-
1
-
-
78650882583
-
C. elegans multi-dendritic sensory neurons: morphology and function
-
[1] Albeg, A., et al. C. elegans multi-dendritic sensory neurons: morphology and function. Mol. Cell. Neurosci. 46 (2011), 308–317.
-
(2011)
Mol. Cell. Neurosci.
, vol.46
, pp. 308-317
-
-
Albeg, A.1
-
2
-
-
84885673994
-
Skin-derived cues control arborization of sensory dendrites in Caenorhabditis elegans
-
[2] Salzberg, Y., et al. Skin-derived cues control arborization of sensory dendrites in Caenorhabditis elegans. Cell 155 (2013), 308–320.
-
(2013)
Cell
, vol.155
, pp. 308-320
-
-
Salzberg, Y.1
-
3
-
-
84862815016
-
Netrin (UNC-6) mediates dendritic self-avoidance
-
[3] Smith, C.J., Watson, J.D., VanHoven, M.K., Colon-Ramos, D.A., Miller, D.M. 3rd, Netrin (UNC-6) mediates dendritic self-avoidance. Nat. Neurosci. 15 (2012), 731–737.
-
(2012)
Nat. Neurosci.
, vol.15
, pp. 731-737
-
-
Smith, C.J.1
Watson, J.D.2
VanHoven, M.K.3
Colon-Ramos, D.A.4
Miller, D.M.5
-
4
-
-
84885653084
-
An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis
-
[4] Dong, X., Liu, O.W., Howell, A.S., Shen, K., An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis. Cell 155 (2013), 296–307.
-
(2013)
Cell
, vol.155
, pp. 296-307
-
-
Dong, X.1
Liu, O.W.2
Howell, A.S.3
Shen, K.4
-
5
-
-
84655176653
-
The transmembrane LRR protein DMA-1 promotes dendrite branching and growth in C. elegans
-
[5] Liu, O.W., Shen, K., The transmembrane LRR protein DMA-1 promotes dendrite branching and growth in C. elegans. Nat. Neurosci. 15 (2012), 7–63.
-
(2012)
Nat. Neurosci.
, vol.15
, pp. 7-63
-
-
Liu, O.W.1
Shen, K.2
-
6
-
-
84922768204
-
Intrinsic and extrinsic mechanisms of dendritic morphogenesis
-
[6] Dong, X., Shen, K., Bulow, H.E., Intrinsic and extrinsic mechanisms of dendritic morphogenesis. Annu. Rev. Physiol. 77 (2015), 271–300.
-
(2015)
Annu. Rev. Physiol.
, vol.77
, pp. 271-300
-
-
Dong, X.1
Shen, K.2
Bulow, H.E.3
-
7
-
-
77953259258
-
The fusogen EFF-1 controls sculpting of mechanosensory dendrites
-
[7] Oren-Suissa, M., Hall, D.H., Treinin, M., Shemer, G., Podbilewicz, B., The fusogen EFF-1 controls sculpting of mechanosensory dendrites. Science 328 (2010), 128–1288.
-
(2010)
Science
, vol.328
, pp. 128-1288
-
-
Oren-Suissa, M.1
Hall, D.H.2
Treinin, M.3
Shemer, G.4
Podbilewicz, B.5
-
8
-
-
0036009182
-
The type I membrane protein EFF-1 is essential for developmental cell fusion
-
[8] Mohler, W.A., et al. The type I membrane protein EFF-1 is essential for developmental cell fusion. Dev. Cell 2 (2002), 355–362.
-
(2002)
Dev. Cell
, vol.2
, pp. 355-362
-
-
Mohler, W.A.1
-
9
-
-
0016292759
-
Membrane fusion in the growth cone-microspike region of embryonic nerve cells undergoing axon elongation in cell culture
-
[9] Spooner, B.S., Luduena, M.A., Wessells, N.K., Membrane fusion in the growth cone-microspike region of embryonic nerve cells undergoing axon elongation in cell culture. Tissue Cell 6 (1974), 399–409.
-
(1974)
Tissue Cell
, vol.6
, pp. 399-409
-
-
Spooner, B.S.1
Luduena, M.A.2
Wessells, N.K.3
-
10
-
-
84888089550
-
Self-contact elimination by membrane fusion
-
[10] Sumida, G.M., Yamada, S., Self-contact elimination by membrane fusion. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 18958–18963.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 18958-18963
-
-
Sumida, G.M.1
Yamada, S.2
-
11
-
-
84929483932
-
Endothelial cell self-fusion during vascular pruning
-
[11] Lenard, A., et al. Endothelial cell self-fusion during vascular pruning. PLoS Biol., 13, 2015, e1002126.
-
(2015)
PLoS Biol.
, vol.13
, pp. e1002126
-
-
Lenard, A.1
-
12
-
-
0014202427
-
Regeneration in crustacean motoneurons: evidence for axonal fusion
-
[12] Hoy, R.R., Bittner, G.D., Kennedy, D., Regeneration in crustacean motoneurons: evidence for axonal fusion. Science 156 (1967), 251–252.
-
(1967)
Science
, vol.156
, pp. 251-252
-
-
Hoy, R.R.1
Bittner, G.D.2
Kennedy, D.3
-
13
-
-
0016439405
-
A multisomatic axon in the central nervous system of the leech
-
[13] Frank, E., Jansen, J.K., Rinvik, E., A multisomatic axon in the central nervous system of the leech. J. Comp. Neurol. 159 (1975), 1–13.
-
(1975)
J. Comp. Neurol.
, vol.159
, pp. 1-13
-
-
Frank, E.1
Jansen, J.K.2
Rinvik, E.3
-
14
-
-
0020541496
-
Morphological evidence that regenerating axons can fuse with severed axon segments
-
[14] Deriemer, S.A., Elliott, E.J., Macagno, E.R., Muller, K.J., Morphological evidence that regenerating axons can fuse with severed axon segments. Brain Res. 272 (1983), 157–161.
-
(1983)
Brain Res.
, vol.272
, pp. 157-161
-
-
Deriemer, S.A.1
Elliott, E.J.2
Macagno, E.R.3
Muller, K.J.4
-
15
-
-
0017078547
-
Regeneration of giant axons in earthworms
-
[15] Birse, S.C., Bittner, G.D., Regeneration of giant axons in earthworms. Brain Res. 113 (1976), 575–581.
-
(1976)
Brain Res.
, vol.113
, pp. 575-581
-
-
Birse, S.C.1
Bittner, G.D.2
-
16
-
-
0035894867
-
Axonal rejoining inhibits injury-induced long-term changes in Aplysia sensory neurons in vitro
-
[16] Bedi, S.S., Glanzman, D.L., Axonal rejoining inhibits injury-induced long-term changes in Aplysia sensory neurons in vitro. J. Neurosci. 21 (2001), 9667–9677.
-
(2001)
J. Neurosci.
, vol.21
, pp. 9667-9677
-
-
Bedi, S.S.1
Glanzman, D.L.2
-
17
-
-
77749313490
-
Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase
-
[17] Ghosh-Roy, A., Wu, Z., Goncharov, A., Jin, Y., Chisholm, A.D., Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase. J. Neurosci. 30 (2010), 3175–3183.
-
(2010)
J. Neurosci.
, vol.30
, pp. 3175-3183
-
-
Ghosh-Roy, A.1
Wu, Z.2
Goncharov, A.3
Jin, Y.4
Chisholm, A.D.5
-
18
-
-
79955735563
-
Axonal regeneration proceeds through specific axonal fusion in transected C. elegans neurons
-
[18] Neumann, B., Nguyen, K.C., Hall, D.H., Ben-Yakar, A., Hilliard, M.A., Axonal regeneration proceeds through specific axonal fusion in transected C. elegans neurons. Dev. Dyn. 240 (2011), 1365–1372.
-
(2011)
Dev. Dyn.
, vol.240
, pp. 1365-1372
-
-
Neumann, B.1
Nguyen, K.C.2
Hall, D.H.3
Ben-Yakar, A.4
Hilliard, M.A.5
-
19
-
-
84925546871
-
EFF-1-mediated regenerative axonal fusion requires components of the apoptotic pathway
-
[19] Neumann, B., et al. EFF-1-mediated regenerative axonal fusion requires components of the apoptotic pathway. Nature 517 (2015), 219–222.
-
(2015)
Nature
, vol.517
, pp. 219-222
-
-
Neumann, B.1
-
20
-
-
0034764237
-
Transient expression of phosphatidylserine at cell-cell contact areas is required for myotube formation
-
[20] van den Eijnde, S.M., et al. Transient expression of phosphatidylserine at cell-cell contact areas is required for myotube formation. J. Cell Sci. 114 (2001), 3631–3642.
-
(2001)
J. Cell Sci.
, vol.114
, pp. 3631-3642
-
-
van den Eijnde, S.M.1
-
21
-
-
84877775057
-
Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion
-
[21] Hochreiter-Hufford, A.E., et al. Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature 497 (2013), 263–267.
-
(2013)
Nature
, vol.497
, pp. 263-267
-
-
Hochreiter-Hufford, A.E.1
-
22
-
-
33745866891
-
Trophoblast fusion: fusogenic proteins, syncytins and ADAMs, and other prerequisites for syncytial fusion
-
[22] Huppertz, B., Bartz, C., Kokozidou, M., Trophoblast fusion: fusogenic proteins, syncytins and ADAMs, and other prerequisites for syncytial fusion. Micron 37 (2006), 509–517.
-
(2006)
Micron
, vol.37
, pp. 509-517
-
-
Huppertz, B.1
Bartz, C.2
Kokozidou, M.3
-
23
-
-
70349308513
-
Molecular mediators of macrophage fusion
-
[23] Helming, L., Gordon, S., Molecular mediators of macrophage fusion. Trends Cell Biol. 19 (2009), 514–522.
-
(2009)
Trends Cell Biol.
, vol.19
, pp. 514-522
-
-
Helming, L.1
Gordon, S.2
-
24
-
-
64849092669
-
The scavenger receptor CD36 plays a role in cytokine-induced macrophage fusion
-
[24] Helming, L., Winter, J., Gordon, S., The scavenger receptor CD36 plays a role in cytokine-induced macrophage fusion. J. Cell Sci. 122 (2009), 453–459.
-
(2009)
J. Cell Sci.
, vol.122
, pp. 453-459
-
-
Helming, L.1
Winter, J.2
Gordon, S.3
-
25
-
-
42549153337
-
Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells
-
[25] Mercer, J., Helenius, A., Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320 (2008), 531–535.
-
(2008)
Science
, vol.320
, pp. 531-535
-
-
Mercer, J.1
Helenius, A.2
-
26
-
-
78449257072
-
Dengue virus ensures its fusion in late endosomes using compartment-specific lipids
-
[26] Zaitseva, E., Yang, S.T., Melikov, K., Pourmal, S., Chernomordik, L.V., Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. PLoS Pathog., 6, 2010, e1001131.
-
(2010)
PLoS Pathog.
, vol.6
, pp. e1001131
-
-
Zaitseva, E.1
Yang, S.T.2
Melikov, K.3
Pourmal, S.4
Chernomordik, L.V.5
-
27
-
-
0000529165
-
Fused neurons and synaptic contacts in the giant nerve fibres of cephalopods
-
[27] Young, J.Z., Fused neurons and synaptic contacts in the giant nerve fibres of cephalopods. Philos. Trans. R. Soc. Lond. Series B Biol. Sci. 229 (1939), 465–503.
-
(1939)
Philos. Trans. R. Soc. Lond. Series B Biol. Sci.
, vol.229
, pp. 465-503
-
-
Young, J.Z.1
-
28
-
-
34547397399
-
Syncytial coupling of neurons in tissue culture and in early ontogenesis
-
[28] Sotnikov, O.S., Malashko, V.V., Rybakova, G.I., Syncytial coupling of neurons in tissue culture and in early ontogenesis. Morfologiia 131 (2007), 7–15.
-
(2007)
Morfologiia
, vol.131
, pp. 7-15
-
-
Sotnikov, O.S.1
Malashko, V.V.2
Rybakova, G.I.3
-
29
-
-
53549102198
-
The question of the fusion of neuron processes
-
[29] Sotnikov, O.S., Rybakova, G.I., Solov'eva, I.A., The question of the fusion of neuron processes. Neurosci. Behav. Physiol. 38 (2008), 839–843.
-
(2008)
Neurosci. Behav. Physiol.
, vol.38
, pp. 839-843
-
-
Sotnikov, O.S.1
Rybakova, G.I.2
Solov'eva, I.A.3
-
30
-
-
77953932140
-
Ultrastructural analysis of interneuronal syncytial perforations
-
[30] Sotnikov, O.S., Paramonova, N.M., Archakova, L.I., Ultrastructural analysis of interneuronal syncytial perforations. Cell Biol. Int. 34 (2010), 361–364.
-
(2010)
Cell Biol. Int.
, vol.34
, pp. 361-364
-
-
Sotnikov, O.S.1
Paramonova, N.M.2
Archakova, L.I.3
-
31
-
-
0026320105
-
Communicating synapses: types and functional interpretation
-
[31] Gonzales Santander, R., Martinez Cuadrado, G., Toledo Lobo, M.V., Martinez Alonso, F.J., Communicating synapses: types and functional interpretation. Acta Anat. 142 (1991), 249–260.
-
(1991)
Acta Anat.
, vol.142
, pp. 249-260
-
-
Gonzales Santander, R.1
Martinez Cuadrado, G.2
Toledo Lobo, M.V.3
Martinez Alonso, F.J.4
-
32
-
-
84940622423
-
Exceptions to Cajal's neuron theory: communicating synapses
-
[32] Gonzales Santander, R., Martinez Cuadrado, G., Rubio Saez, M., Exceptions to Cajal's neuron theory: communicating synapses. Acta Anat. 132 (1988), 74–76.
-
(1988)
Acta Anat.
, vol.132
, pp. 74-76
-
-
Gonzales Santander, R.1
Martinez Cuadrado, G.2
Rubio Saez, M.3
-
33
-
-
0013893445
-
Artificial heterokaryons of animal cells from different species
-
[33] Harris, H., Watkins, J.F., Ford, C.E., Schoefl, G.I., Artificial heterokaryons of animal cells from different species. J. Cell Sci. 1 (1966), 1–30.
-
(1966)
J. Cell Sci.
, vol.1
, pp. 1-30
-
-
Harris, H.1
Watkins, J.F.2
Ford, C.E.3
Schoefl, G.I.4
-
34
-
-
0014340907
-
Reactivation of DNA synthesis in mammalian neuron nuclei after fusion with cells of an undifferentiated fibroblast line
-
[34] Jacobson, C.O., Reactivation of DNA synthesis in mammalian neuron nuclei after fusion with cells of an undifferentiated fibroblast line. Exp. Cell Res. 53 (1968), 316–318.
-
(1968)
Exp. Cell Res.
, vol.53
, pp. 316-318
-
-
Jacobson, C.O.1
-
35
-
-
0015882205
-
Use of somatic cell hybrids for analysis of the differentiated state
-
[35] Davis, F.M., Adelberg, E.A., Use of somatic cell hybrids for analysis of the differentiated state. Bacteriol. Rev. 37 (1973), 197–214.
-
(1973)
Bacteriol. Rev.
, vol.37
, pp. 197-214
-
-
Davis, F.M.1
Adelberg, E.A.2
-
36
-
-
0017913191
-
Ultrastructure and function in sympathetic ganglia isolated from rats infected with pseudorabies virus
-
[36] Dolivo, M., Beretta, E., Bonifas, V., Foroglou, C., Ultrastructure and function in sympathetic ganglia isolated from rats infected with pseudorabies virus. Brain Res. 140 (1978), 111–123.
-
(1978)
Brain Res.
, vol.140
, pp. 111-123
-
-
Dolivo, M.1
Beretta, E.2
Bonifas, V.3
Foroglou, C.4
-
37
-
-
73649114263
-
Pseudorabies virus infection alters neuronal activity and connectivity in vitro
-
[37] McCarthy, K.M., Tank, D.W., Enquist, L.W., Pseudorabies virus infection alters neuronal activity and connectivity in vitro. PLoS Pathog., 5, 2009, e1000640.
-
(2009)
PLoS Pathog.
, vol.5
, pp. e1000640
-
-
McCarthy, K.M.1
Tank, D.W.2
Enquist, L.W.3
-
38
-
-
84883794456
-
In vivo imaging of alphaherpesvirus infection reveals synchronized activity dependent on axonal sorting of viral proteins
-
[38] Granstedt, A.E., Bosse, J.B., Thiberge, S.Y., Enquist, L.W., In vivo imaging of alphaherpesvirus infection reveals synchronized activity dependent on axonal sorting of viral proteins. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), E3516–E3525.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. E3516-E3525
-
-
Granstedt, A.E.1
Bosse, J.B.2
Thiberge, S.Y.3
Enquist, L.W.4
-
39
-
-
41949115242
-
Mechanisms of varicella-zoster virus neuropathogenesis in human dorsal root ganglia
-
[39] Reichelt, M., Zerboni, L., Arvin, A.M., Mechanisms of varicella-zoster virus neuropathogenesis in human dorsal root ganglia. J. Virol. 82 (2008), 3971–3983.
-
(2008)
J. Virol.
, vol.82
, pp. 3971-3983
-
-
Reichelt, M.1
Zerboni, L.2
Arvin, A.M.3
-
40
-
-
84929378783
-
Direct transfer of viral and cellular proteins from varicella-zoster virus-infected non-neuronal cells to human axons
-
[40] Grigoryan, S., et al. Direct transfer of viral and cellular proteins from varicella-zoster virus-infected non-neuronal cells to human axons. PLoS One, 10, 2015, e0126081.
-
(2015)
PLoS One
, vol.10
, pp. e0126081
-
-
Grigoryan, S.1
-
41
-
-
84874726326
-
Herpes simplex virus 1 tropism for human sensory ganglion neurons in the severe combined immunodeficiency mouse model of neuropathogenesis
-
[41] Zerboni, L., et al. Herpes simplex virus 1 tropism for human sensory ganglion neurons in the severe combined immunodeficiency mouse model of neuropathogenesis. J. Virol. 87 (2013), 2791–2802.
-
(2013)
J. Virol.
, vol.87
, pp. 2791-2802
-
-
Zerboni, L.1
-
42
-
-
33750960158
-
Fusion of microglia with pyramidal neurons after retroviral infection
-
[42] Ackman, J.B., Siddiqi, F., Walikonis, R.S., LoTurco, J.J., Fusion of microglia with pyramidal neurons after retroviral infection. J. Neurosci. 26 (2006), 11413–11422.
-
(2006)
J. Neurosci.
, vol.26
, pp. 11413-11422
-
-
Ackman, J.B.1
Siddiqi, F.2
Walikonis, R.S.3
LoTurco, J.J.4
-
43
-
-
84861163767
-
Alphaherpesvirus infection disrupts mitochondrial transport in neurons
-
[43] Kramer, T., Enquist, L.W., Alphaherpesvirus infection disrupts mitochondrial transport in neurons. Cell Host Microbe 11 (2012), 504–514.
-
(2012)
Cell Host Microbe
, vol.11
, pp. 504-514
-
-
Kramer, T.1
Enquist, L.W.2
-
44
-
-
33745804166
-
Physiological changes in sympathetic ganglia infected with pseudorabies virus
-
[44] Dempsher, J., Larrabee, M.G., Bang, F.B., Bodian, D., Physiological changes in sympathetic ganglia infected with pseudorabies virus. Am. J. Physiol. 182 (1955), 203–216.
-
(1955)
Am. J. Physiol.
, vol.182
, pp. 203-216
-
-
Dempsher, J.1
Larrabee, M.G.2
Bang, F.B.3
Bodian, D.4
-
45
-
-
0020069253
-
Alteration of the electrophysiological activity in sympathetic ganglia infected with a neurotropic virus I. Presynaptic origin of the spontaneous bioelectric activity
-
[45] Kiraly, M., Dolivo, M., Alteration of the electrophysiological activity in sympathetic ganglia infected with a neurotropic virus I. Presynaptic origin of the spontaneous bioelectric activity. Brain Res. 240 (1982), 43–54.
-
(1982)
Brain Res.
, vol.240
, pp. 43-54
-
-
Kiraly, M.1
Dolivo, M.2
-
46
-
-
33846640122
-
Axons break in animals lacking beta-spectrin
-
[46] Hammarlund, M., Jorgensen, E.M., Bastiani, M.J., Axons break in animals lacking beta-spectrin. J. Cell Biol. 176 (2007), 269–275.
-
(2007)
J. Cell Biol.
, vol.176
, pp. 269-275
-
-
Hammarlund, M.1
Jorgensen, E.M.2
Bastiani, M.J.3
-
47
-
-
84870334957
-
Embryonic stem cell-derived neural stem cells fuse with microglia and mature neurons
-
[47] Cusulin, C., et al. Embryonic stem cell-derived neural stem cells fuse with microglia and mature neurons. Stem Cells 30 (2012), 2657–2671.
-
(2012)
Stem Cells
, vol.30
, pp. 2657-2671
-
-
Cusulin, C.1
-
48
-
-
79955142020
-
Glia delimit shape changes of sensory neuron receptive endings in C. elegans
-
[48] Procko, C., Lu, Y., Shaham, S., Glia delimit shape changes of sensory neuron receptive endings in C. elegans. Development 138 (2011), 1371–1381.
-
(2011)
Development
, vol.138
, pp. 1371-1381
-
-
Procko, C.1
Lu, Y.2
Shaham, S.3
-
49
-
-
0020509656
-
Developmental alterations in sensory neuroanatomy of the Caenorhabditis elegans dauer larva
-
[49] Albert, P.S., Riddle, D.L., Developmental alterations in sensory neuroanatomy of the Caenorhabditis elegans dauer larva. J. Comp. Neurol. 219 (1983), 461–481.
-
(1983)
J. Comp. Neurol.
, vol.219
, pp. 461-481
-
-
Albert, P.S.1
Riddle, D.L.2
-
50
-
-
0037041428
-
Changing potency by spontaneous fusion
-
[50] Ying, Q.L., Nichols, J., Evans, E.P., Smith, A.G., Changing potency by spontaneous fusion. Nature 416 (2002), 545–548.
-
(2002)
Nature
, vol.416
, pp. 545-548
-
-
Ying, Q.L.1
Nichols, J.2
Evans, E.P.3
Smith, A.G.4
-
51
-
-
0242584006
-
Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes
-
[51] Alvarez-Dolado, M., et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425 (2003), 968–973.
-
(2003)
Nature
, vol.425
, pp. 968-973
-
-
Alvarez-Dolado, M.1
-
52
-
-
0037452780
-
Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains
-
[52] Weimann, J.M., Charlton, C.A., Brazelton, T.R., Hackman, R.C., Blau, H.M., Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc. Natl. Acad. Sci. U. S. A. 100 (2003), 2088–2093.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 2088-2093
-
-
Weimann, J.M.1
Charlton, C.A.2
Brazelton, T.R.3
Hackman, R.C.4
Blau, H.M.5
-
53
-
-
0242575218
-
Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant
-
[53] Weimann, J.M., Johansson, C.B., Trejo, A., Blau, H.M., Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat. Cell Biol. 5 (2003), 959–966.
-
(2003)
Nat. Cell Biol.
, vol.5
, pp. 959-966
-
-
Weimann, J.M.1
Johansson, C.B.2
Trejo, A.3
Blau, H.M.4
-
54
-
-
78651077524
-
Fusion between human mesenchymal stem cells and rodent cerebellar Purkinje cells
-
[54] Kemp, K., et al. Fusion between human mesenchymal stem cells and rodent cerebellar Purkinje cells. Neuropathol. Appl. Neurobiol. 37 (2011), 166–178.
-
(2011)
Neuropathol. Appl. Neurobiol.
, vol.37
, pp. 166-178
-
-
Kemp, K.1
-
55
-
-
8144229995
-
Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues
-
[55] Corti, S., et al. Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues. Brain 127 (2004), 2518–2532.
-
(2004)
Brain
, vol.127
, pp. 2518-2532
-
-
Corti, S.1
-
56
-
-
43049100770
-
Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation
-
[56] Johansson, C.B., et al. Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nat. Cell Biol. 10 (2008), 575–583.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 575-583
-
-
Johansson, C.B.1
-
57
-
-
34247583987
-
Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration
-
[57] Bae, J.S., et al. Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells 25 (2007), 1307–1316.
-
(2007)
Stem Cells
, vol.25
, pp. 1307-1316
-
-
Bae, J.S.1
-
58
-
-
84939872204
-
Cell fusion in the brain: two cells forward, one cell back
-
[58] Kemp, K., Wilkins, A., Scolding, N., Cell fusion in the brain: two cells forward, one cell back. Acta Neuropathol. 128 (2014), 629–638.
-
(2014)
Acta Neuropathol.
, vol.128
, pp. 629-638
-
-
Kemp, K.1
Wilkins, A.2
Scolding, N.3
-
59
-
-
84867722861
-
Purkinje cell fusion and binucleate heterokaryon formation in multiple sclerosis cerebellum
-
[59] Kemp, K., Gray, E., Wilkins, A., Scolding, N., Purkinje cell fusion and binucleate heterokaryon formation in multiple sclerosis cerebellum. Brain 135 (2012), 2962–2972.
-
(2012)
Brain
, vol.135
, pp. 2962-2972
-
-
Kemp, K.1
Gray, E.2
Wilkins, A.3
Scolding, N.4
-
60
-
-
44249123983
-
Cerebellar heterokaryon formation increases with age and after irradiation
-
[60] Wiersema, A., Dijk, F., Dontje, B., van der Want, J.J., de Haan, G., Cerebellar heterokaryon formation increases with age and after irradiation. Stem Cell Res. 1 (2007), 150–154.
-
(2007)
Stem Cell Res.
, vol.1
, pp. 150-154
-
-
Wiersema, A.1
Dijk, F.2
Dontje, B.3
van der Want, J.J.4
de Haan, G.5
-
61
-
-
43049091554
-
Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion
-
[61] Nygren, J.M., et al. Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion. Nat. Cell Biol. 10 (2008), 584–592.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 584-592
-
-
Nygren, J.M.1
-
62
-
-
69249137415
-
Radiation damage increases Purkinje neuron heterokaryons in neonatal cerebellum
-
[62] Espejel, S., Romero, R., Alvarez-Buylla, A., Radiation damage increases Purkinje neuron heterokaryons in neonatal cerebellum. Ann. Neurol. 66 (2009), 100–109.
-
(2009)
Ann. Neurol.
, vol.66
, pp. 100-109
-
-
Espejel, S.1
Romero, R.2
Alvarez-Buylla, A.3
-
63
-
-
64849102205
-
Fusion of hematopoietic cells with Purkinje neurons does not lead to stable heterokaryon formation under noninvasive conditions
-
[63] Nern, C., et al. Fusion of hematopoietic cells with Purkinje neurons does not lead to stable heterokaryon formation under noninvasive conditions. J. Neurosci. 29 (2009), 3799–3807.
-
(2009)
J. Neurosci.
, vol.29
, pp. 3799-3807
-
-
Nern, C.1
-
64
-
-
23844461473
-
Neurodegeneration augments the ability of bone marrow-derived mesenchymal stem cells to fuse with Purkinje neurons in Niemann-Pick type C mice
-
[64] Bae, J.S., et al. Neurodegeneration augments the ability of bone marrow-derived mesenchymal stem cells to fuse with Purkinje neurons in Niemann-Pick type C mice. Hum. Gene Ther. 16 (2005), 1006–1011.
-
(2005)
Hum. Gene Ther.
, vol.16
, pp. 1006-1011
-
-
Bae, J.S.1
-
65
-
-
34548624261
-
Induction and survival of binucleated Purkinje neurons by selective damage and aging
-
[65] Magrassi, L., et al. Induction and survival of binucleated Purkinje neurons by selective damage and aging. J. Neurosci. 27 (2007), 9885–9892.
-
(2007)
J. Neurosci.
, vol.27
, pp. 9885-9892
-
-
Magrassi, L.1
-
66
-
-
79953772216
-
Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia
-
[66] Jones, J., et al. Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol. Dis. 40 (2010), 415–423.
-
(2010)
Neurobiol. Dis.
, vol.40
, pp. 415-423
-
-
Jones, J.1
-
67
-
-
0028872320
-
Dermal fibroblasts convert to a myogenic lineage in mdx mouse muscle
-
[67] Gibson, A.J., et al. Dermal fibroblasts convert to a myogenic lineage in mdx mouse muscle. J. Cell Sci. 108:Pt. 1 (1995), 207–214.
-
(1995)
J. Cell Sci.
, vol.108
, pp. 207-214
-
-
Gibson, A.J.1
-
68
-
-
0037464545
-
Transplanted bone marrow regenerates liver by cell fusion
-
[68] Vassilopoulos, G., Wang, P.R., Russell, D.W., Transplanted bone marrow regenerates liver by cell fusion. Nature 422 (2003), 901–904.
-
(2003)
Nature
, vol.422
, pp. 901-904
-
-
Vassilopoulos, G.1
Wang, P.R.2
Russell, D.W.3
-
69
-
-
0037464574
-
Cell fusion is the principal source of bone-marrow-derived hepatocytes
-
[69] Wang, X., et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422 (2003), 897–901.
-
(2003)
Nature
, vol.422
, pp. 897-901
-
-
Wang, X.1
-
71
-
-
84941957830
-
Cell fusion along the anterior-posterior neuroaxis in mice with experimental autoimmune encephalomyelitis
-
[71] Sankavaram, S.R., Svensson, M.A., Olsson, T., Brundin, L., Johansson, C.B., Cell fusion along the anterior-posterior neuroaxis in mice with experimental autoimmune encephalomyelitis. PLoS One, 10, 2015, e0133903.
-
(2015)
PLoS One
, vol.10
, pp. e0133903
-
-
Sankavaram, S.R.1
Svensson, M.A.2
Olsson, T.3
Brundin, L.4
Johansson, C.B.5
-
72
-
-
84880769150
-
Wnt/beta-catenin signaling triggers neuron reprogramming and regeneration in the mouse retina
-
[72] Sanges, D., et al. Wnt/beta-catenin signaling triggers neuron reprogramming and regeneration in the mouse retina. Cell Rep. 4 (2013), 271–286.
-
(2013)
Cell Rep.
, vol.4
, pp. 271-286
-
-
Sanges, D.1
-
73
-
-
84930472854
-
Bone marrow contributes simultaneously to different neural types in the central nervous system through different mechanisms of plasticity
-
[73] Recio, J.S., et al. Bone marrow contributes simultaneously to different neural types in the central nervous system through different mechanisms of plasticity. Cell Transplant. 20 (2011), 1179–1192.
-
(2011)
Cell Transplant.
, vol.20
, pp. 1179-1192
-
-
Recio, J.S.1
-
74
-
-
24644448791
-
The fusion of bone-marrow-derived proinsulin-expressing cells with nerve cells underlies diabetic neuropathy
-
[74] Terashima, T., et al. The fusion of bone-marrow-derived proinsulin-expressing cells with nerve cells underlies diabetic neuropathy. Proc. Natl. Acad. Sci. U. S. A. 102 (2005), 12525–12530.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 12525-12530
-
-
Terashima, T.1
-
75
-
-
79955481146
-
Cellular fusion for gene delivery to SCA1 affected Purkinje neurons
-
[75] Chen, K.A., et al. Cellular fusion for gene delivery to SCA1 affected Purkinje neurons. Mol. Cell. Neurosci. 47 (2011), 61–70.
-
(2011)
Mol. Cell. Neurosci.
, vol.47
, pp. 61-70
-
-
Chen, K.A.1
-
76
-
-
84954621400
-
Bone marrow transplantation for research and regenerative therapies in the central nervous system
-
[76] Diaz, D., Alonso, J.R., Weruaga, E., Bone marrow transplantation for research and regenerative therapies in the central nervous system. Methods Mol. Biol. 1254 (2015), 317–325.
-
(2015)
Methods Mol. Biol.
, vol.1254
, pp. 317-325
-
-
Diaz, D.1
Alonso, J.R.2
Weruaga, E.3
-
77
-
-
1142286348
-
Nanotubular highways for intercellular organelle transport
-
[77] Rustom, A., Saffrich, R., Markovic, I., Walther, P., Gerdes, H.H., Nanotubular highways for intercellular organelle transport. Science 303 (2004), 1007–1010.
-
(2004)
Science
, vol.303
, pp. 1007-1010
-
-
Rustom, A.1
Saffrich, R.2
Markovic, I.3
Walther, P.4
Gerdes, H.H.5
-
78
-
-
34248178294
-
Tunneling nanotubes: a new route for the exchange of components between animal cells
-
[78] Gerdes, H.H., Bukoreshtliev, N.V., Barroso, J.F., Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Lett. 581 (2007), 2194–2201.
-
(2007)
FEBS Lett.
, vol.581
, pp. 2194-2201
-
-
Gerdes, H.H.1
Bukoreshtliev, N.V.2
Barroso, J.F.3
-
79
-
-
38849168755
-
Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission
-
[79] Sowinski, S., et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat. Cell Biol. 10 (2008), 211–219.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 211-219
-
-
Sowinski, S.1
-
80
-
-
61849178720
-
Prions hijack tunnelling nanotubes for intercellular spread
-
[80] Gousset, K., et al. Prions hijack tunnelling nanotubes for intercellular spread. Nat. Cell Biol. 11 (2009), 328–336.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 328-336
-
-
Gousset, K.1
-
81
-
-
79952619322
-
Tunneling-nanotube development in astrocytes depends on p53 activation
-
[81] Wang, Y., Cui, J., Sun, X., Zhang, Y., Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death Differ. 18 (2011), 732–742.
-
(2011)
Cell Death Differ.
, vol.18
, pp. 732-742
-
-
Wang, Y.1
Cui, J.2
Sun, X.3
Zhang, Y.4
-
82
-
-
34247568597
-
AFF-1, a FOS-1-regulated fusogen, mediates fusion of the anchor cell in C. elegans
-
[82] Sapir, A., et al. AFF-1, a FOS-1-regulated fusogen, mediates fusion of the anchor cell in C. elegans. Dev. Cell 12 (2007), 683–698.
-
(2007)
Dev. Cell
, vol.12
, pp. 683-698
-
-
Sapir, A.1
-
83
-
-
0342545919
-
Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis
-
[83] Mi, S., et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403 (2000), 785–789.
-
(2000)
Nature
, vol.403
, pp. 785-789
-
-
Mi, S.1
-
84
-
-
0034053834
-
An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor
-
[84] Blond, J.L., et al. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J. Virol. 74 (2000), 3321–3329.
-
(2000)
J. Virol.
, vol.74
, pp. 3321-3329
-
-
Blond, J.L.1
-
85
-
-
0242300065
-
Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution
-
[85] Blaise, S., de Parseval, N., Benit, L., Heidmann, T., Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc. Natl. Acad. Sci. U. S. A. 100 (2003), 13013–13018.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 13013-13018
-
-
Blaise, S.1
de Parseval, N.2
Benit, L.3
Heidmann, T.4
-
86
-
-
15544378974
-
Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination
-
[86] Antony, J.M., et al. Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat. Neurosci. 7 (2004), 1088–1095.
-
(2004)
Nat. Neurosci.
, vol.7
, pp. 1088-1095
-
-
Antony, J.M.1
-
87
-
-
84927511867
-
Epitopes of HERV-Wenv induce antigen-specific humoral immunity in multiple sclerosis patients
-
[87] Mameli, G., et al. Epitopes of HERV-Wenv induce antigen-specific humoral immunity in multiple sclerosis patients. J. Neuroimmunol. 280 (2015), 66–68.
-
(2015)
J. Neuroimmunol.
, vol.280
, pp. 66-68
-
-
Mameli, G.1
-
88
-
-
84870850921
-
Molecular characteristics of Human Endogenous Retrovirus type-W in schizophrenia and bipolar disorder
-
[88] Perron, H., et al. Molecular characteristics of Human Endogenous Retrovirus type-W in schizophrenia and bipolar disorder. Transl. Psychiatry, 2, 2012, e201.
-
(2012)
Transl. Psychiatry
, vol.2
, pp. e201
-
-
Perron, H.1
-
89
-
-
84866741091
-
Human endogenous retrovirus type W envelope expression in blood and brain cells provides new insights into multiple sclerosis disease
-
[89] Perron, H., et al. Human endogenous retrovirus type W envelope expression in blood and brain cells provides new insights into multiple sclerosis disease. Mult. Scler. 18 (2012), 1721–1736.
-
(2012)
Mult. Scler.
, vol.18
, pp. 1721-1736
-
-
Perron, H.1
-
90
-
-
84874867269
-
Human endogenous retrovirus type W (HERV-W) in schizophrenia: a new avenue of research at the gene-environment interface
-
[90] Leboyer, M., Tamouza, R., Charron, D., Faucard, R., Perron, H., Human endogenous retrovirus type W (HERV-W) in schizophrenia: a new avenue of research at the gene-environment interface. World J. Biol. Psychiatry 14 (2013), 80–90.
-
(2013)
World J. Biol. Psychiatry
, vol.14
, pp. 80-90
-
-
Leboyer, M.1
Tamouza, R.2
Charron, D.3
Faucard, R.4
Perron, H.5
-
91
-
-
84903989157
-
Human endogenous retroviruses and the nervous system
-
[91] Douville, R.N., Nath, A., Human endogenous retroviruses and the nervous system. Handb. Clin. Neurol. 123 (2014), 465–485.
-
(2014)
Handb. Clin. Neurol.
, vol.123
, pp. 465-485
-
-
Douville, R.N.1
Nath, A.2
-
92
-
-
14144254156
-
Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae
-
[92] Dupressoir, A., et al. Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. Proc. Natl. Acad. Sci. U. S. A. 102 (2005), 725–730.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 725-730
-
-
Dupressoir, A.1
-
93
-
-
84940622423
-
Exceptions to Cajal's neuron theory: communicating synapses
-
[93] Gonzalez Santander, R., Martinez Cuadrado, G., Rubio Saez, M., Exceptions to Cajal's neuron theory: communicating synapses. Acta Anat. (Basel) 132 (1988), 74–76.
-
(1988)
Acta Anat. (Basel)
, vol.132
, pp. 74-76
-
-
Gonzalez Santander, R.1
Martinez Cuadrado, G.2
Rubio Saez, M.3
-
94
-
-
53549102198
-
The question of the fusion of neuron processes
-
[94] Sotnikov, O.S., Rybakova, G.I., Solov'eva, I.A., The question of the fusion of neuron processes. Neurosci. Behav. Physiol. 38 (2008), 839–843.
-
(2008)
Neurosci. Behav. Physiol.
, vol.38
, pp. 839-843
-
-
Sotnikov, O.S.1
Rybakova, G.I.2
Solov'eva, I.A.3
-
95
-
-
77949417532
-
Cytoplasmic syncytial connections between neuron bodies in the CNS of adult animals
-
[95] Paramonova, N.M., Sotnikov, O.S., Cytoplasmic syncytial connections between neuron bodies in the CNS of adult animals. Neurosci. Behav. Physiol. 40 (2010), 73–77.
-
(2010)
Neurosci. Behav. Physiol.
, vol.40
, pp. 73-77
-
-
Paramonova, N.M.1
Sotnikov, O.S.2
-
96
-
-
77950601334
-
Syncytial cytoplasmic anastomoses between neurites in caudal mesenteric ganglion cells in adult cats
-
[96] Archakova, L.I., Sotnikov, O.S., Novakovskaya, S.A., Solov'eva, I.A., Krasnova, T.V., Syncytial cytoplasmic anastomoses between neurites in caudal mesenteric ganglion cells in adult cats. Neurosci. Behav. Physiol. 40 (2010), 447–450.
-
(2010)
Neurosci. Behav. Physiol.
, vol.40
, pp. 447-450
-
-
Archakova, L.I.1
Sotnikov, O.S.2
Novakovskaya, S.A.3
Solov'eva, I.A.4
Krasnova, T.V.5
|