-
1
-
-
0033570831
-
Combined 5 × 2 cv F test for comparing supervised classification learning algorithms
-
Alpaydin, E. (1999), "Combined 5 × 2 cv F Test for Comparing Supervised Classification Learning Algorithms," Neural Computation, 11, 1885-1892.
-
(1999)
Neural Computation
, vol.11
, pp. 1885-1892
-
-
Alpaydin, E.1
-
2
-
-
0036643049
-
Model selection and error estimation
-
Bartlett, P. L., Boucheron, S., and Lugosi, G. (2002), "Model Selection and Error Estimation," Machine Learning, 48, 85-113.
-
(2002)
Machine Learning
, vol.48
, pp. 85-113
-
-
Bartlett, P.L.1
Boucheron, S.2
Lugosi, G.3
-
3
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer, E., and Kohavi, R. (1999), "An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants," Machine Learning, 36, 105-139.
-
(1999)
Machine Learning
, vol.36
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
4
-
-
0034732875
-
Pros and cons of permutation tests in clinical trials
-
Berger, V. W. (2000), "Pros and Cons of Permutation Tests in Clinical Trials," Statistics in Medicine, 19, 1319-1328.
-
(2000)
Statistics in Medicine
, vol.19
, pp. 1319-1328
-
-
Berger, V.W.1
-
5
-
-
0001840299
-
Parametric analyses in randomized clinical trials
-
Berger, V. W., Lunneborg, C., Ernst, M. D., and Levine, J. G. (2002), "Parametric Analyses in Randomized Clinical Trials," Journal of Modern Applied Statistical Methods, 1, 74-82.
-
(2002)
Journal of Modern Applied Statistical Methods
, vol.1
, pp. 74-82
-
-
Berger, V.W.1
Lunneborg, C.2
Ernst, M.D.3
Levine, J.G.4
-
7
-
-
0141496153
-
Efficient algorithms for decision tree cross-validation
-
Blockeel, H., and Struyf, J. (2002), "Efficient Algorithms for Decision Tree Cross-Validation," Journal of Machine Learning Research, 3, 621-650.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 621-650
-
-
Blockeel, H.1
Struyf, J.2
-
8
-
-
0030211964
-
Bagging predictors
-
Breiman, L. (1996a), "Bagging Predictors," Machine Learning, 24, 123-140.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
9
-
-
0004140497
-
Out-of-bag estimation
-
Statistics Department, University of California Berkeley, Berkeley CA 94708
-
_ (1996b), "Out-of-Bag Estimation," Technical report, Statistics Department, University of California Berkeley, Berkeley CA 94708, ftp://ftp.stat.berkeley.edu/pub/users/breiman/.
-
(1996)
Technical Report
-
-
-
10
-
-
0035478854
-
Random forests
-
_ (2001 a), "Random Forests," Machine Learning, 45, 5-32.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
-
11
-
-
0000245743
-
Statistical modeling: The two cultures
-
_ (2001b), "Statistical Modeling: The Two Cultures" (with discussion), Statistical Science, 16, 199-231.
-
(2001)
Statistical Science
, vol.16
, pp. 199-231
-
-
-
12
-
-
84950771789
-
Estimating optimal transformations for multiple regression and correlation
-
Breiman, L., and Friedman, J. H. (1985), "Estimating Optimal Transformations for Multiple Regression and Correlation," Journal of the American Statistical Association, 80, 580-598.
-
(1985)
Journal of the American Statistical Association
, vol.80
, pp. 580-598
-
-
Breiman, L.1
Friedman, J.H.2
-
13
-
-
0036643067
-
Estimating generalization error on two-class datasets using out-of-bag estimates
-
Bylander, T. (2002), "Estimating Generalization Error on Two-Class Datasets Using Out-of-Bag Estimates," Machine Learning, 48, 287-297.
-
(2002)
Machine Learning
, vol.48
, pp. 287-297
-
-
Bylander, T.1
-
14
-
-
0041639639
-
Bootstraps for time series
-
Bühlmann, P. (2002), "Bootstraps for Time Series," Statistical Science, 17, 52-72.
-
(2002)
Statistical Science
, vol.17
, pp. 52-72
-
-
Bühlmann, P.1
-
15
-
-
0003710380
-
-
Department of Computer Science and Information Engineering, National Taiwan University
-
Chang, C.-C., and Lin, C.-J. (2001), LIBSVM: A Library for Support Vector Machines, Department of Computer Science and Information Engineering, National Taiwan University, http://www.csie.ntu.edu.tw/~cjlin/libsvm.
-
(2001)
LIBSVM: A Library for Support Vector Machines
-
-
Chang, C.-C.1
Lin, C.-J.2
-
16
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
Dietterich, T. G. (1998), "Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms," Neural Computation, 10, 1895-1923.
-
(1998)
Neural Computation
, vol.10
, pp. 1895-1923
-
-
Dietterich, T.G.1
-
17
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
_ (2000), "An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization," Machine Learning, 40, 139-157.
-
(2000)
Machine Learning
, vol.40
, pp. 139-157
-
-
-
18
-
-
26644455152
-
-
Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., and Weingessel, A. (2004), e1071: Misc Functions of the Department of Statistics (e1071), TU Wien, R package version 1.5-1, http://CRAN.R-project.org.
-
(2004)
E1071: Misc Functions of the Department of Statistics (E1071), TU Wien, R Package Version 1.5-1
-
-
Dimitriadou, E.1
Hornik, K.2
Leisch, F.3
Meyer, D.4
Weingessel, A.5
-
19
-
-
26644446561
-
Asymptotics of cross-validated risk estimation in estimator selection and performance assessment
-
Dudoit, S., and van der Laan, M. J. (2005), "Asymptotics of Cross-Validated Risk Estimation in Estimator Selection and Performance Assessment," Statistical Methodology, 2, 131-154.
-
(2005)
Statistical Methodology
, vol.2
, pp. 131-154
-
-
Dudoit, S.1
Van Der Laan, M.J.2
-
20
-
-
84950461478
-
Estimating the error rate of a prediction rule: Improvements on cross-validation
-
Efron, B. (1983), "Estimating the Error Rate of a Prediction Rule: Improvements on Cross-Validation," Journal of the American Statistical Association, 78, 316-331.
-
(1983)
Journal of the American Statistical Association
, vol.78
, pp. 316-331
-
-
Efron, B.1
-
21
-
-
80053264999
-
How biased is the apparent error rate of a prediction rule?
-
_ (1986), "How Biased is the Apparent Error Rate of a Prediction Rule?" Journal of the American Statistical Association, 81, 461-470.
-
(1986)
Journal of the American Statistical Association
, vol.81
, pp. 461-470
-
-
-
23
-
-
0031536511
-
Improvements on cross-validation: The .632+ bootstrap method
-
_ (1997), "Improvements on Cross-Validation: The .632+ Bootstrap Method," Journal of the American Statistical Association, 92, 548-560.
-
(1997)
Journal of the American Statistical Association
, vol.92
, pp. 548-560
-
-
-
24
-
-
0002978642
-
Experiments with a new boosting algorithm
-
ed. L. Saitta, San Francisco: Morgan Kaufmann
-
Freund, Y., and Schapire, R. E. (1996), "Experiments with a New Boosting Algorithm," in Machine Learning: Proceedings of the Thirteenth International Conference, ed. L. Saitta, San Francisco: Morgan Kaufmann, pp. 148-156.
-
(1996)
Machine Learning: Proceedings of the Thirteenth International Conference
, pp. 148-156
-
-
Freund, Y.1
Schapire, R.E.2
-
25
-
-
0002432565
-
Multivariate adaptive regression splines
-
Friedman, J. H. (1991), "Multivariate Adaptive Regression Splines," The Annals of Statistics, 19, 1-67.
-
(1991)
The Annals of Statistics
, vol.19
, pp. 1-67
-
-
Friedman, J.H.1
-
27
-
-
0035622815
-
Cross-validating non-Gaussian data: Generalized approximate cross-validation revisited
-
Gu, C., and Xiang, D. (2001), "Cross-Validating Non-Gaussian Data: Generalized Approximate Cross-Validation Revisited," Journal of Computational and Graphical Statistics, 10, 581-591.
-
(2001)
Journal of Computational and Graphical Statistics
, vol.10
, pp. 581-591
-
-
Gu, C.1
Xiang, D.2
-
28
-
-
0003762248
-
-
London: Academic Press
-
Hájek, J., Šidák, Z., and Sen, P. K. (1999), Theory of Rank Tests (2nd ed.), London: Academic Press.
-
(1999)
Theory of Rank Tests (2nd Ed.)
-
-
Hájek, J.1
Šidák, Z.2
Sen, P.K.3
-
29
-
-
0003684449
-
-
New York: Springer Verlag
-
Hastie, T., Tibshirani, R., and Friedman, J. (2001), The Elements of Statistical Learning (Data Mining, Inference and Prediction), New York: Springer Verlag.
-
(2001)
The Elements of Statistical Learning (Data Mining, Inference and Prediction)
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
31
-
-
18744370359
-
-
Ph.D. thesis, Department of Statistics. University of Dortmund, Germany
-
Hothorn, T. (2003), "Bundling Classifiers with an Application to Glaucoma Diagnosis," Ph.D. thesis, Department of Statistics. University of Dortmund, Germany, http://eldorado.uni-dortmund.de:8080/FB5/ls7/forschung/2003/ Hothorn.
-
(2003)
Bundling Classifiers with An Application to Glaucoma Diagnosis
-
-
Hothorn, T.1
-
32
-
-
0037410515
-
Double-bagging: Combining classifiers by bootstrap aggregation
-
Hothorn, T., and Lausen, B. (2003), "Double-Bagging: Combining Classifiers by Bootstrap Aggregation," Pattern Recognition, 36, 1303-1309.
-
(2003)
Pattern Recognition
, vol.36
, pp. 1303-1309
-
-
Hothorn, T.1
Lausen, B.2
-
33
-
-
19044398807
-
Bundling classifiers by bagging trees
-
_ (2005), "Bundling Classifiers by Bagging Trees," Computational Statistics & Data Analysis, 49, 1068-1075.
-
(2005)
Computational Statistics & Data Analysis
, vol.49
, pp. 1068-1075
-
-
-
34
-
-
0030305457
-
R: A language for data analysis and graphics
-
Ihaka, R., and Gentleman, R. (1996), "R: A Language for Data Analysis and Graphics," Journal of Computational and Graphical Statistics, 5, 299-314.
-
(1996)
Journal of Computational and Graphical Statistics
, vol.5
, pp. 299-314
-
-
Ihaka, R.1
Gentleman, R.2
-
35
-
-
0141907311
-
Classification trees with bivariate linear discriminant node models
-
Kim, H., and Loh, W.-Y. (2003), "Classification Trees with Bivariate Linear Discriminant Node Models," Journal of Computational and Graphical Statistics, 12, 512-530.
-
(2003)
Journal of Computational and Graphical Statistics
, vol.12
, pp. 512-530
-
-
Kim, H.1
Loh, W.-Y.2
-
37
-
-
0345040873
-
Classification and regression by randomforest
-
Liaw, A., and Wiener, M. (2002), "Classification and Regression by randomForest, R News, 2, 18-22.
-
(2002)
R News
, vol.2
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
38
-
-
0034274591
-
A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
-
Lim, T.-S., Loh, W.-Y., and Shih, Y.-S. (2000), "A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms." Machine Learning, 40, 203-228.
-
(2000)
Machine Learning
, vol.40
, pp. 203-228
-
-
Lim, T.-S.1
Loh, W.-Y.2
Shih, Y.-S.3
-
39
-
-
0242351992
-
Support vector machines
-
Meyer, D. (2001), "Support Vector Machines," R News, 1, 23-26.
-
(2001)
R News
, vol.1
, pp. 23-26
-
-
Meyer, D.1
-
40
-
-
0242288813
-
The support vector machine under test
-
Meyer, D., Leisch, F., and Hornik, K. (2003), "The Support Vector Machine under Test," Neurocomputing, 55, 169-186.
-
(2003)
Neurocomputing
, vol.55
, pp. 169-186
-
-
Meyer, D.1
Leisch, F.2
Hornik, K.3
-
41
-
-
0042847140
-
Inference for the generalization error
-
Nadeau, C., and Bengio, Y. (2003), "Inference for the Generalization Error," Machine Learning, 52, 239-281.
-
(2003)
Machine Learning
, vol.52
, pp. 239-281
-
-
Nadeau, C.1
Bengio, Y.2
-
42
-
-
0346422245
-
-
Menlo Park, CA: Crisp Publications Inc.
-
Patterson, J. G. (1992), Benchmarking Basics, Menlo Park, CA: Crisp Publications Inc.
-
(1992)
Benchmarking Basics
-
-
Patterson, J.G.1
-
44
-
-
0013321815
-
Ipred: Improved predictors
-
Peters, A., Hothorn, T., and Lausen, B. (2002), "ipred: Improved Predictors, R News, 2, 33-36.
-
(2002)
R News
, vol.2
, pp. 33-36
-
-
Peters, A.1
Hothorn, T.2
Lausen, B.3
-
46
-
-
0036825523
-
Multiple comparison procedures applied to model selection
-
Pizarro, J., Guerrero, E., and Galindo, P. L. (2002), "Multiple Comparison Procedures Applied to Model Selection," Neurocomputing, 48, 155-173.
-
(2002)
Neurocomputing
, vol.48
, pp. 155-173
-
-
Pizarro, J.1
Guerrero, E.2
Galindo, P.L.3
-
47
-
-
1842607847
-
-
R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-00-3
-
R Development Core Team (2004), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-00-3.
-
(2004)
R: A Language and Environment for Statistical Computing
-
-
-
49
-
-
0034336808
-
Ten more years of error rate research
-
Schiavo, R. A., and Hand, D. J. (2000), "Ten More Years of Error Rate Research," International Statistical Review, 68, 295-310.
-
(2000)
International Statistical Review
, vol.68
, pp. 295-310
-
-
Schiavo, R.A.1
Hand, D.J.2
-
50
-
-
0000629975
-
Cross-validatory choice and assessment of statistical predictions
-
Stone, M. (1974), "Cross-Validatory Choice and Assessment of Statistical Predictions," Journal of the Royal Statistical Society, Series B, 36, 111-147.
-
(1974)
Journal of the Royal Statistical Society, Series B
, vol.36
, pp. 111-147
-
-
Stone, M.1
-
51
-
-
0003516711
-
An introduction to recursive partitioning using the rpart routine
-
Section of Biostatistics, Mayo Clinic, Rochester
-
Therneau, T. M., and Atkinson, E. J. (1997), "An Introduction to Recursive Partitioning using the rpart Routine, Technical Report 61, Section of Biostatistics, Mayo Clinic, Rochester, http://www.mayo.edu/hsr/techrpt/61. pdf.
-
(1997)
Technical Report
, vol.61
-
-
Therneau, T.M.1
Atkinson, E.J.2
-
53
-
-
0036781790
-
Bayesian model assessment and comparison using cross-validation predictive densities
-
Vehtari, A., and Lampinen, J. (2002), "Bayesian Model Assessment and Comparison Using Cross-Validation Predictive Densities," Neural Computation, 14, 2439-2468.
-
(2002)
Neural Computation
, vol.14
, pp. 2439-2468
-
-
Vehtari, A.1
Lampinen, J.2
-
55
-
-
0032638640
-
An efficient method to estimate bagging's generalization error
-
Wolpert, D. H., and Macready, W. G. (1999), "An Efficient Method to Estimate Bagging's Generalization Error," Machine Learning, 35, 41-51.
-
(1999)
Machine Learning
, vol.35
, pp. 41-51
-
-
Wolpert, D.H.1
Macready, W.G.2
|