메뉴 건너뛰기




Volumn 1, Issue , 2012, Pages 494-502

Stochastic gradient descent with only one projection

Author keywords

[No Author keywords available]

Indexed keywords

CONVERGENCE RATES; FEASIBLE SOLUTION; LARGE-SCALE CONVEX OPTIMIZATION; LARGE-SCALE OPTIMIZATION; OBJECTIVE FUNCTIONS; POSITIVE SEMIDEFINITE; STOCHASTIC GRADIENT DESCENT; STOCHASTIC OPTIMIZATION ALGORITHM;

EID: 84877725845     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (61)

References (22)
  • 2
    • 85162480829 scopus 로고    scopus 로고
    • Non-asymptotic analysis of stochastic approximation algorithms for machine learning
    • F. Bach and E. Moulines. Non-asymptotic analysis of stochastic approximation algorithms for machine learning. In NIPS, pages 451-459, 2011.
    • (2011) NIPS , pp. 451-459
    • Bach, F.1    Moulines, E.2
  • 5
    • 77956546378 scopus 로고    scopus 로고
    • Coresets, sparse greedy approximation, and the frank-wolfe algorithm
    • K. L. Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe algorithm. ACM Transactions on Algorithms, 6(4), 2010.
    • (2010) ACM Transactions on Algorithms , vol.6 , Issue.4
    • Clarkson, K.L.1
  • 6
    • 56449092085 scopus 로고    scopus 로고
    • Efficient projections onto the l1-ball for learning in high dimensions
    • J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the l1-ball for learning in high dimensions. In ICML, pages 272-279, 2008.
    • (2008) ICML , pp. 272-279
    • Duchi, J.1    Shalev-Shwartz, S.2    Singer, Y.3    Chandra, T.4
  • 8
    • 43049120013 scopus 로고    scopus 로고
    • Sparse approximate solutions to semidefinite programs
    • E. Hazan. Sparse approximate solutions to semidefinite programs. In LATIN, pages 306-316, 2008.
    • (2008) LATIN , pp. 306-316
    • Hazan, E.1
  • 9
    • 84898471955 scopus 로고    scopus 로고
    • Beyond the regret minimization barrier: An optimal algorithm for stochastic strongly-convex optimization
    • E. Hazan and S. Kale. Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization. Journal of Machine Learning Research - Proceedings Track, 19:421-436, 2011.
    • (2011) Journal of Machine Learning Research - Proceedings Track , vol.19 , pp. 421-436
    • Hazan, E.1    Kale, S.2
  • 10
    • 84867122248 scopus 로고    scopus 로고
    • Projection-free online learning
    • E. Hazan and S. Kale. Projection-free online learning. In ICML, 2012.
    • (2012) ICML
    • Hazan, E.1    Kale, S.2
  • 12
    • 77956535889 scopus 로고    scopus 로고
    • A simple algorithm for nuclear norm regularized problems
    • M. Jaggi and M. Sulovský. A simple algorithm for nuclear norm regularized problems. In ICML, pages 471-478, 2010.
    • (2010) ICML , pp. 471-478
    • Jaggi, M.1    Sulovský, M.2
  • 13
    • 84862273593 scopus 로고    scopus 로고
    • An optimal method for stochastic composite optimization
    • G. Lan. An optimal method for stochastic composite optimization. Math. Program., 133(1-2):365-397, 2012.
    • (2012) Math. Program. , vol.133 , Issue.1-2 , pp. 365-397
    • Lan, G.1
  • 14
    • 77953179734 scopus 로고    scopus 로고
    • Efficient euclidean projections in linear time
    • J. Liu and J. Ye. Efficient euclidean projections in linear time. In ICML, page 83, 2009.
    • (2009) ICML , pp. 83
    • Liu, J.1    Ye, J.2
  • 15
    • 84869152925 scopus 로고    scopus 로고
    • Trading regret for efficiency: Online convex optimization with long term constraints
    • M. Mahdavi, R. Jin, and T. Yang. Trading regret for efficiency: online convex optimization with long term constraints. JMLR, 13:2465-2490, 2012.
    • (2012) JMLR , vol.13 , pp. 2465-2490
    • Mahdavi, M.1    Jin, R.2    Yang, T.3
  • 16
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM J. on Optimization, 19:1574-1609, 2009.
    • (2009) SIAM J. on Optimization , vol.19 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 18
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program., 103(1):127-152, 2005.
    • (2005) Math. Program. , vol.103 , Issue.1 , pp. 127-152
    • Nesterov, Y.1
  • 19
    • 34547964973 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for svm
    • S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for svm. In ICML, pages 807-814, 2007.
    • (2007) ICML , pp. 807-814
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3
  • 20
    • 84857513492 scopus 로고    scopus 로고
    • Distance metric learning with eigenvalue optimization
    • Y. Ying and P. Li. Distance metric learning with eigenvalue optimization. JMLR., 13:1-26, 2012.
    • (2012) JMLR , vol.13 , pp. 1-26
    • Ying, Y.1    Li, P.2
  • 21
    • 0037355948 scopus 로고    scopus 로고
    • Sequential greedy approximation for certain convex optimization problems
    • IEEE Transactions on
    • T. Zhang. Sequential greedy approximation for certain convex optimization problems. Information Theory, IEEE Transactions on, 49:682-691, 2003.
    • (2003) Information Theory , vol.49 , pp. 682-691
    • Zhang, T.1
  • 22
    • 1942484421 scopus 로고    scopus 로고
    • Online convex programming and generalized infinitesimal gradient ascent
    • M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In ICML, pages 928-936, 2003.
    • (2003) ICML , pp. 928-936
    • Zinkevich, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.