-
1
-
-
84938271493
-
Fast algorithms for online stochastic convex programming
-
SIAM-Society for Industrial and Applied Mathematics
-
Agrawal, S. and Devanur, N. R. (2015). Fast algorithms for online stochastic convex programming. In SODA 2015 (ACM-SIAM Symposium on Discrete Algorithms). SIAM-Society for Industrial and Applied Mathematics.
-
(2015)
SODA 2015 (ACM-SIAM Symposium on Discrete Algorithms)
-
-
Agrawal, S.1
Devanur, N.R.2
-
3
-
-
84893451322
-
Bandits with knapsacks
-
Badanidiyuru, A., Kleinberg, R., and Slivkins, A. (2013). Bandits with knapsacks. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 207-216.
-
(2013)
Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on
, pp. 207-216
-
-
Badanidiyuru, A.1
Kleinberg, R.2
Slivkins, A.3
-
8
-
-
84945917651
-
-
Technical report, preprint arXiv: 1407.0202
-
Defazio, A., Bach, F, and Lacoste-Julien, S. (2014). Saga: A fast incremental gradient method with support for nonstrongly convex composite objectives. Technical report, preprint arXiv: 1407.0202.
-
(2014)
Saga: A Fast Incremental Gradient Method with Support for Nonstrongly Convex Composite Objectives
-
-
Defazio, A.1
Bach, F.2
Lacoste-Julien, S.3
-
10
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2121-2159.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
11
-
-
84898987439
-
Convex relaxations for permutation problems
-
Fogel, F., Jenatton, R., Bach, F., and d'Aspremont, A. (2013). Convex relaxations for permutation problems. In Advances in Neural Information Processing Systems, pages 1016-1024.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 1016-1024
-
-
Fogel, F.1
Jenatton, R.2
Bach, F.3
D'Aspremont, A.4
-
12
-
-
35348918820
-
Logarithmic regret algorithms for online convex optimization
-
Hazan, E., Agarwal, A., and Kale, S. (2007). Logarithmic regret algorithms for online convex optimization. Machine Learning, 69(2-3):169-192.
-
(2007)
Machine Learning
, vol.69
, Issue.2-3
, pp. 169-192
-
-
Hazan, E.1
Agarwal, A.2
Kale, S.3
-
15
-
-
84905252682
-
A saddle point algorithm for networked online convex optimization
-
IEEE
-
Koppel, A., Jakubiec, F. Y, and Ribeiro, A. (2014). A saddle point algorithm for networked online convex optimization. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, pages 8292-8296. IEEE.
-
(2014)
Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on
, pp. 8292-8296
-
-
Koppel, A.1
Jakubiec, F.Y.2
Ribeiro, A.3
-
16
-
-
0040165092
-
Practical aspects of the moreau-yosida regularization: Theoretical preliminaries
-
Lemaréchal, C. and Sagastizábal, C. (1997). Practical aspects of the moreau-yosida regularization: Theoretical preliminaries. SIAM Journal on Optimization, 7(2):367-385.
-
(1997)
SIAM Journal on Optimization
, vol.7
, Issue.2
, pp. 367-385
-
-
Lemaréchal, C.1
Sagastizábal, C.2
-
17
-
-
84869152925
-
Trading regret for efficiency: Online convex optimization with long term constraints
-
Mahdavi, M., Jin, R., and Yang, T. (2012a). Trading regret for efficiency: online convex optimization with long term constraints. Journal of Machine Learning Research, 13(1):2503-2528.
-
(2012)
Journal of Machine Learning Research
, vol.13
, Issue.1
, pp. 2503-2528
-
-
Mahdavi, M.1
Jin, R.2
Yang, T.3
-
18
-
-
84997683170
-
-
Technical report, preprint arXiv: 1205.2265
-
Mahdavi, M., Yang, T., and Jin, R. (2012b). Efficient constrained regret minimization. Technical report, preprint arXiv: 1205.2265.
-
(2012)
Efficient Constrained Regret Minimization
-
-
Mahdavi, M.1
Yang, T.2
Jin, R.3
-
19
-
-
84877725845
-
Stochastic gradient descent with only one projection
-
Mahdavi, M., Yang, T., Jin, R., Zhu, S., and Yi, J. (2012c). Stochastic gradient descent with only one projection. In Advances in Neural Information Processing Systems, pages 494-502.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 494-502
-
-
Mahdavi, M.1
Yang, T.2
Jin, R.3
Zhu, S.4
Yi, J.5
-
20
-
-
33746094276
-
Online learning with constraints
-
Springer
-
Mannor, S. and Tsitsiklis, J. N. (2006). Online learning with constraints. In Learning Theory, pages 529-543. Springer.
-
(2006)
Learning Theory
, pp. 529-543
-
-
Mannor, S.1
Tsitsiklis, J.N.2
-
22
-
-
14944353419
-
Prox-method with rate of convergence o (1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convexconcave saddle point problems
-
Nemirovski, A. (2004). Prox-method with rate of convergence o (1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convexconcave saddle point problems. SIAM Journal on Optimization, 15(1):229-251.
-
(2004)
SIAM Journal on Optimization
, vol.15
, Issue.1
, pp. 229-251
-
-
Nemirovski, A.1
-
27
-
-
84891464695
-
-
Technical report, preprint arXiv: 1206.6451
-
Xu, Z., Weinberger, K., and Chapelle, O. (2012). The greedy miser: Learning under test-time budgets. Technical report, preprint arXiv: 1206.6451.
-
(2012)
The Greedy Miser: Learning Under Test-time Budgets
-
-
Xu, Z.1
Weinberger, K.2
Chapelle, O.3
|