메뉴 건너뛰기




Volumn 13, Issue , 2012, Pages 2503-2528

Trading regret for efficiency: Online convex optimization with long term constraints

Author keywords

Bandit feedback; Convex concave optimization; Online convex optimization; Variational inequality

Indexed keywords

COMPUTATIONAL CHALLENGES; CONVEX OPTIMIZATION PROBLEMS; CONVEX SET; EUCLIDEAN; FEEDBACK ALGORITHMS; FINITE NUMBER; LINEAR CONSTRAINTS; MULTIPOINT; OPTIMIZATION PROBLEMS; PROX-METHOD; VARIATIONAL INEQUALITIES; VIOLATION OF CONSTRAINTS;

EID: 84869152925     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (270)

References (24)
  • 1
    • 84898063697 scopus 로고    scopus 로고
    • Competing in the dark: An efficient algorithm for bandit linear optimization
    • Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient algorithm for bandit linear optimization. In COLT, pages 263-274, 2008.
    • (2008) COLT , pp. 263-274
    • Abernethy, J.1    Hazan, E.2    Rakhlin, A.3
  • 2
    • 84898066957 scopus 로고    scopus 로고
    • A stochastic view of optimal regret through minimax duality
    • Jacob Abernethy, Alekh Agarwal, Peter L. Bartlett, and Alexander Rakhlin. A stochastic view of optimal regret through minimax duality. In COLT, 2009.
    • (2009) COLT
    • Abernethy, J.1    Agarwal, A.2    Bartlett, P.L.3    Rakhlin, A.4
  • 3
    • 84862535425 scopus 로고    scopus 로고
    • Interior-point methods for full-information and bandit online learning
    • Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. Interior-point methods for full-information and bandit online learning. IEEE Transactions on Information Theory, 58(7):4164-4175, 2012.
    • (2012) IEEE Transactions on Information Theory , vol.587 , pp. 4164-4175
    • Abernethy, J.1    Hazan, E.2    Rakhlin, A.3
  • 4
    • 84860610530 scopus 로고    scopus 로고
    • Optimal algorithms for online convex optimization with multi-point bandit feedback
    • Alekh Agarwal, Ofer Dekel, and Lin Xiao. Optimal algorithms for online convex optimization with multi-point bandit feedback. In COLT, pages 28-40, 2010.
    • COLT , vol.2010 , pp. 28-40
    • Agarwal, A.1    Dekel, O.2    Xiao, L.3
  • 5
    • 4544345025 scopus 로고    scopus 로고
    • Adaptive routing with end-to-end feedback: Distributed learning and geometric approaches
    • Baruch Awerbuch and Robert D. Kleinberg. Adaptive routing with end-to-end feedback: distributed learning and geometric approaches. In STOC, pages 45-53, 2004.
    • (2004) STOC , pp. 45-53
    • Awerbuch, B.1    Kleinberg, R.D.2
  • 6
    • 78650085692 scopus 로고    scopus 로고
    • Adaptive online gradient descent
    • Peter L. Bartlett, Elad Hazan, and Alexander Rakhlin. Adaptive online gradient descent. In NIPS, pages 257-269, 2007.
    • (2007) NIPS , pp. 257-269
    • Bartlett, P.L.1    Hazan, E.2    Rakhlin, A.3
  • 7
    • 85161974994 scopus 로고    scopus 로고
    • Online classification with specificity constraints
    • Andrey Bernstein, Shie Mannor, and Nahum Shimkin. Online classification with specificity constraints. In NIPS, pages 190-198, 2010.
    • (2010) NIPS , pp. 190-198
    • Bernstein, A.1    Mannor, S.2    Shimkin, N.3
  • 12
    • 70349295143 scopus 로고    scopus 로고
    • The price of bandit information for online optimization
    • Varsha Dani, Thomas P. Hayes, and Sham Kakade. The price of bandit information for online optimization. In NIPS, 2007.
    • (2007) NIPS
    • Dani, V.1    Hayes T, P.2    Kakade, S.3
  • 13
    • 56449092085 scopus 로고    scopus 로고
    • Efficient projections onto the l1-ball for learning in high dimensions
    • John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections onto the l1-ball for learning in high dimensions. In ICML, pages 272-279, 2008.
    • (2008) ICML , pp. 272-279
    • Duchi, J.1    Shalev-Shwartz, S.2    Singer, Y.3    Chandra, T.4
  • 15
    • 35348918820 scopus 로고    scopus 로고
    • Logarithmic regret algorithms for online convex optimization
    • DOI 10.1007/s10994-007-5016-8, Special Issue on COLT 2006; Guest Editors: Avrim Blum, Gabor Lugosi and Hans Ulrich Simon
    • Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex optimization. Machine Learning, 69(2-3):169-192, 2007. (Pubitemid 47574314)
    • (2007) Machine Learning , vol.69 , Issue.2-3 , pp. 169-192
    • Hazan, E.1    Agarwal, A.2    Kale, S.3
  • 16
    • 77953179734 scopus 로고    scopus 로고
    • Efficient euclidean projections in linear time
    • Jun Liu and Jieping Ye. Efficient euclidean projections in linear time. In ICML, pages 83-90, 2009.
    • (2009) ICML , pp. 83-90
    • Liu, J.1    Ye, J.2
  • 19
    • 85162031434 scopus 로고    scopus 로고
    • Random walk approach to regret minimization
    • Hariharan Narayanan and Alexander Rakhlin. Random walk approach to regret minimization. In NIPS, pages 1777-1785, 2010.
    • (2010) NIPS , pp. 1777-1785
    • Narayanan, H.1    Rakhlin, A.2
  • 21
    • 14944353419 scopus 로고    scopus 로고
    • Prox-method with rate of convergence O(1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems
    • DOI 10.1137/S1052623403425629
    • Arkadi Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. on Optimization, 15(1):229-251, 2005. (Pubitemid 40360669)
    • (2005) SIAM Journal on Optimization , vol.15 , Issue.1 , pp. 229-251
    • Nemirovski, A.1
  • 22
    • 78249256443 scopus 로고    scopus 로고
    • Lecture Notes, Available at
    • Alexander Rakhlin. Lecture notes on online learning. Lecture Notes, Available at http://wwwstat. wharton.upenn.edu/rakhlin/papers, 2009.
    • (2009) Lecture Notes on Online Learning
    • Rakhlin, A.1
  • 23
    • 77951165785 scopus 로고    scopus 로고
    • Mind the duality gap: Logarithmic regret algorithms for online optimization
    • Shai Shalev-Shwartz and Sham M. Kakade. Mind the duality gap: Logarithmic regret algorithms for online optimization. In NIPS, pages 1457-1464, 2008.
    • (2008) NIPS , pp. 1457-1464
    • Shalev-Shwartz, S.1    Kakade, S.M.2
  • 24
    • 1942484421 scopus 로고    scopus 로고
    • Online convex programming and generalized infinitesimal gradient ascent
    • Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In ICML, pages 928-936, 2003.
    • (2003) ICML , pp. 928-936
    • Zinkevich, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.