling
    • Jing H, Yang Y, Nishikawa R. 2011. Detection of clustered microcalcifications using spatial point process modeling. Phys. Med. Biol. 56:1-17
    • (2011) Phys. Med. Biol , vol.56 , pp. 1-17
    • Jing, H.1    Yang, Y.2    Nishikawa, R.3
  • 19
    • 0030062375 scopus 로고    scopus 로고
    • Malignant and benign clustered microcalcifications: Automated feature analysis and classification
    • JiangY,NishikawaRM,WolvertonDE, Metz CE,GigerML,et al. 1996. Malignant and benign clustered microcalcifications: Automated feature analysis and classification. Radiology 198:671-78
    • (1996) Radiology , vol.198 , pp. 671-678
    • Jiang, Y.1    Nishikawa, R.M.2    Wolverton, D.E.3    Metz, C.E.4    Giger, M.L.5
  • 20
    • 0033694673 scopus 로고    scopus 로고
    • Automated classification of clustered microcalcifications into malignant and benign types
    • Veldkamp WJ, Karssemeijer N, Otten JD, Hendriks JH. 2000. Automated classification of clustered microcalcifications into malignant and benign types. Med. Phys. 27:2600-8
    • (2000) Med. Phys , vol.27 , pp. 2600-2608
    • Veldkamp, W.J.1    Karssemeijer, N.2    Otten, J.D.3    Hendriks, J.H.4
  • 21
    • 75749149659 scopus 로고    scopus 로고
    • A review of automatic mass detection and segmentation in mammographic images
    • Oliver A, Freixenet J, Martí J, Pérez E, Pont J, et al. 2010. A review of automatic mass detection and segmentation in mammographic images. Med. Image Anal. 14:87-110
    • (2010) Med. Image Anal , vol.14 , pp. 87-110
    • Oliver, A.1    Freixenet, J.2    Martí, J.3    Pérez, E.4    Pont, J.5
  • 22
    • 76849089516 scopus 로고    scopus 로고
    • Segmentation of regions of interest in mammograms in a topographic approach
    • Hong B, Sohn B. 2010. Segmentation of regions of interest in mammograms in a topographic approach. IEEE Trans. Inf. Technol. Biomed. 14:129-39
    • (2010) IEEE Trans Inf. Technol. Biomed , vol.14 , pp. 129-139
    • Hong, B.1    Sohn, B.2
  • 23
    • 84859435824 scopus 로고    scopus 로고
    • A probabilistic framework for image information fusion with an application to mammographic analysis
    • Velikova M, Lucas PJF, Samulski M, Karssemeijer N. 2012. A probabilistic framework for image information fusion with an application to mammographic analysis. Med. Image Anal. 16:865-75
    • (2012) Med. Image Anal , vol.16 , pp. 865-875
    • Velikova, M.1    Lucas, P.J.F.2    Samulski, M.3    Karssemeijer, N.4
  • 24
    • 0036174154 scopus 로고    scopus 로고
    • Improvement of computerized mass detection on mammograms: Fusion of two-view information
    • Paquerault S, Petrick N, Chan H, Sahiner B, Helvie M. 2002. Improvement of computerized mass detection on mammograms: Fusion of two-view information. Med. Phys. 29:238-47
    • (2002) Med. Phys , vol.29 , pp. 238-247
    • Paquerault, S.1    Petrick, N.2    Chan, H.3    Sahiner, B.4    Helvie, M.5
  • 25
    • 33847677137 scopus 로고    scopus 로고
    • Combining two mammographic projections in a computer aided mass detection method
    • van Engeland S, Karssemeijer N. 2007. Combining two mammographic projections in a computer aided mass detection method. Med. Phys. 34:898-905
    • (2007) Med. Phys , vol.34 , pp. 898-905
    • Van Engeland, S.1    Karssemeijer, N.2
  • 26
    • 70349656515 scopus 로고    scopus 로고
    • Computer-Aided detection of breast masses on mammograms: Dual system approach with two-view analysis
    • Wei J, Chan H-P, Sahiner B, Zhou C, Hadjiiski LM, et al. 2009. Computer-Aided detection of breast masses on mammograms: Dual system approach with two-view analysis. Med. Phys. 36:4451-60
    • (2009) Med. Phys , vol.36 , pp. 4451-4460
    • Wei, J.1    Chan, H.-P.2    Sahiner, B.3    Zhou, C.4    Hadjiiski, L.M.5
  • 27
    • 33748300896 scopus 로고    scopus 로고
    • Multiview-based computer-Aided detection scheme for breast masses
    • Zheng B, Leader J, Abrams G, Lu A,Wallace L, et al. 2006. Multiview-based computer-Aided detection scheme for breast masses. Med. Phys. 33:3135-43
    • (2006) Med. Phys , vol.33 , pp. 3135-3143
    • Zheng, B.1    Leader, J.2    Abrams, G.3    Lu, A.4    Wallace, L.5
  • 28
    • 79953745900 scopus 로고    scopus 로고
    • Optimizing case-based detection performance in a multiview CAD system for mammography
    • Samulski M, Karssemeijer N. 2011. Optimizing case-based detection performance in a multiview CAD system for mammography. IEEE Trans. Med. Imaging 30:1001-9
    • (2011) IEEE Trans. Med. Imaging , vol.30 , pp. 1001-1009
    • Samulski, M.1    Karssemeijer, N.2
  • 29
    • 79953673069 scopus 로고    scopus 로고
    • Computer-Aided detection of breast masses: Four-view strategy for screening mammography
    • Wei J, Chan H, Zhou C, Wu Y, Sahiner B, et al. 2011. Computer-Aided detection of breast masses: Four-view strategy for screening mammography. Med. Phys. 38:1867-76
    • (2011) Med. Phys , vol.38 , pp. 1867-1876
    • Wei, J.1    Chan, H.2    Zhou, C.3    Wu, Y.4    Sahiner, B.5
  • 31
    • 0034971403 scopus 로고    scopus 로고
    • Automated registration of breast lesions in temporal pairs of mammograms for interval change analysis-local affine transformation for improved localization
    • Hadjiiski L, Chan HP, Sahiner B, Petrick N, Helvie MA. 2001. Automated registration of breast lesions in temporal pairs of mammograms for interval change analysis-local affine transformation for improved localization. Med. Phys. 28:1070-79
    • (2001) Med. Phys , vol.28 , pp. 1070-1079
    • Hadjiiski, L.1    Chan, H.P.2    Sahiner, B.3    Petrick, N.4    Helvie, M.A.5
  • 32
    • 0033453988 scopus 로고    scopus 로고
    • A regional registration technique for automated interval change analysis of breast lesions on mammograms
    • Sanjay-Gopal S, Chan HP, Wilson T, Helvie M, Petrick N, Sahiner B. 1999. A regional registration technique for automated interval change analysis of breast lesions on mammograms. Med. Phys. 26:2669-79
    • (1999) Med. Phys , vol.26 , pp. 2669-2679
    • Sanjay-Gopal, S.1    Chan, H.P.2    Wilson, T.3    Helvie, M.4    Petrick, N.5    Sahiner, B.6
  • 33
    • 23944458535 scopus 로고    scopus 로고
    • A regional registration method to find corresponding mass lesions in temporal mammogram pairs
    • Timp S, van Engeland S, Karssemeijer N. 2005. A regional registration method to find corresponding mass lesions in temporal mammogram pairs. Med. Phys. 32:2629-38
    • (2005) Med. Phys , vol.32 , pp. 2629-2638
    • Timp, S.1    Van Engeland, S.2    Karssemeijer, N.3
  • 34
    • 14644438514 scopus 로고    scopus 로고
    • Comparison of similarity measures for the task of template matching of masses on serial mammograms
    • Filev P, Hadjiiski L, Sahiner B, Chan H, Helvie M. 2005. Comparison of similarity measures for the task of template matching of masses on serial mammograms. Med. Phys. 32:515-29
    • (2005) Med. Phys , vol.32 , pp. 515-529
    • Filev, P.1    Hadjiiski, L.2    Sahiner, B.3    Chan, H.4    Helvie, M.5
  • 35
    • 28744432535 scopus 로고    scopus 로고
    • Interval change analysis to improve computer aided detection in mammography
    • Timp S, Karssemeijer N. 2006. Interval change analysis to improve computer aided detection in mammography. Med. Image Anal. 10:82-95
    • (2006) Med. Image Anal , vol.10 , pp. 82-95
    • Timp, S.1    Karssemeijer, N.2
  • 36
    • 43549105166 scopus 로고    scopus 로고
    • Combined screening with ultrasound and mammography versus mammography alone in women at elevated risk of breast cancer
    • Berg W, Blume J, Cormack J, Mendelson E, Lehrer D, et al. 2008. Combined screening with ultrasound and mammography versus mammography alone in women at elevated risk of breast cancer. J. Am. Med. Assoc. 299:2151-63
    • (2008) J. Am. Med. Assoc , vol.299 , pp. 2151-2163
    • Berg, W.1    Blume, J.2    Cormack, J.3    Mendelson, E.4    Lehrer, D.5
  • 37
    • 77952312239 scopus 로고    scopus 로고
    • Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts
    • Kelly K, Dean J, Comulada W, Lee S. 2010. Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts. Eur. Radiol. 20:734-42
    • (2010) Eur. Radiol , vol.20 , pp. 734-742
    • Kelly, K.1    Dean, J.2    Comulada, W.3    Lee, S.4
  • 38
    • 27744601340 scopus 로고    scopus 로고
    • Robustness of computerized lesion detection and classification scheme across different breast US platforms
    • Drukker K, Giger M, Metz C. 2005. Robustness of computerized lesion detection and classification scheme across different breast US platforms. Radiology 237:834-40
    • (2005) Radiology , vol.237 , pp. 834-840
    • Drukker, K.1    Giger, M.2    Metz, C.3
  • 39
    • 33847208483 scopus 로고    scopus 로고
    • Malignant and benign breast masses on 3DUS volumetric images: Effect of computer-Aided diagnosis on radiologist accuracy
    • Sahiner B, Chan H, Roubidoux M, Hadjiiski L, Helvie M, et al. 2007. Malignant and benign breast masses on 3DUS volumetric images: Effect of computer-Aided diagnosis on radiologist accuracy. Radiology 242:716-24
    • (2007) Radiology , vol.242 , pp. 716-724
    • Sahiner, B.1    Chan, H.2    Roubidoux, M.3    Hadjiiski, L.4    Helvie, M.5
  • 41
    • 27744556063 scopus 로고    scopus 로고
    • Computer-Aided detection system for breast masses on digital tomosynthesis mammograms: Preliminary experience
    • Chan H-P, Wei J, Sahiner B, Rafferty EA, Wu T, et al. 2005. Computer-Aided detection system for breast masses on digital tomosynthesis mammograms: Preliminary experience. Radiology 237:1075-80
    • (2005) Radiology , vol.237 , pp. 1075-1080
    • Chan, H.-P.1    Wei, J.2    Sahiner, B.3    Rafferty, E.A.4    Wu, T.5
  • 42
    • 31844448002 scopus 로고    scopus 로고
    • Computerized mass detection for digital breast tomosynthesis directly from the projection images
    • Reiser I, Nishikawa RM, Giger ML, Wu T, Rafferty EA, et al. 2006. Computerized mass detection for digital breast tomosynthesis directly from the projection images. Med. Phys. 33:482-91
    • (2006) Med. Phys , vol.33 , pp. 482-491
    • Reiser, I.1    Nishikawa, R.M.2    Giger, M.L.3    Wu, T.4    Rafferty, E.A.5
  • 43
    • 41449102812 scopus 로고    scopus 로고
    • Automated detection of microcalcification clusters for digital breast tomosynthesis using projection data only: A preliminary study
    • Reiser I, Nishikawa RM, Edwards AV, Kopans DB, Schmidt RA, et al. 2008. Automated detection of microcalcification clusters for digital breast tomosynthesis using projection data only: A preliminary study. Med. Phys. 35:1486-93
    • (2008) Med. Phys , vol.35 , pp. 1486-1493
    • Reiser, I.1    Nishikawa, R.M.2    Edwards, A.V.3    Kopans, D.B.4    Schmidt, R.A.5
  • 44
    • 84855462930 scopus 로고    scopus 로고
    • Computer-Aided detection of clustered microcalcifications in digital breast tomosyn thesis: A 3D approach
    • Sahiner B, Chan H, Hadjiiski L, Helvie M, Wei J, et al. 2012. Computer-Aided detection of clustered microcalcifications in digital breast tomosynthesis: A 3D approach. Med. Phys. 39:28-39
    • (2012) Med Phys , vol.39 , pp. 28-39
    • Sahiner, B.1    Chan, H.2    Hadjiiski, L.3    Helvie, M.4    Wei, J.5
  • 45
    • 50449109489 scopus 로고    scopus 로고
    • Computer-Aided detection of masses in digital tomosynthesis mammography: Comparison of three approaches
    • Chan H-P, Wei J, Zhang Y, Helvie MA, Moore RH, et al. 2008. Computer-Aided detection of masses in digital tomosynthesis mammography: Comparison of three approaches. Med. Phys. 35:4087-95
    • (2008) Med Phys , vol.35 , pp. 4087-4095
    • Chan, H.-P.1    Wei, J.2    Zhang, Y.3    Helvie, M.A.4    Moore, R.H.5
  • 46
    • 77954698222 scopus 로고    scopus 로고
    • Characterization of masses in digital breast tomosyn thesis: Comparison of machine learning in projection views and reconstructed slices
    • Chan H-P, Wu Y-T, Sahiner B, Wei J, Helvie MA, et al. 2010. Characterization of masses in digital breast tomosynthesis: Comparison of machine learning in projection views and reconstructed slices. Med. Phys. 37:3576-86
    • (2010) Med. Phys , vol.37 , pp. 3576-3586
    • Chan, H.-P.1    Wu, Y.-T.2    Sahiner, B.3    Wei, J.4    Helvie, M.A.5
  • 48
    • 33745045657 scopus 로고    scopus 로고
    • CAD for mammography: The technique, results, current role and further developments
    • Malich A, Fischer DR, Böttcher J. 2006. CAD for mammography: The technique, results, current role and further developments. Eur. Radiol. 16:1449-60
    • (2006) Eur. Radiol , vol.16 , pp. 1449-1460
    • Malich, A.1    Fischer, D.R.2    Böttcher, J.3
  • 49
    • 3442876690 scopus 로고    scopus 로고
    • Effects of incorrect computer-Aided detection (CAD) output on human decision-making in mammography
    • Alberdi E, Povykalo A, Strigini L, Ayton P. 2004. Effects of incorrect computer-Aided detection (CAD) output on human decision-making in mammography. Acad. Radiol. 11:909-18
    • (2004) Acad. Radiol , vol.11 , pp. 909-918
    • Alberdi, E.1    Povykalo, A.2    Strigini, L.3    Ayton, P.4
  • 50
    • 21644432535 scopus 로고    scopus 로고
    • The manufacturer's perspective
    • Roehrig J. 2005. The manufacturer's perspective. Br. J. Radiol. 78:S41-45
    • (2005) Br. J. Radiol , vol.78
    • Roehrig, J.1
  • 51
    • 34247169972 scopus 로고    scopus 로고
    • Current status and future directions of computer-Aided diagnosis in mammo graphy
    • Nishikawa RM. 2007. Current status and future directions of computer-Aided diagnosis in mammo graphy. Comput. Med. Imaging Graph. 31:224-35
    • (2007) Comput. Med. Imaging Graph , vol.31 , pp. 224-235
    • Nishikawa, R.M.1
  • 53
    • 34047243811 scopus 로고    scopus 로고
    • Influence of computer-Aided detection on performance of screening mammography
    • Fenton JJ, Taplin SH, Carney PA, Abraham L, Sickles EA, et al. 2007. Influence of computer-Aided detection on performance of screening mammography. N. Engl. J. Med. 356:1399-409
    • (2007) N. Engl. J. Med , vol.356 , pp. 1399-1409
    • Fenton, J.J.1    Taplin, S.H.2    Carney, P.A.3    Abraham, L.4    Sickles, E.A.5
  • 55
    • 1642523563 scopus 로고    scopus 로고
    • Detection or decision errors? Missed lung cancer from the posteroanterior chest radiograph
    • Manning DJ, Ethell SC, Donovan T. 2004. Detection or decision errors? Missed lung cancer from the posteroanterior chest radiograph. Br. J. Radiol. 77:231-35
    • (2004) Br. J. Radiol , vol.77 , pp. 231-235
    • Manning, D.J.1    Ethell, S.C.2    Donovan, T.3
  • 56
    • 0034823175 scopus 로고    scopus 로고
    • Blinded review of retrospectively visible unreported breast cancers: An eye-position analysis
    • Nodine CF, Mello-Thoms C, Weinstein SP, Kundel HL, Conant EF, et al. 2001. Blinded review of retrospectively visible unreported breast cancers: An eye-position analysis. Radiology 221:122-29
    • (2001) Radiology , vol.221 , pp. 122-129
    • Nodine, C.F.1    Mello-Thoms, C.2    Weinstein, S.P.3    Kundel, H.L.4    Conant, E.F.5
  • 60
    • 84871681489 scopus 로고    scopus 로고
    • Computer-Aided detection of masses at mammography: Interactive decision support versus prompts
    • Hupse R, SamulskiM, LobbesMB, Mann RM,Mus R, et al. 2013. Computer-Aided detection of masses at mammography: Interactive decision support versus prompts. Radiology 266:123-29
    • (2013) Radiology , vol.266 , pp. 123-129
    • Hupse, R.1    Samulski, M.2    Lobbes, M.B.3    Mann, R.M.4    Mus, R.5
  • 62
    • 84855557868 scopus 로고    scopus 로고
    • A systematic review of computer-Assisted diagnosis in diagnostic cancer imaging
    • Eadie LH, Taylor P, Gibson AP. 2012. A systematic review of computer-Assisted diagnosis in diagnostic cancer imaging. Eur. J. Radiol. 81:e70-76
    • (2012) Eur. J. Radiol , vol.81
    • Eadie, L.H.1    Taylor, P.2    Gibson, A.P.3
  • 63
    • 41949108736 scopus 로고    scopus 로고
    • Computer aids and human second reading as interventions in screening mammography: Two systematic reviews to compare effects on cancer detection and recall rate
    • Taylor P, Potts HWW. 2008. Computer aids and human second reading as interventions in screening mammography: Two systematic reviews to compare effects on cancer detection and recall rate. Eur. J. Cancer 44:798-807
    • (2008) Eur. J. Cancer , vol.44 , pp. 798-807
    • Taylor, P.1    Potts, H.W.W.2
  • 64
    • 0032129152 scopus 로고    scopus 로고
    • Automated seeded lesion segmentation on digital mammograms
    • Kupinski M, Giger M. 1998. Automated seeded lesion segmentation on digital mammograms. IEEE Trans. Med. Imaging 17:510-17
    • (1998) IEEE Trans Med. Imaging , vol.17 , pp. 510-517
    • Kupinski, M.1    Giger, M.2
  • 65
    • 0034844805 scopus 로고    scopus 로고
    • Automatic segmentation of breast lesions on ultrasound
    • Horsch K, Giger M, Venta LA, Vyborny C. 2001. Automatic segmentation of breast lesions on ultrasound. Med. Phys. 28:1652-59
    • (2001) Med. Phys , vol.28 , pp. 1652-1659
    • Horsch, K.1    Giger, M.2    Venta, L.A.3    Vyborny, C.4
  • 66
    • 0035544613 scopus 로고    scopus 로고
    • Computer-Aided characterization of mammographicmasses: Accuracy of mass segmentation and its effects on characterization
    • Sahiner B, Petrick N, Chan H, Hadjiiski L, Paramagul C, et al. 2001. Computer-Aided characterization of mammographicmasses: Accuracy of mass segmentation and its effects on characterization. IEEE Trans. Med. Imaging 20:1275-84
    • (2001) IEEE Trans Med. Imaging , vol.20 , pp. 1275-1284
    • Sahiner, B.1    Petrick, N.2    Chan, H.3    Hadjiiski, L.4    Paramagul, C.5
  • 67
    • 35648984504 scopus 로고    scopus 로고
    • A dual-stage method for lesion segmentation on digital mammograms
    • Yuan Y, Giger M, Li H, Suzuki K, Sennett C. 2007. A dual-stage method for lesion segmentation on digital mammograms. Med. Phys. 34:4180-93
    • (2007) Med. Phys , vol.34 , pp. 4180-4193
    • Yuan, Y.1    Giger, M.2    Li, H.3    Suzuki, K.4    Sennett, C.5
  • 68
    • 29944447410 scopus 로고    scopus 로고
    • A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images
    • Chen W, GigerM, Bick U. 2006. A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images. Acad. Radiol. 13:63-72
    • (2006) Acad. Radiol , vol.13 , pp. 63-72
    • Chen, W.1    Giger, M.2    Bick, U.3
  • 69
    • 54049098747 scopus 로고    scopus 로고
    • Markov random field-based clustering applied to the segmentation of masses in digital mammograms
    • SuligaM, Deklerck R, Nyssen E. 2008. Markov random field-based clustering applied to the segmentation of masses in digital mammograms. Comput. Med. Imaging Graph. 32:502-12
    • (2008) Comput. Med. Imaging Graph , vol.32 , pp. 502-512
    • Suliga, M.1    Deklerck, R.2    Nyssen, E.3
  • 70
    • 70349664185 scopus 로고    scopus 로고
    • Malignant lesion segmentation in contrastenhanced breast MR images based on the marker-controlled watershed
    • Cui Y, Tan Y, Zhao B, Liberman L, Parbhu R, et al. 2009. Malignant lesion segmentation in contrastenhanced breast MR images based on the marker-controlled watershed. Med. Phys. 36:4359-69
    • (2009) Med. Phys , vol.36 , pp. 4359-4369
    • Cui, Y.1    Tan, Y.2    Zhao, B.3    Liberman, L.4    Parbhu, R.5
  • 71
    • 80053480560 scopus 로고    scopus 로고
    • A multichannel Markov random field approach for automated segmentation of breast cancer tumor in DCE-MRI data using kinetic observation model
    • Ashraf AB, Gavenonis S, Daye D, Mies C, Feldman M, et al. 2011. A multichannel Markov random field approach for automated segmentation of breast cancer tumor in DCE-MRI data using kinetic observation model. MICCAI, Lect. Notes Comp. Sci. 6893:546-53
    • (2011) MICCAI, Lect. Notes Comp. Sci , vol.6893 , pp. 546-553
    • Ashraf, A.B.1    Gavenonis, S.2    Daye, D.3    Mies, C.4    Feldman, M.5
  • 72
    • 55349095801 scopus 로고    scopus 로고
    • Evaluation of computer-Aided diagnosis on a large clinical full-field digital mammographic dataset
    • Li H, Giger M, Yuan Y, Chen W, Horsch K, et al. 2008. Evaluation of computer-Aided diagnosis on a large clinical full-field digital mammographic dataset. Acad. Radiol. 15:1437-45
    • (2008) Acad. Radiol , vol.15 , pp. 1437-1445
    • Li, H.1    Giger, M.2    Yuan, Y.3    Chen, W.4    Horsch, K.5
  • 73
    • 46149088285 scopus 로고    scopus 로고
    • Comparison of diagnostic accuracy of breast masses using digitized images versus screen-film mammography
    • Liang Z, Du X, Liu J, Yao X, Yang Y, Li K. 2008. Comparison of diagnostic accuracy of breast masses using digitized images versus screen-film mammography. Acta. Radiol. 49:618-22
    • (2008) Acta. Radiol , vol.49 , pp. 618-622
    • Liang, Z.1    Du, X.2    Liu, J.3    Yao, X.4    Yang, Y.5    Li, K.6
  • 74
    • 84864187188 scopus 로고    scopus 로고
    • A comparison study of image features between FFDM and film mammogram images
    • Jing H, Yang Y, Wernick MN, Yarusso LM,Nishikawa RM. 2012. A comparison study of image features between FFDM and film mammogram images. Med. Phys. 39:4386-94
    • (2012) Med. Phys , vol.39 , pp. 4386-4394
    • Jing, H.1    Yang, Y.2    Wernick, M.N.3    Yarusso, L.M.4    Nishikawa, R.M.5
  • 75
    • 0036173894 scopus 로고    scopus 로고
    • Computerized diagnosis of breast lesions on ultrasound
    • Horsch K, GigerM, Venta L, Vyborny C. 2002. Computerized diagnosis of breast lesions on ultrasound. Med. Phys. 29:157-64
    • (2002) Med. Phys , vol.29 , pp. 157-164
    • Horsch, K.1    Giger, M.2    Venta, L.3    Vyborny, C.4
  • 76
    • 0033659346 scopus 로고    scopus 로고
    • Dynamic image interpretation of MRI of the breast
    • Kuhl C, Schild H. 2000. Dynamic image interpretation of MRI of the breast. J. Magn. Reson. Imaging 12:965-74
    • (2000) J. Magn. Reson. Imaging , vol.12 , pp. 965-974
    • Kuhl, C.1    Schild, H.2
  • 77
    • 33745963117 scopus 로고    scopus 로고
    • Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker
    • Hylton N. 2006. Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J. Clin. Oncol. 24:3293-96
    • (2006) J. Clin. Oncol , vol.24 , pp. 3293-3296
    • Hylton, N.1
  • 78
    • 0028296907 scopus 로고
    • Computerized characterization of mammographic masses: Analysis of spiculation
    • Giger M, Vyborny C, Schmidt R. 1994. Computerized characterization of mammographic masses: Analysis of spiculation. Cancer Lett. 77:201-11
    • (1994) Cancer Lett , vol.77 , pp. 201-211
    • Giger, M.1    Vyborny, C.2    Schmidt, R.3
  • 79
    • 0028857937 scopus 로고
    • Analysis of spiculation in the computerized classification of mammographic masses
    • Huo Z, Giger M, Vyborny C, Bick U, Lu P, et al. 1995. Analysis of spiculation in the computerized classification of mammographic masses. Med. Phys. 22:1569-79
    • (1995) Med. Phys , vol.22 , pp. 1569-1579
    • Huo, Z.1    Giger, M.2    Vyborny, C.3    Bick, U.4    Lu, P.5
  • 80
    • 0034281869 scopus 로고    scopus 로고
    • Boundary modelling and shape analysis methods for classification of mammographic masses
    • Rangayyan RM, Mudigonda NR, Desautels JEL. 2000. Boundary modelling and shape analysis methods for classification of mammographic masses. Med. Biol. Eng. Comput. 38:487-96
    • (2000) Med. Biol. Eng. Comput , vol.38 , pp. 487-496
    • Rangayyan, R.M.1    Mudigonda, N.R.2    Desautels, J.E.L.3
  • 81
    • 32544461460 scopus 로고    scopus 로고
    • Use of border information in the classification of mammographic masses
    • Varela C, Timp S, Karssemeijer N. 2006. Use of border information in the classification of mammographic masses. Phys. Med. Biol. 51:425-41
    • (2006) Phys. Med. Biol , vol.51 , pp. 425-441
    • Varela, C.1    Timp, S.2    Karssemeijer, N.3
  • 83
    • 0027851280 scopus 로고
    • Improving the distinction between benign andmalignant breast lesions: The value of sonographic texture analysis
    • Garra BS, Krasner BH, Horii SC, Ascher S, Mun SK, Zeman RK. 1993. Improving the distinction between benign andmalignant breast lesions: The value of sonographic texture analysis. Ultrason. Imaging 15:267-85
    • (1993) Ultrason. Imaging , vol.15 , pp. 267-285
    • Garra, B.S.1    Krasner, B.H.2    Horii, S.C.3    Ascher, S.4    Mun, S.K.5    Zeman, R.K.6
  • 84
    • 36348986747 scopus 로고    scopus 로고
    • Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images
    • Chen W, Giger M, Li H, Bick U, Newstead G. 2007. Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn. Reson. Med. 58:562-71
    • (2007) Magn. Reson. Med , vol.58 , pp. 562-571
    • Chen, W.1    Giger, M.2    Li, H.3    Bick, U.4    Newstead, G.5
  • 85
    • 73049084075 scopus 로고    scopus 로고
    • Characterization of breast cancer types by texture analysis of magnetic resonance images
    • Holli K, Laaperi AL, Harrison L, Luukkaala T, Toivonen T, et al. 2010. Characterization of breast cancer types by texture analysis of magnetic resonance images. Acad. Radiol. 17:135-41
    • (2010) Acad. Radiol , vol.17 , pp. 135-141
    • Holli, K.1    Laaperi, A.L.2    Harrison, L.3    Luukkaala, T.4    Toivonen, T.5
  • 87
    • 80053264414 scopus 로고    scopus 로고
    • A health insurance portability and accountability act-compliant ocular telehealth network for the remote diagnosis and management of diabetic retinopathy
    • Li Y, Karnaowski T, Tobin K, Gaincardo L, Morris S, et al. 2011. A Health Insurance Portability and Accountability Act-compliant ocular telehealth network for the remote diagnosis and management of diabetic retinopathy. Telemed. e-Health 17:627-34
    • (2011) Telemed. E-Health , vol.17 , pp. 627-634
    • Li, Y.1    Karnaowski, T.2    Tobin, K.3    Gaincardo, L.4    Morris, S.5
  • 88
    • 77950560786 scopus 로고    scopus 로고
    • Assessing heterogeneity of lesion enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer diagnosis
    • Karahaliou A, Vassiou K, Arikidis NS, Skiadopoulos S, Kanavou T, Costaridou L. 2010. Assessing heterogeneity of lesion enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer diagnosis. Br. J. Radiol. 83:296-309
    • (2010) Br. J. Radiol , vol.83 , pp. 296-309
    • Karahaliou, A.1    Vassiou, K.2    Arikidis, N.S.3    Skiadopoulos, S.4    Kanavou, T.5    Costaridou, L.6
  • 89
    • 0032703733 scopus 로고    scopus 로고
    • Feature selection with limited datasets
    • Kupinski M, Giger M. 1999. Feature selection with limited datasets. Med. Phys. 26:2176-82
    • (1999) Med. Phys , vol.26 , pp. 2176-2182
    • Kupinski, M.1    Giger, M.2
  • 90
    • 0033863591 scopus 로고    scopus 로고
    • Feature selection and classifier performance in computer-Aided diagnosis: The effect of finite sample size
    • Sahiner B, Chan HP, Petrick N, Wagner R, Hadjiiski L. 2000. Feature selection and classifier performance in computer-Aided diagnosis: The effect of finite sample size. Med. Phys. 27:1509-22
    • (2000) Med. Phys , vol.27 , pp. 1509-1522
    • Sahiner, B.1    Chan, H.P.2    Petrick, N.3    Wagner, R.4    Hadjiiski, L.5
  • 91
    • 84881369987 scopus 로고    scopus 로고
    • Feature selection in computeraided breast cancer diagnosis via dynamic contrast-enhanced magnetic resonance images
    • Rakoczy M, McGaughey D, Korenberg M, Levman J, Martel A. 2012. Feature selection in computeraided breast cancer diagnosis via dynamic contrast-enhanced magnetic resonance images. J. Digit. Imaging 26:198-208
    • (2012) J. Digit. Imaging , vol.26 , pp. 198-208
    • Rakoczy, M.1    McGaughey, D.2    Korenberg, M.3    Levman, J.4    Martel, A.5
  • 92
    • 73649088617 scopus 로고    scopus 로고
    • Exploring nonlinear feature space dimension reduction and data representation in breastCADx with Laplacian eigenmaps and t-SNE
    • Jamieson AR, Giger ML, Drukker K, Li H, Yuan Y, Bhooshan N. 2010. Exploring nonlinear feature space dimension reduction and data representation in breastCADx with Laplacian eigenmaps and t-SNE. Med. Phys. 37:339-51
    • (2010) Med. Phys , vol.37 , pp. 339-351
    • Jamieson, A.R.1    Giger, M.L.2    Drukker, K.3    Li, H.4    Yuan, Y.5    Bhooshan, N.6
  • 93
    • 19344363582 scopus 로고    scopus 로고
    • Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines
    • Papadopoulos A, Fotiadis DI, Likas A. 2005. Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines. Artif. Intell. Med. 34:141-50
    • (2005) Artif. Intell. Med , vol.34 , pp. 141-150
    • Papadopoulos, A.1    Fotiadis, D.I.2    Likas, A.3
  • 94
    • 84863220843 scopus 로고    scopus 로고
    • Diagnosing breast masses in digital mammography using feature selection and ensemble methods
    • Luo S-T, Cheng B-W. 2012. Diagnosing breast masses in digital mammography using feature selection and ensemble methods. J. Med. Syst. 36:569-77
    • (2012) J. Med. Syst , vol.36 , pp. 569-577
    • Luo, S.-T.1    Cheng, B.-W.2
  • 95
    • 0038670778 scopus 로고    scopus 로고
    • Improvement in breast tumor discrimination by support vectors machines and speckle-emphasis texture analysis
    • Chang R-F, Wu W-J, Moon WK, Chen D-R. 2003. Improvement in breast tumor discrimination by support vectors machines and speckle-emphasis texture analysis. Ultrasound Med. Biol. 29:679-86
    • (2003) Ultrasound Med. Biol , vol.29 , pp. 679-686
    • Chang, R.-F.1    Wu, W.-J.2    Moon, W.K.3    Chen, D.-R.4
  • 96
    • 43049153023 scopus 로고    scopus 로고
    • Classification of dynamic contrast-enhanced magnetic resonance breast lesions by support vector machines
    • Levman J, LeungT,Causer P, PlewesDB, Martel AL. 2008. Classification of dynamic contrast-enhanced magnetic resonance breast lesions by support vector machines. IEEE Trans. Med. Imaging 27:688-96
    • (2008) IEEE Trans Med. Imaging , vol.27 , pp. 688-696
    • Levman, J.1    Leung, T.2    Causer, P.3    Plewes, D.B.4    Martel, A.L.5
  • 97
    • 37549018499 scopus 로고    scopus 로고
    • Classification of small contrast enhancing breast lesions in dynamic magnetic resonance imaging using a combination of morphological criteria and dynamic analysis based on unsupervised vector-quantization
    • Schlossbauer T, Leinsinger G, Wismuller A, Lange O, Scherr M, et al. 2008. Classification of small contrast enhancing breast lesions in dynamic magnetic resonance imaging using a combination of morphological criteria and dynamic analysis based on unsupervised vector-quantization. Investig. Radiol. 43:56-64
    • (2008) Investig. Radiol , vol.43 , pp. 56-64
    • Schlossbauer, T.1    Leinsinger, G.2    Wismuller, A.3    Lange, O.4    Scherr, M.5
  • 98
    • 23644437143 scopus 로고    scopus 로고
    • Multimodality computerized diagnosis of breast lesions using mammography and sonography
    • Drukker K, Horsch K, Giger ML. 2005. Multimodality computerized diagnosis of breast lesions using mammography and sonography. Acad. Radiol. 12:970-79
    • (2005) Acad. Radiol , vol.12 , pp. 970-979
    • Drukker, K.1    Horsch, K.2    Giger, M.L.3
  • 99
    • 77955386829 scopus 로고    scopus 로고
    • Multimodality computer-Aided breast cancer diagnosis with FFDM and DCE-MRI
    • Yuan Y, Giger M, Li H, Bhooshan N, Sennett CA. 2010. Multimodality computer-Aided breast cancer diagnosis with FFDM and DCE-MRI. Acad. Radiol. 17:1158-67
    • (2010) Acad. Radiol , vol.17 , pp. 1158-1167
    • Yuan, Y.1    Giger, M.2    Li, H.3    Bhooshan, N.4    Sennett, C.A.5
  • 100
    • 78149471746 scopus 로고    scopus 로고
    • Enhancement of breast CADx with unlabeled data
    • Jamieson A, Giger M, Drukker K, Pesce L. 2010. Enhancement of breast CADx with unlabeled data. Med. Phys. 37:4155-72
    • (2010) Med. Phys , vol.37 , pp. 4155-4172
    • Jamieson, A.1    Giger, M.2    Drukker, K.3    Pesce, L.4
  • 101
    • 5644289796 scopus 로고    scopus 로고
    • Multimodality CAD: Combination of computerized classification techniques based on mammograms and 3D ultrasound volumes for improved accuracy in breast mass characterization
    • Sahiner B, Chan H, Hadjiiski L, Roubidoux M, Paramagul C, et al. 2004. Multimodality CAD: Combination of computerized classification techniques based on mammograms and 3D ultrasound volumes for improved accuracy in breast mass characterization. SPIE Med. Imaging 5370:67-74
    • (2004) SPIE Med. Imaging , vol.5370 , pp. 67-74
    • Sahiner, B.1    Chan, H.2    Hadjiiski, L.3    Roubidoux, M.4    Paramagul, C.5
  • 102
    • 80052670785 scopus 로고    scopus 로고
    • Computerized three-class classification of MRI-based prognostic markers for breast cancer
    • BhooshanN,Giger M, Edwards D, Yuan Y, Jansen S, et al. 2011. Computerized three-class classification of MRI-based prognostic markers for breast cancer. Phys. Med. Biol. 56:5995-6008
    • (2011) Phys. Med. Biol , vol.56 , pp. 5995-6008
    • Bhooshan, N.1    Giger, M.2    Edwards, D.3    Yuan, Y.4    Jansen, S.5
  • 103
    • 33746220401 scopus 로고    scopus 로고
    • Classification of breast lesions with multimodality computer-Aided diagnosis: Observer study results on an independent clinical data set
    • Horsch K, GigerM, Vyborny C, Lan L,Mendelson E, Hendrick R. 2006. Classification of breast lesions with multimodality computer-Aided diagnosis: Observer study results on an independent clinical data set. Radiology 240:357-68
    • (2006) Radiology , vol.240 , pp. 357-368
    • Horsch, K.1    Giger, M.2    Vyborny, C.3    Lan, L.4    Mendelson, E.5    Hendrick, R.6
  • 105
    • 0032872797 scopus 로고    scopus 로고
    • Improvement of radiologists' characterization of mammographic masses by using computer-Aided diagnosis: An ROC study
    • Chan H-P, Sahiner B, Helvie MA, Petrick N, Roubidoux MA, et al. 1999. Improvement of radiologists' characterization of mammographic masses by using computer-Aided diagnosis: An ROC study. Radiology 212:817-27
    • (1999) Radiology , vol.212 , pp. 817-827
    • Chan, H.-P.1    Sahiner, B.2    Helvie, M.A.3    Petrick, N.4    Roubidoux, M.A.5
  • 106
    • 0034010317 scopus 로고    scopus 로고
    • Improved mammographic interpretation of masses using computer-Aided diagnosis
    • Leichter I, Fields S,Nirel R, Bamberger P,Novak B, et al. 2000. Improved mammographic interpretation of masses using computer-Aided diagnosis. Eur. Radiol. 10:377-83
    • (2000) Eur. Radiol , vol.10 , pp. 377-383
    • Leichter, I.1    Fields, S.2    Nirel, R.3    Bamberger, P.4    Novak, B.5
  • 107
    • 33846190665 scopus 로고    scopus 로고
    • BreastMRIlesion classification: Improved performance of human readers with a backpropagation neural network computer-Aided diagnosis (CAD) system
    • Meinel L, StolpenA,Berbaum K, FajardoL,Reinhardt J. 2007. BreastMRIlesion classification: Improved performance of human readers with a backpropagation neural network computer-Aided diagnosis (CAD) system. J. Magn. Reson. Imaging 25:89-95
    • (2007) J. Magn. Reson. Imaging , vol.25 , pp. 89-95
    • Meinel, L.1    Stolpen, A.2    Berbaum, K.3    Fajardo, L.4    Reinhardt, J.5
  • 108
    • 67349194374 scopus 로고    scopus 로고
    • Multi-modality CADx: ROC study of the effect on radiologists' accuracy in characterizing breast masses on mammograms and 3D ultrasound images
    • Sahiner B, Chan H, Hadjiiski L, Roubidoux M, Paramagul C, et al. 2009. Multi-modality CADx: ROC study of the effect on radiologists' accuracy in characterizing breast masses on mammograms and 3D ultrasound images. Acad. Radiol. 16:810-18
    • (2009) Acad. Radiol , vol.16 , pp. 810-818
    • Sahiner, B.1    Chan, H.2    Hadjiiski, L.3    Roubidoux, M.4    Paramagul, C.5
  • 109
    • 77953146140 scopus 로고    scopus 로고
    • Computer-Aided diagnosis with temporal analysis to improve radiologists' interpretation of mammographic mass lesions
    • Timp S, Varela C, Karssemeijer N. 2010. Computer-Aided diagnosis with temporal analysis to improve radiologists' interpretation of mammographic mass lesions. IEEE Trans. Inf. Technol. Biomed. 14:803-8
    • (2010) IEEE Trans Inf. Technol. Biomed , vol.14 , pp. 803-808
    • Timp, S.1    Varela, C.2    Karssemeijer, N.3
  • 110
    • 79952286400 scopus 로고    scopus 로고
    • Evaluation of clinical breast MR imaging performed with prototype computer-Aided diagnosis breast MR imaging workstation: Reader study
    • Shimauchi A, Giger M, Bhooshan N, Lan L, Pesce L, et al. 2011. Evaluation of clinical breast MR imaging performed with prototype computer-Aided diagnosis breast MR imaging workstation: Reader study. Radiology 258:696-704
    • (2011) Radiology , vol.258 , pp. 696-704
    • Shimauchi, A.1    Giger, M.2    Bhooshan, N.3    Lan, L.4    Pesce, L.5
  • 111
    • 0034871408 scopus 로고    scopus 로고
    • Potential of computer-Aided diagnosis to reduce variability in radiologists' interpretations ofmammograms depictingmicrocalcifications
    • Jiang Y, Nishikawa R, Schmidt R, Toledano A, Doi K. 2001. Potential of computer-Aided diagnosis to reduce variability in radiologists' interpretations ofmammograms depictingmicrocalcifications. Radiology 220:787-94
    • (2001) Radiology , vol.220 , pp. 787-794
    • Jiang, Y.1    Nishikawa, R.2    Schmidt, R.3    Toledano, A.4    Doi, K.5
  • 112
    • 55349120134 scopus 로고    scopus 로고
    • Prevalence scaling: Applications to an intelligent workstation for the diagnosis of breast cancer
    • Horsch K, GigerM,Metz C. 2008. Prevalence scaling: Applications to an intelligent workstation for the diagnosis of breast cancer. Acad. Radiol. 15:1446-57
    • (2008) Acad. Radiol , vol.15 , pp. 1446-1457
    • Horsch, K.1    Giger, M.2    Metz, C.3
  • 113
    • 38149065123 scopus 로고    scopus 로고
    • Potential effect of different radiologist reporting methods on studies showing benefit of CAD
    • Horsch K, GigerM,Metz C. 2008. Potential effect of different radiologist reporting methods on studies showing benefit of CAD. Acad. Radiol. 15:139-52
    • (2008) Acad. Radiol , vol.15 , pp. 139-152
    • Horsch, K.1    Giger, M.2    Metz, C.3
  • 114
    • 84861623756 scopus 로고    scopus 로고
    • A scaling transformation for classifier output based on likelihood ratio: Applications to a CAD workstation for diagnosis of breast cancer
    • Horsch K, Pesce L, Giger M, Metz C, Jiang Y. 2012. A scaling transformation for classifier output based on likelihood ratio: Applications to a CAD workstation for diagnosis of breast cancer. Med. Phys. 39:2787-804
    • (2012) Med. Phys , vol.39 , pp. 2787-2804
    • Horsch, K.1    Pesce, L.2    Giger, M.3    Metz, C.4    Jiang, Y.5
  • 115
    • 0028150831 scopus 로고
    • Karnofsky memorial lecture natural history of small breast cancers
    • Hellman S. 1994. Karnofsky memorial lecture. Natural history of small breast cancers. J. Clin. Oncol. 12:2229-34
    • (1994) J. Clin. Oncol , vol.12 , pp. 2229-2234
    • Hellman, S.1
  • 117
    • 77950142743 scopus 로고    scopus 로고
    • Cancerous breast lesions on dynamic contrast-enhanced MR images: Computerized characterization for image-based prognostic markers
    • BhooshanN,Giger M, Jansen SA, LiH, Lan L, Newstead G. 2010. Cancerous breast lesions on dynamic contrast-enhanced MR images: Computerized characterization for image-based prognostic markers. Radiology 254:680-90
    • (2010) Radiology , vol.254 , pp. 680-690
    • Bhooshan, N.1    Giger, M.2    Jansen, S.A.3    Li, H.4    Lan, L.5    Newstead, G.6
  • 118
    • 79957990380 scopus 로고    scopus 로고
    • Computer-Aided prognosis: Predicting patient and disease outcome via quantitative fusion of multi-scale, multi-modal data
    • Madabhushi A, Agner S, Basavanhally A, Doyle S, Lee G. 2011. Computer-Aided prognosis: Predicting patient and disease outcome via quantitative fusion of multi-scale, multi-modal data. Comput. Med. Imaging Graph. 35:506-14
    • (2011) Comput. Med. Imaging Graph , vol.35 , pp. 506-514
    • Madabhushi, A.1    Agner, S.2    Basavanhally, A.3    Doyle, S.4    Lee, G.5
  • 119
    • 20044371626 scopus 로고    scopus 로고
    • MRI measurements of breast tumor volume predict response to neoadjuvant chemotherapy and recurrence-free survival
    • Partridge S, Gibbs J, Lu Y, Esserman L, Tripathy D, et al. 2005. MRI measurements of breast tumor volume predict response to neoadjuvant chemotherapy and recurrence-free survival. Am. J. Roentgenol. 184:1774-81
    • (2005) Am. J. Roentgenol , vol.184 , pp. 1774-1781
    • Partridge, S.1    Gibbs, J.2    Lu, Y.3    Esserman, L.4    Tripathy, D.5
  • 120
    • 58149198586 scopus 로고    scopus 로고
    • Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer
    • Ah-See M-LW,Makris A, Taylor NJ, HarrisonM, Richman PI, et al. 2008. Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer. Clin. Cancer Res. 14:6580-89
    • (2008) Clin. Cancer Res , vol.14 , pp. 6580-6589
    • Ah-See, M.-L.W.1    Makris, A.2    Taylor, N.J.3    Harrison, M.4    Richman, P.I.5
  • 121
    • 75249107842 scopus 로고    scopus 로고
    • Update on the potential of computer-Aided diagnosis for breast cancer
    • Giger ML. 2010. Update on the potential of computer-Aided diagnosis for breast cancer. Future Oncol. 6:1-4
    • (2010) Future Oncol , vol.6 , pp. 1-4
    • Giger, M.L.1
  • 122
    • 84880548675 scopus 로고    scopus 로고
    • Preliminary association study between imagebased biomarkers and genomic biomarkers for breast cancer risk assessment
    • 96th Chicago
    • Li H, GigerM, Sun C, Ponsukcharoen U,Huo D, et al. 2010. Preliminary association study between imagebased biomarkers and genomic biomarkers for breast cancer risk assessment. Presented at Assem. Annu. Meet. Radiol. Soc. N. Am., 96th, Chicago
    • (2010) Presented at Assem. Annu. Meet. Radiol. Soc. N. Am.
    • Li, H.1    Giger, M.2    Sun, C.3    Ponsukcharoen, U.4    Huo, D.5
  • 124
    • 0043237770 scopus 로고    scopus 로고
    • Image registration methods: A survey
    • Zitova B, Flusser J. 2003. Image registration methods: A survey. Image Vision Comput. 21(11):977-1000
    • (2003) Image Vision Comput , vol.21 , Issue.11 , pp. 977-1000
    • Zitova, B.1    Flusser, J.2
  • 125
    • 84865163034 scopus 로고    scopus 로고
    • Medical image registration
    • ed. TM Deserno, Berlin: Springer Verlag
    • Rueckert D, Schnabel JA. 2011. Medical image registration. In Biomedical Image Processing. ed. TM Deserno, pp. 131-54. Berlin: Springer-Verlag
    • (2011) Biomedical Image Processing , pp. 131-54
    • Rueckert, D.1    Schnabel, J.A.2
  • 126
    • 0043028206 scopus 로고    scopus 로고
    • Mutual-information-based registration of medical images: A survey
    • Pluim JPW, Maintz J. 2003. Mutual-information-based registration of medical images: A survey. IEEE Trans. Med. Imaging 22(8):986-1004
    • (2003) IEEE Trans Med. Imaging , vol.22 , Issue.8 , pp. 986-1004
    • Pluim, J.P.W.1    Maintz, J.2
  • 127
    • 0032826089 scopus 로고    scopus 로고
    • Comparison and evaluation of rigid, affine, and nonrigid registration of breast MR images
    • Denton ERE, Sonoda L, Rueckert D, Rankin SC, Hayes C, et al. 1999. Comparison and evaluation of rigid, affine, and nonrigid registration of breast MR images. J. Comput. Assist. Tomogr. 23(5): 800-5
    • (1999) J. Comput. Assist. Tomogr , vol.23 , Issue.5 , pp. 800-805
    • Denton, E.R.E.1    Sonoda, L.2    Rueckert, D.3    Rankin, S.C.4    Hayes, C.5
  • 128
    • 84947751307 scopus 로고    scopus 로고
    • Evaluation in control point selection in automatic, mutual information driven, 3D warping
    • Meyer C, Boes J, Kim B, Bland P. 1998. Evaluation in control point selection in automatic, mutual information driven, 3D warping. MICCAI, Lect. Notes Comput. Sci. 1496:944-51
    • (1998) MICCAI, Lect. Notes Comput. Sci , vol.1496 , pp. 944-951
    • Meyer, C.1    Boes, J.2    Kim, B.3    Bland, P.4
  • 129
    • 0033169211 scopus 로고    scopus 로고
    • Nonrigid registration using free-form deformations: Application to breast MR images
    • Rueckert D, Sonoda L, Hayes C, Hill D, Leach M, Hawkes D. 1999. Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Trans. Med. Imaging 18(8):712-21
    • (1999) IEEE Trans Med. Imaging , vol.18 , Issue.8 , pp. 712-721
    • Rueckert, D.1    Sonoda, L.2    Hayes, C.3    Hill, D.4    Leach, M.5    Hawkes, D.6
  • 130
    • 1142288170 scopus 로고    scopus 로고
    • A unified approach to fast image registration and a new curvature based registration technique
    • Fischer B, Modersitzki J. 2004. A unified approach to fast image registration and a new curvature based registration technique. Linear Algebr. Appl. 380:107-24
    • (2004) Linear Algebr. Appl , vol.380 , pp. 107-124
    • Fischer, B.1    Modersitzki, J.2
  • 131
    • 27144517439 scopus 로고    scopus 로고
    • Anisotropicmulti-scale fluid registration: Evaluation inmagnetic resonance breast imaging
    • CrumWR,TannerC,HawkesD. 2005. Anisotropicmulti-scale fluid registration: Evaluation inmagnetic resonance breast imaging. Phys. Med. Biol. 50(21):5153-74
    • (2005) Phys. Med. Biol , vol.50 , Issue.21 , pp. 5153-5174
    • Crum, W.R.1    Tanner, C.2    Hawkes, D.3
  • 132
    • 84945566718 scopus 로고    scopus 로고
    • Volume and shape preservation of enhancing lesions when applying non-rigid registration to a time series of contrast enhancing MR breast images
    • Tanner C, Schnabel JA, ChungD, Clarkson MJ, RueckertD, et al. 2000. Volume and shape preservation of enhancing lesions when applying non-rigid registration to a time series of contrast enhancing MR breast images. MICCAI, Lect. Notes Comput. Sci. 1935:327-37
    • (2000) MICCAI, Lect. Notes Comput. Sci , vol.1935 , pp. 327-337
    • Tanner, C.1    Schnabel, J.A.2    Chung, D.3    Clarkson, M.J.4    Rueckert, D.5
  • 133
    • 0042405180 scopus 로고    scopus 로고
    • Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint
    • Rohlfing T,Maurer CR Jr, Bluemke DA, Jacobs MA. 2003. Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint. IEEE Trans. Med. Imaging 22:730-41
    • (2003) IEEE Trans Med. Imaging , vol.22 , pp. 730-741
    • Rohlfing, T.1    Maurer Jr., C.R.2    Bluemke, D.A.3    Jacobs, M.A.4
  • 135
    • 0035297602 scopus 로고    scopus 로고
    • Biomechanical 3-D finite element modeling of the human breast using MRI data
    • Samani A, Bishop JA, Yaffe MJ, Plewes DB. 2001. Biomechanical 3-D finite element modeling of the human breast using MRI data. IEEE Trans. Med. Imaging 20(4):271-79
    • (2001) IEEE Trans Med. Imaging , vol.20 , Issue.4 , pp. 271-279
    • Samani, A.1    Bishop, J.A.2    Yaffe, M.J.3    Plewes, D.B.4
  • 138
    • 34147141374 scopus 로고    scopus 로고
    • Quantitative evaluation of free-form deformation registration for dynamic contrast-enhanced MR mammography
    • Tanner C, Schnabel JA, Hill DLG, Hawkes DJ, Degenhard A, et al. 2007. Quantitative evaluation of free-form deformation registration for dynamic contrast-enhanced MR mammography. Med. Phys. 34:1221-33
    • (2007) Med. Phys , vol.34 , pp. 1221-1233
    • Tanner, C.1    Schnabel, J.A.2    Hill, D.L.G.3    Hawkes, D.J.4    Degenhard, A.5
  • 139
    • 34548542703 scopus 로고    scopus 로고
    • A new validation method for X-ray mammogram registration algorithms using a projectionmodel of breast X-ray compression
    • Hipwell JH, Tanner C, Crum WR, Schnabel J, Hawkes D. 2007. A new validation method for X-ray mammogram registration algorithms using a projectionmodel of breast X-ray compression. IEEE Trans. Med. Imaging 26(9):1190-200
    • (2007) IEEE Trans Med. Imaging , vol.26 , Issue.9 , pp. 1190-1200
    • Hipwell, J.H.1    Tanner, C.2    Crum, W.R.3    Schnabel, J.4    Hawkes, D.5
  • 142
    • 84861995257 scopus 로고    scopus 로고
    • MRI to X-ray mammography registration using a volume-preserving affine transformation
    • Mertzanidou T, Hipwell J, Cardoso MJ, Zhang X, Tanner C, et al. 2012. MRI to X-ray mammography registration using a volume-preserving affine transformation. Med. Image Anal. 16(5):966-75
    • (2012) Med. Image Anal , vol.16 , Issue.5 , pp. 966-975
    • Mertzanidou, T.1    Hipwell, J.2    Cardoso, M.J.3    Zhang, X.4    Tanner, C.5
  • 143
    • 43149101308 scopus 로고    scopus 로고
    • Temporal change analysis for improved tumor detection in dedicated CT breast imaging using affine and free-form deformation
    • Dey J, O'Connor JM, Chen Y, Glick SJ. 2008. Temporal change analysis for improved tumor detection in dedicated CT breast imaging using affine and free-form deformation. Proc. SPIE 6913:69131D
    • (2008) Proc. SPIE , vol.6913
    • Dey, J.1    O'Connor, J.M.2    Chen, Y.3    Glick, S.J.4
  • 144
    • 69449092739 scopus 로고    scopus 로고
    • Initial characterization of a dedicated breast PET/CT scanner during human imaging
    • Bowen SL, Wu Y, Chaudhari AJ, Fu L, Packard NJ, et al. 2009. Initial characterization of a dedicated breast PET/CT scanner during human imaging. J. Nuclear Med. 50(9):1401-8
    • (2009) J. Nuclear Med , vol.50 , Issue.9 , pp. 1401-1408
    • Bowen, S.L.1    Wu, Y.2    Chaudhari, A.J.3    Fu, L.4    Packard, N.J.5
  • 145
    • 70349835800 scopus 로고    scopus 로고
    • A nonrigid registration algorithm for longitudinal breast MR images and the analysis of breast tumor response
    • Li X, Dawant BM, Welch EB, Chakravarthy AB, Freehardt D, et al. 2009. A nonrigid registration algorithm for longitudinal breast MR images and the analysis of breast tumor response. Magn. Reson. Med. 27:1258-70
    • (2009) Magn. Reson. Med , vol.27 , pp. 1258-1270
    • Li, X.1    Dawant, B.M.2    Welch, E.B.3    Chakravarthy, A.B.4    Freehardt, D.5
  • 147
    • 79960532075 scopus 로고    scopus 로고
    • Deformable medical image registration: Setting the state of the art with discrete methods
    • Glocker B, Sotiras A, Komodakis N, Paragios N. 2011. Deformable medical image registration: Setting the state of the art with discrete methods. Annu. Rev. Biomed. Eng. 13:219-44
    • (2011) Annu. Rev. Biomed. Eng , vol.13 , pp. 219-244
    • Glocker, B.1    Sotiras, A.2    Komodakis, N.3    Paragios, N.4
  • 148
    • 84856094269 scopus 로고    scopus 로고
    • Towards a more realistic biomechanical modelling of breast malignant tumours
    • Wessel C, Schnabel J, Brady JM. 2012. Towards a more realistic biomechanical modelling of breast malignant tumours. Phys. Med. Biol. 57(3):631-48
    • (2012) Phys. Med. Biol , vol.57 , Issue.3 , pp. 631-648
    • Wessel, C.1    Schnabel, J.2    Brady, J.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.