메뉴 건너뛰기




Volumn 36, Issue 9, 2013, Pages 1028-1041

Generalized prolate spheroidal wave functions for offset linear canonical transform in Clifford analysis

Author keywords

Clifford analysis; Fourier transform; linear canonical transform; offset linear canonical transform; prolate spheroidal wave functions

Indexed keywords

BAND-LIMITED FUNCTIONS; CLIFFORD ANALYSIS; FINITE INTERVALS; INTEGRAL TRANSFORM; LINEAR CANONICAL TRANSFORM; ORTHOGONAL BASIS; PROLATE SPHEROIDAL WAVE FUNCTIONS; SQUARE INTEGRABLE;

EID: 84878012898     PISSN: 01704214     EISSN: 10991476     Source Type: Journal    
DOI: 10.1002/mma.2657     Document Type: Article
Times cited : (74)

References (29)
  • 3
    • 84939751170 scopus 로고
    • Prolate spheroidal wave functions, Fourier analysis and uncertainty, i
    • Slepian D, Pollak HO,. Prolate spheroidal wave functions, Fourier analysis and uncertainty, I. Bell System Technical Journal 1961; 40: 43-64.
    • (1961) Bell System Technical Journal , vol.40 , pp. 43-64
    • Slepian, D.1    Pollak, H.O.2
  • 4
    • 84857887285 scopus 로고
    • Prolate spheroidal wave functions, Fourier analysis and uncertainty, II
    • Landau HJ, Pollak HO,. Prolate spheroidal wave functions, Fourier analysis and uncertainty, II. Bell System Technical Journal 1961; 40: 65-84.
    • (1961) Bell System Technical Journal , vol.40 , pp. 65-84
    • Landau, H.J.1    Pollak, H.O.2
  • 5
    • 84944487979 scopus 로고
    • Prolate spheroidal wave functions, Fourier analysis and uncertainty, III
    • Landau HJ, Pollak HO,. Prolate spheroidal wave functions, Fourier analysis and uncertainty, III. Bell System Technical Journal 1962; 41: 1295-1336.
    • (1962) Bell System Technical Journal , vol.41 , pp. 1295-1336
    • Landau, H.J.1    Pollak, H.O.2
  • 6
    • 4544383537 scopus 로고    scopus 로고
    • Prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudospectral algorithms
    • Boyd JP,. Prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudospectral algorithms. Journal of Computational Physics 2004; 199 (2): 688-716.
    • (2004) Journal of Computational Physics , vol.199 , Issue.2 , pp. 688-716
    • Boyd, J.P.1
  • 7
    • 33745222937 scopus 로고    scopus 로고
    • Spectral methods based on prolate spheroidal wave functions for hyperbolic PDEs
    • Chen QY, Gottlieb D, Hesthaven JS,. Spectral methods based on prolate spheroidal wave functions for hyperbolic PDEs. SIAM Journal on Numerical Analysis 2005; 43 (5): 1912-1933.
    • (2005) SIAM Journal on Numerical Analysis , vol.43 , Issue.5 , pp. 1912-1933
    • Chen, Q.Y.1    Gottlieb, D.2    Hesthaven, J.S.3
  • 8
    • 13844276742 scopus 로고    scopus 로고
    • Prolate spheroidal wavelets: Translation, convolution, and differentiation made easy
    • Walter G,. Prolate spheroidal wavelets: translation, convolution, and differentiation made easy. Journal of Fourier Analysis and Applications 2005; 11 (1): 73-84.
    • (2005) Journal of Fourier Analysis and Applications , vol.11 , Issue.1 , pp. 73-84
    • Walter, G.1
  • 9
    • 2442430339 scopus 로고    scopus 로고
    • Wavelets based on prolate spheroidal wave functions
    • Walter G,. Wavelets based on prolate spheroidal wave functions. Journal of Fourier Analysis and Applications 2004; 10 (1): 1-26.
    • (2004) Journal of Fourier Analysis and Applications , vol.10 , Issue.1 , pp. 1-26
    • Walter, G.1
  • 10
    • 27844440802 scopus 로고    scopus 로고
    • A new friendly method of computing prolate spheroidal wave functions and wavelets
    • Walter G, Soleski T,. A new friendly method of computing prolate spheroidal wave functions and wavelets. Applied and Computational Harmonic Analysis 2005; 19 (3): 432-443.
    • (2005) Applied and Computational Harmonic Analysis , vol.19 , Issue.3 , pp. 432-443
    • Walter, G.1    Soleski, T.2
  • 11
    • 84916160159 scopus 로고
    • Prolate spheroidal wave functions, Fourier analysis and uncertainity. IV. Extensions to many dimensions; Generalized prolate spheroidal functions
    • MR0181766 (31:5993)
    • Slepian D,. Prolate spheroidal wave functions, Fourier analysis and uncertainity. IV. Extensions to many dimensions; generalized prolate spheroidal functions. Bell System Technical Journal 1964; 43: 3009-3057. MR0181766 (31:5993).
    • (1964) Bell System Technical Journal , vol.43 , pp. 3009-3057
    • Slepian, D.1
  • 12
    • 0347480334 scopus 로고    scopus 로고
    • Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions
    • Boyd JP,. Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 2003; 15 (2): 168-176.
    • (2003) Applied and Computational Harmonic Analysis , vol.15 , Issue.2 , pp. 168-176
    • Boyd, J.P.1
  • 13
    • 2442585496 scopus 로고    scopus 로고
    • Prolate spheroidal wave functions, an introduction to the Slepian series and its properties
    • Moore IC, Cada M,. Prolate spheroidal wave functions, an introduction to the Slepian series and its properties. Applied and Computational Harmonic Analysis 2004; 16 (3): 208-230.
    • (2004) Applied and Computational Harmonic Analysis , vol.16 , Issue.3 , pp. 208-230
    • Moore, I.C.1    Cada, M.2
  • 14
    • 33751002629 scopus 로고    scopus 로고
    • Approximate formulae for certain prolate spheroidal wave functions valid for large values of both order and band-limit
    • Rokhlin V, Xiao H,. Approximate formulae for certain prolate spheroidal wave functions valid for large values of both order and band-limit. Applied and Computational Harmonic Analysis 2007; 22 (1): 105-123.
    • (2007) Applied and Computational Harmonic Analysis , vol.22 , Issue.1 , pp. 105-123
    • Rokhlin, V.1    Xiao, H.2
  • 16
    • 0035420586 scopus 로고    scopus 로고
    • Prolate spheroidal wavefunctions, quadrature and interpolation
    • Special issue to celebrate Pierre Sabatier's 65th birthday (Montpellier, 2000)
    • Xiao H, Rokhlin V, Yarvin N,. Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Problems 2001; 17 (4): 805-838. Special issue to celebrate Pierre Sabatier's 65th birthday (Montpellier, 2000).
    • (2001) Inverse Problems , vol.17 , Issue.4 , pp. 805-838
    • Xiao, H.1    Rokhlin, V.2    Yarvin, N.3
  • 18
    • 67650827571 scopus 로고    scopus 로고
    • A generalization of the prolate spheroidal wave functions
    • (electronic)
    • Zayed AI,. A generalization of the prolate spheroidal wave functions. Proceedings of the American Mathematical Society 2007; 135 (7): 2193-2203. (electronic).
    • (2007) Proceedings of the American Mathematical Society , vol.135 , Issue.7 , pp. 2193-2203
    • Zayed, A.I.1
  • 20
    • 15044353204 scopus 로고    scopus 로고
    • Generalized prolate spheroidal wave functions for optical finite fractional Fourier and Linear canonical transforms
    • Pei S, Ding J,. Generalized prolate spheroidal wave functions for optical finite fractional Fourier and Linear canonical transforms. Journal of the Optical Society of America A 2005; 22 (3): 460-474.
    • (2005) Journal of the Optical Society of America A , vol.22 , Issue.3 , pp. 460-474
    • Pei, S.1    Ding, J.2
  • 23
    • 84878011506 scopus 로고    scopus 로고
    • Prolate spheroidal wavelets in higher dimensions
    • Walter G,. Prolate spheroidal wavelets in higher dimensions. Journal of Integral Equations and Applications 2006; 18 (3): 415-435.
    • (2006) Journal of Integral Equations and Applications , vol.18 , Issue.3 , pp. 415-435
    • Walter, G.1
  • 24
    • 36849112629 scopus 로고
    • Linear canonical transforms and their unitary representations
    • Moshinsky M, Quesne C,. Linear canonical transforms and their unitary representations. Journal of Computational Physics 1971; 12: 1772-1783.
    • (1971) Journal of Computational Physics , vol.12 , pp. 1772-1783
    • Moshinsky, M.1    Quesne, C.2
  • 27
    • 0042575188 scopus 로고    scopus 로고
    • Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms
    • Pei S, Ding J,. Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms. Journal of the Optical Society of America A 2003; 20: 522-532.
    • (2003) Journal of the Optical Society of America A , vol.20 , pp. 522-532
    • Pei, S.1    Ding, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.