-
1
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci., 2(1):183-202, 2009.
-
(2009)
SIAM J. Imaging Sci.
, vol.2
, Issue.1
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
3
-
-
0013309537
-
Online algorithms and stochastic approximations
-
David Saad, editor
-
L. Bottou. Online algorithms and stochastic approximations. In David Saad, editor, Online Learning and Neural Networks. 1998.
-
(1998)
Online Learning and Neural Networks
-
-
Bottou, L.1
-
4
-
-
85162035281
-
The trade-offs of large scale learning
-
L. Bottou and O. Bousquet. The trade-offs of large scale learning. In Adv. NIPS, 2008.
-
(2008)
Adv. NIPS
-
-
Bottou, L.1
Bousquet, O.2
-
5
-
-
66849104300
-
On-line expectation-maximization algorithm for latent data models
-
O. Cappé and E. Moulines. On-line expectation-maximization algorithm for latent data models. J. Roy. Stat. Soc. B, 71(3):593-613, 2009.
-
(2009)
J. Roy. Stat. Soc. B
, vol.71
, Issue.3
, pp. 593-613
-
-
Cappé, O.1
Moulines, E.2
-
6
-
-
75249102673
-
Efficient online and batch learning using forward backward splitting
-
J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. J. Mach. Learn. Res., 10:2899-2934, 2009.
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 2899-2934
-
-
Duchi, J.1
Singer, Y.2
-
7
-
-
50949133669
-
LIBLINEAR: A library for large linear classification
-
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear classification. J. Mach. Learn. Res., 9:1871-1874, 2008.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, K.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
8
-
-
70450245260
-
Recovering sparse signals with non-convex penalties and DC programming
-
G. Gasso, A. Rakotomamonjy, and S. Canu. Recovering sparse signals with non-convex penalties and DC programming. IEEE T. Signal Process., 57(12):4686-4698, 2009.
-
(2009)
IEEE T. Signal Process.
, vol.57
, Issue.12
, pp. 4686-4698
-
-
Gasso, G.1
Rakotomamonjy, A.2
Canu, S.3
-
10
-
-
35348918820
-
Logarithmic regret algorithms for online convex optimization
-
E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimization. Mach. Learn., 69(2-3):169-192, 2007.
-
(2007)
Mach. Learn.
, vol.69
, Issue.2-3
, pp. 169-192
-
-
Hazan, E.1
Agarwal, A.2
Kale, S.3
-
11
-
-
84898979568
-
Beyond the regret minimization barrier: An optimal algorithm for stochastic strongly-convex optimization
-
E. Hazan and S. Kale. Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization. In Proc. COLT, 2011.
-
(2011)
Proc. COLT
-
-
Hazan, E.1
Kale, S.2
-
12
-
-
77956508892
-
Accelerated gradient methods for stochastic optimization and online learning
-
C. Hu, J. Kwok, and W. Pan. Accelerated gradient methods for stochastic optimization and online learning. In Adv. NIPS, 2009.
-
(2009)
Adv. NIPS
-
-
Hu, C.1
Kwok, J.2
Pan, W.3
-
14
-
-
84862273593
-
An optimal method for stochastic composite optimization
-
G. Lan. An optimal method for stochastic composite optimization. Math. Program., 133:365-397, 2012.
-
(2012)
Math. Program.
, vol.133
, pp. 365-397
-
-
Lan, G.1
-
15
-
-
77950023906
-
Optimization transfer using surrogate objective functions
-
K. Lange, D.R. Hunter, and I. Yang. Optimization transfer using surrogate objective functions. J. Comput. Graph. Stat., 9(1):1-20, 2000.
-
(2000)
J. Comput. Graph. Stat.
, vol.9
, Issue.1
, pp. 1-20
-
-
Lange, K.1
Hunter, D.R.2
Yang, I.3
-
16
-
-
64149115569
-
Sparse online learning via truncated gradient
-
J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient. J. Mach. Learn. Res., 10:777-801, 2009.
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 777-801
-
-
Langford, J.1
Li, L.2
Zhang, T.3
-
17
-
-
84877725219
-
A stochastic gradient method with an exponential convergence rate for finite training sets
-
N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence rate for finite training sets. In Adv. NIPS, 2012.
-
(2012)
Adv. NIPS
-
-
Le Roux, N.1
Schmidt, M.2
Bach, F.3
-
18
-
-
84897534825
-
Optimization with first-order surrogate functions
-
arXiv: 1305.3120
-
J. Mairal. Optimization with first-order surrogate functions. In Proc. ICML, 2013. arXiv:1305.3120.
-
Proc ICML, 2013
-
-
Mairal, J.1
-
19
-
-
76749107542
-
Online learning for matrix factorization and sparse coding
-
J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res., 11:19-60, 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 19-60
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
-
21
-
-
0002788893
-
A view of the em algorithm that justifies incremental, sparse, and other variants
-
R.M. Neal and G.E. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. Learning in graphical models, 89, 1998.
-
(1998)
Learning in Graphical Models
, vol.89
-
-
Neal, R.M.1
Hinton, G.E.2
-
22
-
-
70450197241
-
Robust stochastic approximation approach to stochastic programming
-
A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM J. Optimiz., 19(4):1574-1609, 2009.
-
(2009)
SIAM J. Optimiz.
, vol.19
, Issue.4
, pp. 1574-1609
-
-
Nemirovski, A.1
Juditsky, A.2
Lan, G.3
Shapiro, A.4
-
23
-
-
67651063011
-
Gradient methods for minimizing composite objective functions
-
Y. Nesterov. Gradient methods for minimizing composite objective functions. Technical report, CORE Discussion Paper, 2007.
-
(2007)
Technical Report CORE Discussion Paper
-
-
Nesterov, Y.1
-
26
-
-
71149119963
-
Stochastic methods for ℓ1 regularized loss minimization
-
S. Shalev-Shwartz and A. Tewari. Stochastic methods for ℓ1 regularized loss minimization. In Proc. ICML, 2009.
-
(2009)
Proc. ICML
-
-
Shalev-Shwartz, S.1
Tewari, A.2
-
28
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
M.J. Wainwright and M.I. Jordan. Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn., 1(1-2):1-305, 2008.
-
(2008)
Found. Trends Mach. Learn.
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
29
-
-
67650178787
-
Sparse reconstruction by separable approximation
-
S. Wright, R. Nowak, and M. Figueiredo. Sparse reconstruction by separable approximation. IEEE T. Signal Process., 57(7):2479-2493, 2009.
-
(2009)
IEEE T. Signal Process.
, vol.57
, Issue.7
, pp. 2479-2493
-
-
Wright, S.1
Nowak, R.2
Figueiredo, M.3
-
30
-
-
78649396336
-
Dual averaging methods for regularized stochastic learning and online optimization
-
L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization. J. Mach. Learn. Res., 11:2543-2596, 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 2543-2596
-
-
Xiao, L.1
|