메뉴 건너뛰기




Volumn 4, Issue , 2016, Pages 2601-2610

Dictionary learning for massive matrix factorization

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; FACTORIZATION; LEARNING SYSTEMS; MAGNETIC RESONANCE IMAGING;

EID: 84999028733     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (28)

References (26)
  • 1
    • 33750383209 scopus 로고    scopus 로고
    • K- SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • Aharon, Michal, Elad, Michael, and Bruckstein, Alfred, k- SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11):4311-4322, 2006.
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 2
    • 57349146373 scopus 로고    scopus 로고
    • Lessons from the Netflix prize challenge
    • Bell, Robert M. and Koren, Yehuda. Lessons from the Netflix prize challenge. ACM SIGKDD Explorations Newsletter, 9(2):75-79, 2007.
    • (2007) ACM SIGKDD Explorations Newsletter , vol.9 , Issue.2 , pp. 75-79
    • Bell, R.M.1    Koren, Y.2
  • 5
    • 84904136037 scopus 로고    scopus 로고
    • Large-scale machine learning with stochastic gradient descent
    • Springer
    • Bottou, Leon. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT, pp. 177-186. Springer, 2010.
    • (2010) Proceedings of COMPSTAT , pp. 177-186
    • Bottou, L.1
  • 6
    • 71049116435 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • Candes, Emmanuel J. and Recht, Benjamin. Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9(6):717-772, 2009.
    • (2009) Foundations of Computational Mathematics , vol.9 , Issue.6 , pp. 717-772
    • Candes, E.J.1    Recht, B.2
  • 7
    • 33947416035 scopus 로고    scopus 로고
    • Near-optimal signal recovery from random projections: Universal encoding strategies?
    • Candes, Emmanuel J. and Tao, Terence. Near-optimal signal recovery from random projections: Universal encoding strategies? Information Theory, IEEE Transactions on, 52(12):5406-5425, 2006.
    • (2006) Information Theory, IEEE Transactions on , vol.52 , Issue.12 , pp. 5406-5425
    • Candes, E.J.1    Tao, T.2
  • 11
    • 0001654702 scopus 로고
    • Extensions of Lipschitz mappings into a Hilbert space
    • Johnson, William B. and Lindenstrauss, Joram. Extensions of Lipschitz mappings into a Hilbert space. Contemporary mathematics, 26(189-206): 1, 1984.
    • (1984) Contemporary Mathematics , vol.26 , Issue.1 , pp. 189-206
    • Johnson, W.B.1    Lindenstrauss, J.2
  • 12
    • 84898983087 scopus 로고    scopus 로고
    • Stochastic majorization-minimization algorithms for large-scale optimization
    • Mairal, Julien. Stochastic majorization-minimization algorithms for large-scale optimization. In Advances in Neural Information Processing Systems, pp. 2283-2291, 2013.
    • (2013) Advances in Neural Information Processing Systems , pp. 2283-2291
    • Mairal, J.1
  • 19
    • 63449105336 scopus 로고    scopus 로고
    • Online- updating regularized kernel matrix factorization models for large-scale recommender systems
    • ACM
    • Rendle, Steffen and Schmidt-Thieme, Lars. Online- updating regularized kernel matrix factorization models for large-scale recommender systems. In Proceedings of the ACM Conference on Recommender systems, pp. 251-258. ACM, 2008.
    • (2008) Proceedings of the ACM Conference on Recommender Systems , pp. 251-258
    • Rendle, S.1    Schmidt-Thieme, L.2
  • 22
    • 64149121935 scopus 로고    scopus 로고
    • Scalable collaborative filtering approaches for large recommender systems
    • Takacs, Gabor, Pilaszy, Istvan, Nemeth, Bottyan, and Tikk, Domonkos. Scalable collaborative filtering approaches for large recommender systems. The Journal of Machine Learning Research, 10:623-656, 2009.
    • (2009) The Journal of Machine Learning Research , vol.10 , pp. 623-656
    • Takacs, G.1    Pilaszy, I.2    Nemeth, B.3    Tikk, D.4
  • 26
    • 84874049380 scopus 로고    scopus 로고
    • Scalable coordinate descent approaches to parallel matrix factorization for recommender systems
    • IEEE
    • Yu, Hsiang-Fu, Hsieh, Cho-Jui, and Dhillon, Indeijit. Scalable coordinate descent approaches to parallel matrix factorization for recommender systems. In Proceedings of the International Conference on Data Mining, pp. 765-774. IEEE, 2012.
    • (2012) Proceedings of the International Conference on Data Mining , pp. 765-774
    • Yu, H.-F.1    Hsieh, C.-J.2    Dhillon, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.