메뉴 건너뛰기




Volumn 14, Issue 3, 2005, Pages 675-699

The design and analysis of benchmark experiments

Author keywords

Bootstrap; Cross validation; Hypothesis testing; Model comparison; Performance

Indexed keywords


EID: 26644464819     PISSN: 10618600     EISSN: None     Source Type: Journal    
DOI: 10.1198/106186005X59630     Document Type: Article
Times cited : (149)

References (55)
  • 1
    • 0033570831 scopus 로고    scopus 로고
    • Combined 5 × 2 cv F test for comparing supervised classification learning algorithms
    • Alpaydin, E. (1999), "Combined 5 × 2 cv F Test for Comparing Supervised Classification Learning Algorithms," Neural Computation, 11, 1885-1892.
    • (1999) Neural Computation , vol.11 , pp. 1885-1892
    • Alpaydin, E.1
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E., and Kohavi, R. (1999), "An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants," Machine Learning, 36, 105-139.
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 4
    • 0034732875 scopus 로고    scopus 로고
    • Pros and cons of permutation tests in clinical trials
    • Berger, V. W. (2000), "Pros and Cons of Permutation Tests in Clinical Trials," Statistics in Medicine, 19, 1319-1328.
    • (2000) Statistics in Medicine , vol.19 , pp. 1319-1328
    • Berger, V.W.1
  • 7
    • 0141496153 scopus 로고    scopus 로고
    • Efficient algorithms for decision tree cross-validation
    • Blockeel, H., and Struyf, J. (2002), "Efficient Algorithms for Decision Tree Cross-Validation," Journal of Machine Learning Research, 3, 621-650.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 621-650
    • Blockeel, H.1    Struyf, J.2
  • 8
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996a), "Bagging Predictors," Machine Learning, 24, 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 9
    • 0004140497 scopus 로고    scopus 로고
    • Out-of-bag estimation
    • Statistics Department, University of California Berkeley, Berkeley CA 94708
    • _ (1996b), "Out-of-Bag Estimation," Technical report, Statistics Department, University of California Berkeley, Berkeley CA 94708, ftp://ftp.stat.berkeley.edu/pub/users/breiman/.
    • (1996) Technical Report
  • 10
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • _ (2001 a), "Random Forests," Machine Learning, 45, 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
  • 11
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: The two cultures
    • _ (2001b), "Statistical Modeling: The Two Cultures" (with discussion), Statistical Science, 16, 199-231.
    • (2001) Statistical Science , vol.16 , pp. 199-231
  • 12
    • 84950771789 scopus 로고
    • Estimating optimal transformations for multiple regression and correlation
    • Breiman, L., and Friedman, J. H. (1985), "Estimating Optimal Transformations for Multiple Regression and Correlation," Journal of the American Statistical Association, 80, 580-598.
    • (1985) Journal of the American Statistical Association , vol.80 , pp. 580-598
    • Breiman, L.1    Friedman, J.H.2
  • 13
    • 0036643067 scopus 로고    scopus 로고
    • Estimating generalization error on two-class datasets using out-of-bag estimates
    • Bylander, T. (2002), "Estimating Generalization Error on Two-Class Datasets Using Out-of-Bag Estimates," Machine Learning, 48, 287-297.
    • (2002) Machine Learning , vol.48 , pp. 287-297
    • Bylander, T.1
  • 14
    • 0041639639 scopus 로고    scopus 로고
    • Bootstraps for time series
    • Bühlmann, P. (2002), "Bootstraps for Time Series," Statistical Science, 17, 52-72.
    • (2002) Statistical Science , vol.17 , pp. 52-72
    • Bühlmann, P.1
  • 15
    • 0003710380 scopus 로고    scopus 로고
    • Department of Computer Science and Information Engineering, National Taiwan University
    • Chang, C.-C., and Lin, C.-J. (2001), LIBSVM: A Library for Support Vector Machines, Department of Computer Science and Information Engineering, National Taiwan University, http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    • (2001) LIBSVM: A Library for Support Vector Machines
    • Chang, C.-C.1    Lin, C.-J.2
  • 16
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich, T. G. (1998), "Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms," Neural Computation, 10, 1895-1923.
    • (1998) Neural Computation , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 17
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • _ (2000), "An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization," Machine Learning, 40, 139-157.
    • (2000) Machine Learning , vol.40 , pp. 139-157
  • 19
    • 26644446561 scopus 로고    scopus 로고
    • Asymptotics of cross-validated risk estimation in estimator selection and performance assessment
    • Dudoit, S., and van der Laan, M. J. (2005), "Asymptotics of Cross-Validated Risk Estimation in Estimator Selection and Performance Assessment," Statistical Methodology, 2, 131-154.
    • (2005) Statistical Methodology , vol.2 , pp. 131-154
    • Dudoit, S.1    Van Der Laan, M.J.2
  • 20
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvements on cross-validation
    • Efron, B. (1983), "Estimating the Error Rate of a Prediction Rule: Improvements on Cross-Validation," Journal of the American Statistical Association, 78, 316-331.
    • (1983) Journal of the American Statistical Association , vol.78 , pp. 316-331
    • Efron, B.1
  • 21
    • 80053264999 scopus 로고
    • How biased is the apparent error rate of a prediction rule?
    • _ (1986), "How Biased is the Apparent Error Rate of a Prediction Rule?" Journal of the American Statistical Association, 81, 461-470.
    • (1986) Journal of the American Statistical Association , vol.81 , pp. 461-470
  • 23
    • 0031536511 scopus 로고    scopus 로고
    • Improvements on cross-validation: The .632+ bootstrap method
    • _ (1997), "Improvements on Cross-Validation: The .632+ Bootstrap Method," Journal of the American Statistical Association, 92, 548-560.
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 548-560
  • 25
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J. H. (1991), "Multivariate Adaptive Regression Splines," The Annals of Statistics, 19, 1-67.
    • (1991) The Annals of Statistics , vol.19 , pp. 1-67
    • Friedman, J.H.1
  • 27
    • 0035622815 scopus 로고    scopus 로고
    • Cross-validating non-Gaussian data: Generalized approximate cross-validation revisited
    • Gu, C., and Xiang, D. (2001), "Cross-Validating Non-Gaussian Data: Generalized Approximate Cross-Validation Revisited," Journal of Computational and Graphical Statistics, 10, 581-591.
    • (2001) Journal of Computational and Graphical Statistics , vol.10 , pp. 581-591
    • Gu, C.1    Xiang, D.2
  • 31
    • 18744370359 scopus 로고    scopus 로고
    • Ph.D. thesis, Department of Statistics. University of Dortmund, Germany
    • Hothorn, T. (2003), "Bundling Classifiers with an Application to Glaucoma Diagnosis," Ph.D. thesis, Department of Statistics. University of Dortmund, Germany, http://eldorado.uni-dortmund.de:8080/FB5/ls7/forschung/2003/ Hothorn.
    • (2003) Bundling Classifiers with An Application to Glaucoma Diagnosis
    • Hothorn, T.1
  • 32
    • 0037410515 scopus 로고    scopus 로고
    • Double-bagging: Combining classifiers by bootstrap aggregation
    • Hothorn, T., and Lausen, B. (2003), "Double-Bagging: Combining Classifiers by Bootstrap Aggregation," Pattern Recognition, 36, 1303-1309.
    • (2003) Pattern Recognition , vol.36 , pp. 1303-1309
    • Hothorn, T.1    Lausen, B.2
  • 33
    • 19044398807 scopus 로고    scopus 로고
    • Bundling classifiers by bagging trees
    • _ (2005), "Bundling Classifiers by Bagging Trees," Computational Statistics & Data Analysis, 49, 1068-1075.
    • (2005) Computational Statistics & Data Analysis , vol.49 , pp. 1068-1075
  • 35
    • 0141907311 scopus 로고    scopus 로고
    • Classification trees with bivariate linear discriminant node models
    • Kim, H., and Loh, W.-Y. (2003), "Classification Trees with Bivariate Linear Discriminant Node Models," Journal of Computational and Graphical Statistics, 12, 512-530.
    • (2003) Journal of Computational and Graphical Statistics , vol.12 , pp. 512-530
    • Kim, H.1    Loh, W.-Y.2
  • 37
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomforest
    • Liaw, A., and Wiener, M. (2002), "Classification and Regression by randomForest, R News, 2, 18-22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 38
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • Lim, T.-S., Loh, W.-Y., and Shih, Y.-S. (2000), "A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms." Machine Learning, 40, 203-228.
    • (2000) Machine Learning , vol.40 , pp. 203-228
    • Lim, T.-S.1    Loh, W.-Y.2    Shih, Y.-S.3
  • 39
    • 0242351992 scopus 로고    scopus 로고
    • Support vector machines
    • Meyer, D. (2001), "Support Vector Machines," R News, 1, 23-26.
    • (2001) R News , vol.1 , pp. 23-26
    • Meyer, D.1
  • 40
    • 0242288813 scopus 로고    scopus 로고
    • The support vector machine under test
    • Meyer, D., Leisch, F., and Hornik, K. (2003), "The Support Vector Machine under Test," Neurocomputing, 55, 169-186.
    • (2003) Neurocomputing , vol.55 , pp. 169-186
    • Meyer, D.1    Leisch, F.2    Hornik, K.3
  • 41
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • Nadeau, C., and Bengio, Y. (2003), "Inference for the Generalization Error," Machine Learning, 52, 239-281.
    • (2003) Machine Learning , vol.52 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 42
    • 0346422245 scopus 로고
    • Menlo Park, CA: Crisp Publications Inc.
    • Patterson, J. G. (1992), Benchmarking Basics, Menlo Park, CA: Crisp Publications Inc.
    • (1992) Benchmarking Basics
    • Patterson, J.G.1
  • 44
    • 0013321815 scopus 로고    scopus 로고
    • Ipred: Improved predictors
    • Peters, A., Hothorn, T., and Lausen, B. (2002), "ipred: Improved Predictors, R News, 2, 33-36.
    • (2002) R News , vol.2 , pp. 33-36
    • Peters, A.1    Hothorn, T.2    Lausen, B.3
  • 46
    • 0036825523 scopus 로고    scopus 로고
    • Multiple comparison procedures applied to model selection
    • Pizarro, J., Guerrero, E., and Galindo, P. L. (2002), "Multiple Comparison Procedures Applied to Model Selection," Neurocomputing, 48, 155-173.
    • (2002) Neurocomputing , vol.48 , pp. 155-173
    • Pizarro, J.1    Guerrero, E.2    Galindo, P.L.3
  • 47
    • 1842607847 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-00-3
    • R Development Core Team (2004), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-00-3.
    • (2004) R: A Language and Environment for Statistical Computing
  • 50
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone, M. (1974), "Cross-Validatory Choice and Assessment of Statistical Predictions," Journal of the Royal Statistical Society, Series B, 36, 111-147.
    • (1974) Journal of the Royal Statistical Society, Series B , vol.36 , pp. 111-147
    • Stone, M.1
  • 51
    • 0003516711 scopus 로고    scopus 로고
    • An introduction to recursive partitioning using the rpart routine
    • Section of Biostatistics, Mayo Clinic, Rochester
    • Therneau, T. M., and Atkinson, E. J. (1997), "An Introduction to Recursive Partitioning using the rpart Routine, Technical Report 61, Section of Biostatistics, Mayo Clinic, Rochester, http://www.mayo.edu/hsr/techrpt/61. pdf.
    • (1997) Technical Report , vol.61
    • Therneau, T.M.1    Atkinson, E.J.2
  • 53
    • 0036781790 scopus 로고    scopus 로고
    • Bayesian model assessment and comparison using cross-validation predictive densities
    • Vehtari, A., and Lampinen, J. (2002), "Bayesian Model Assessment and Comparison Using Cross-Validation Predictive Densities," Neural Computation, 14, 2439-2468.
    • (2002) Neural Computation , vol.14 , pp. 2439-2468
    • Vehtari, A.1    Lampinen, J.2
  • 55
    • 0032638640 scopus 로고    scopus 로고
    • An efficient method to estimate bagging's generalization error
    • Wolpert, D. H., and Macready, W. G. (1999), "An Efficient Method to Estimate Bagging's Generalization Error," Machine Learning, 35, 41-51.
    • (1999) Machine Learning , vol.35 , pp. 41-51
    • Wolpert, D.H.1    Macready, W.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.