메뉴 건너뛰기




Volumn 17, Issue 7, 2009, Pages 1290-1298

Modeling and simulation of wind turbine Savonius rotors using artificial neural networks for estimation of the power ratio and torque

Author keywords

Blade angles; Neural networks; Savonius rotors; TSR; Wind tunnel

Indexed keywords

ARTIFICIAL NEURAL NET; ARTIFICIAL NEURAL NETWORK; ARTIFICIAL NEURAL NETWORKS; BLADE ANGLE; BLADE ANGLES; EXPERIMENTAL DATA; INPUT PARAMETER; MAXIMUM POWER; MODELING AND SIMULATION; POWER FACTORS; POWER RATIO; SAVONIUS ROTOR; SAVONIUS ROTORS; SAVONIUS TURBINE; SIMULATED RESULTS; TIP SPEED RATIO; TSR;

EID: 67649367526     PISSN: 1569190X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.simpat.2009.05.003     Document Type: Article
Times cited : (64)

References (18)
  • 1
    • 14044265050 scopus 로고    scopus 로고
    • Aspects of technological development of wind turbines
    • Bhatti T.S., and Kothari D.P. Aspects of technological development of wind turbines. J. Energy Eng. 129 (2003) 81-95
    • (2003) J. Energy Eng. , vol.129 , pp. 81-95
    • Bhatti, T.S.1    Kothari, D.P.2
  • 3
    • 2642525189 scopus 로고    scopus 로고
    • A double-step Savonius rotor for local production of electricity: a design study
    • Menet J.-L. A double-step Savonius rotor for local production of electricity: a design study. J. Renew. Energy 29 (2004) 1843-1862
    • (2004) J. Renew. Energy , vol.29 , pp. 1843-1862
    • Menet, J.-L.1
  • 4
    • 1942496944 scopus 로고    scopus 로고
    • Water Wastewater Industries: Characteristics and Energy Management Opportunities, (Burton Engineering) Los Altos, CA
    • Report CR-106941, in: Electric Power Research Institute Report, ES-1
    • F.L. Burton, Water Wastewater Industries: Characteristics and Energy Management Opportunities, (Burton Engineering) Los Altos, CA, Report CR-106941, in: Electric Power Research Institute Report, 1996, ES-1.
    • (1996)
    • Burton, F.L.1
  • 5
    • 0000730199 scopus 로고
    • The Savonius rotor its applications
    • Savonius S.J. The Savonius rotor its applications. Mech. Eng. 35 (1931) 333-337
    • (1931) Mech. Eng. , vol.35 , pp. 333-337
    • Savonius, S.J.1
  • 7
    • 33748621451 scopus 로고    scopus 로고
    • Comparative study of artificial neural nets (ANN) and statistical methods for predicting the performance of ultrafiltration process in the milk industry
    • Sargolzaei J., Saghatroleslami N., Khoshnoodi M., and Mosavi M. Comparative study of artificial neural nets (ANN) and statistical methods for predicting the performance of ultrafiltration process in the milk industry. Iran. J. Chem. Chem. Eng. 25 (2006) 67-76
    • (2006) Iran. J. Chem. Chem. Eng. , vol.25 , pp. 67-76
    • Sargolzaei, J.1    Saghatroleslami, N.2    Khoshnoodi, M.3    Mosavi, M.4
  • 8
    • 33745880263 scopus 로고    scopus 로고
    • Applications of neural networks for energy systems
    • Kalogirou S.A. Applications of neural networks for energy systems. J. Renew. Energy 30 (2005) 1075-1090
    • (2005) J. Renew. Energy , vol.30 , pp. 1075-1090
    • Kalogirou, S.A.1
  • 9
    • 0034963531 scopus 로고    scopus 로고
    • Artificial neural networks in renewable energy systems applications: a review
    • Kalogirou S.A. Artificial neural networks in renewable energy systems applications: a review. J. Renew. Sustain. Energy Rev. 5 (2001) 373-401
    • (2001) J. Renew. Sustain. Energy Rev. , vol.5 , pp. 373-401
    • Kalogirou, S.A.1
  • 10
    • 0001044176 scopus 로고
    • Neural networks their applications
    • Bishop C.M. Neural networks their applications. Rev. Scient. Instr. 65 (1994) 1803-1832
    • (1994) Rev. Scient. Instr. , vol.65 , pp. 1803-1832
    • Bishop, C.M.1
  • 12
    • 0028835062 scopus 로고
    • Radial basis function network configuration using genetic algorithms
    • Billings S.A., and Zheng G.L. Radial basis function network configuration using genetic algorithms. J. Neural Networks 8 (1995) 877-890
    • (1995) J. Neural Networks , vol.8 , pp. 877-890
    • Billings, S.A.1    Zheng, G.L.2
  • 13
    • 0037138659 scopus 로고    scopus 로고
    • A fast and efficient algorithm for training radial basis function neural networks based on a fuzzy partition of the input space
    • Sarimveis H., Alexandridis A., Tsekouras G., and Bafas G.A. A fast and efficient algorithm for training radial basis function neural networks based on a fuzzy partition of the input space. Ind. Eng. Chem. Res. 41 (2002) 751-759
    • (2002) Ind. Eng. Chem. Res. , vol.41 , pp. 751-759
    • Sarimveis, H.1    Alexandridis, A.2    Tsekouras, G.3    Bafas, G.A.4
  • 15
    • 67649305370 scopus 로고    scopus 로고
    • Matlab R14 SP2, Mathworks Inc
    • Matlab R14 SP2, Mathworks Inc., 2005.
    • (2005)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.