-
1
-
-
0003023534
-
Hermitian polynomials and Fourier analysis
-
Wiener N. Hermitian polynomials and Fourier analysis. J Math Phys MIT, 1929, 18: 70-73
-
(1929)
J Math Phys MIT
, vol.18
, pp. 70-73
-
-
Wiener, N.1
-
2
-
-
0028546458
-
The fractional Fourier transform and time-frequency representations
-
11
-
Almeida L B. The fractional Fourier transform and time-frequency representations. IEEE Trans Sig Proc, 1994, 42(11): 3084-3091
-
(1994)
IEEE Trans Sig Proc
, vol.42
, pp. 3084-3091
-
-
Almeida, L.B.1
-
4
-
-
33749465568
-
Research progress of the fractional Fourier transform in signal processing
-
1
-
Tao R, Deng B, Wang Y. Research progress of the fractional Fourier transform in signal processing. Sci China Ser F-Inf Sci, 2006, 49(1): 1-25
-
(2006)
Sci China ser F-Inf Sci
, vol.49
, pp. 1-25
-
-
Tao, R.1
Deng, B.2
Wang, Y.3
-
5
-
-
0037645696
-
Beamforming using the fractional Fourier transform
-
6
-
Yetik I S, Nehorai A. Beamforming using the fractional Fourier transform. IEEE Trans Sig Proc, 2003, 51(6): 1663-1668
-
(2003)
IEEE Trans Sig Proc
, vol.51
, pp. 1663-1668
-
-
Yetik, I.S.1
Nehorai, A.2
-
6
-
-
0035323514
-
Digital watermarking in the fractional Fourier transformation domain
-
Djurovic I, Stankovic S, Pitas I. Digital watermarking in the fractional Fourier transformation domain. J Network Comp Appl, 2001, 24: 167-173
-
(2001)
J Network Comp Appl
, vol.24
, pp. 167-173
-
-
Djurovic, I.1
Stankovic, S.2
Pitas, I.3
-
7
-
-
0035363383
-
A multicarrier system based on the fractional Fourier transform for time-frequency-selective channels
-
6
-
Martone M. A multicarrier system based on the fractional Fourier transform for time-frequency-selective channels. IEEE Trans Commun, 2001, 49(6): 1011-1020
-
(2001)
IEEE Trans Commun
, vol.49
, pp. 1011-1020
-
-
Martone, M.1
-
8
-
-
0031143161
-
Optimal filtering in fractional Fourier domains
-
5
-
Kutay M A, Ozaktas H M, Ankan O, et al. Optimal filtering in fractional Fourier domains. IEEE Trans Sig Proc, 1997, 45(5): 1129-1143
-
(1997)
IEEE Trans Sig Proc
, vol.45
, pp. 1129-1143
-
-
Kutay, M.A.1
Ozaktas, H.M.2
Ankan, O.3
-
9
-
-
24944519720
-
Detection and parameter estimation of multi component LFM signal based on the fractional Fourier transform
-
2
-
Qi L, Tao R, Zhou S Y, et al. Detection and parameter estimation of multi component LFM signal based on the fractional Fourier transform. Sci China Ser F-Inf Sci, 2004, 47(2): 184-198
-
(2004)
Sci China ser F-Inf Sci
, vol.47
, pp. 184-198
-
-
Qi, L.1
Tao, R.2
Zhou, S.Y.3
-
10
-
-
3442894845
-
Frequency sweeping interference suppressing in DSSS system using fractional Fourier transform
-
5
-
Qi L, Tao R, Zhou S Y, et al. Frequency sweeping interference suppressing in DSSS system using fractional Fourier transform, Acta Electron Sin (in Chinese), 2004, 32(5): 799-802
-
(2004)
Acta Electron Sin (In Chinese)
, vol.32
, pp. 799-802
-
-
Qi, L.1
Tao, R.2
Zhou, S.Y.3
-
11
-
-
33644655852
-
A method for time-varying channel parameter estimation based on fractional Fourier transform
-
12
-
Chen E Q, Tao R, Zhang W Q. A method for time-varying channel parameter estimation based on fractional Fourier transform. Acta Electron Sin (in Chinese), 2005, 33(12): 2101-2104
-
(2005)
Acta Electron Sin (In Chinese)
, vol.33
, pp. 2101-2104
-
-
Chen, E.Q.1
Tao, R.2
Zhang, W.Q.3
-
12
-
-
27744593145
-
A new MTD algorithm for passive radar based on fractional correlation
-
9
-
Zhao X H, Tao R. A new MTD algorithm for passive radar based on fractional correlation. Acta Electron Sin (in Chinese), 2005, 33(9): 1567-1570
-
(2005)
Acta Electron Sin (In Chinese)
, vol.33
, pp. 1567-1570
-
-
Zhao, X.H.1
Tao, R.2
-
13
-
-
0025244687
-
Multirate digital filters, filter banks, polyphase networks, and applications: A tutorial
-
1
-
Vaidyanathan P P. Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial. Proc IEEE, 1990, 78(1): 56-93
-
(1990)
Proc IEEE
, vol.78
, pp. 56-93
-
-
Vaidyanathan, P.P.1
-
15
-
-
25144435554
-
Sampling theorems for bandpass signals with fractional Fourier transform
-
7
-
Zhang W Q, Tao R. Sampling theorems for bandpass signals with fractional Fourier transform. Acta Electron Sin (in Chinese), 2005, 33(7): 1196-1199
-
(2005)
Acta Electron Sin (In Chinese)
, vol.33
, pp. 1196-1199
-
-
Zhang, W.Q.1
Tao, R.2
-
16
-
-
0033345657
-
Unified fractional Fourier transform and sampling theorem
-
12
-
Erseghe T, Kraniauskas P, Cariolaro G. Unified fractional Fourier transform and sampling theorem. IEEE Trans Sig Proc, 1999, 47(12): 3419-3423
-
(1999)
IEEE Trans Sig Proc
, vol.47
, pp. 3419-3423
-
-
Erseghe, T.1
Kraniauskas, P.2
Cariolaro, G.3
-
18
-
-
0032047886
-
A convolution and product theorem for the fractional Fourier transform
-
4
-
Zayed A I. A convolution and product theorem for the fractional Fourier transform. IEEE Sig Proc Lett, 1998, 5(4): 101-103
-
(1998)
IEEE Sig Proc Lett
, vol.5
, pp. 101-103
-
-
Zayed, A.I.1
-
19
-
-
33747799699
-
Closed-form discrete fractional and affine Fourier transforms
-
5
-
Pei S C, Ding J J. Closed-form discrete fractional and affine Fourier transforms. IEEE Trans Sig Proc, 2000, 48(5): 1338-1353
-
(2000)
IEEE Trans Sig Proc
, vol.48
, pp. 1338-1353
-
-
Pei, S.C.1
Ding, J.J.2
|