-
3
-
-
84939751170
-
Prolate spheroidal wave functions, Fourier analysis and uncertainty, i
-
Slepian D, Pollak HO,. Prolate spheroidal wave functions, Fourier analysis and uncertainty, I. Bell System Technical Journal 1961; 40: 43-64.
-
(1961)
Bell System Technical Journal
, vol.40
, pp. 43-64
-
-
Slepian, D.1
Pollak, H.O.2
-
4
-
-
84857887285
-
Prolate spheroidal wave functions, Fourier analysis and uncertainty, II
-
Landau HJ, Pollak HO,. Prolate spheroidal wave functions, Fourier analysis and uncertainty, II. Bell System Technical Journal 1961; 40: 65-84.
-
(1961)
Bell System Technical Journal
, vol.40
, pp. 65-84
-
-
Landau, H.J.1
Pollak, H.O.2
-
5
-
-
84944487979
-
Prolate spheroidal wave functions, Fourier analysis and uncertainty, III
-
Landau HJ, Pollak HO,. Prolate spheroidal wave functions, Fourier analysis and uncertainty, III. Bell System Technical Journal 1962; 41: 1295-1336.
-
(1962)
Bell System Technical Journal
, vol.41
, pp. 1295-1336
-
-
Landau, H.J.1
Pollak, H.O.2
-
6
-
-
4544383537
-
Prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudospectral algorithms
-
Boyd JP,. Prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudospectral algorithms. Journal of Computational Physics 2004; 199 (2): 688-716.
-
(2004)
Journal of Computational Physics
, vol.199
, Issue.2
, pp. 688-716
-
-
Boyd, J.P.1
-
7
-
-
33745222937
-
Spectral methods based on prolate spheroidal wave functions for hyperbolic PDEs
-
Chen QY, Gottlieb D, Hesthaven JS,. Spectral methods based on prolate spheroidal wave functions for hyperbolic PDEs. SIAM Journal on Numerical Analysis 2005; 43 (5): 1912-1933.
-
(2005)
SIAM Journal on Numerical Analysis
, vol.43
, Issue.5
, pp. 1912-1933
-
-
Chen, Q.Y.1
Gottlieb, D.2
Hesthaven, J.S.3
-
8
-
-
13844276742
-
Prolate spheroidal wavelets: Translation, convolution, and differentiation made easy
-
Walter G,. Prolate spheroidal wavelets: translation, convolution, and differentiation made easy. Journal of Fourier Analysis and Applications 2005; 11 (1): 73-84.
-
(2005)
Journal of Fourier Analysis and Applications
, vol.11
, Issue.1
, pp. 73-84
-
-
Walter, G.1
-
9
-
-
2442430339
-
Wavelets based on prolate spheroidal wave functions
-
Walter G,. Wavelets based on prolate spheroidal wave functions. Journal of Fourier Analysis and Applications 2004; 10 (1): 1-26.
-
(2004)
Journal of Fourier Analysis and Applications
, vol.10
, Issue.1
, pp. 1-26
-
-
Walter, G.1
-
10
-
-
27844440802
-
A new friendly method of computing prolate spheroidal wave functions and wavelets
-
Walter G, Soleski T,. A new friendly method of computing prolate spheroidal wave functions and wavelets. Applied and Computational Harmonic Analysis 2005; 19 (3): 432-443.
-
(2005)
Applied and Computational Harmonic Analysis
, vol.19
, Issue.3
, pp. 432-443
-
-
Walter, G.1
Soleski, T.2
-
11
-
-
84916160159
-
Prolate spheroidal wave functions, Fourier analysis and uncertainity. IV. Extensions to many dimensions; Generalized prolate spheroidal functions
-
MR0181766 (31:5993)
-
Slepian D,. Prolate spheroidal wave functions, Fourier analysis and uncertainity. IV. Extensions to many dimensions; generalized prolate spheroidal functions. Bell System Technical Journal 1964; 43: 3009-3057. MR0181766 (31:5993).
-
(1964)
Bell System Technical Journal
, vol.43
, pp. 3009-3057
-
-
Slepian, D.1
-
12
-
-
0347480334
-
Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions
-
Boyd JP,. Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 2003; 15 (2): 168-176.
-
(2003)
Applied and Computational Harmonic Analysis
, vol.15
, Issue.2
, pp. 168-176
-
-
Boyd, J.P.1
-
13
-
-
2442585496
-
Prolate spheroidal wave functions, an introduction to the Slepian series and its properties
-
Moore IC, Cada M,. Prolate spheroidal wave functions, an introduction to the Slepian series and its properties. Applied and Computational Harmonic Analysis 2004; 16 (3): 208-230.
-
(2004)
Applied and Computational Harmonic Analysis
, vol.16
, Issue.3
, pp. 208-230
-
-
Moore, I.C.1
Cada, M.2
-
14
-
-
33751002629
-
Approximate formulae for certain prolate spheroidal wave functions valid for large values of both order and band-limit
-
Rokhlin V, Xiao H,. Approximate formulae for certain prolate spheroidal wave functions valid for large values of both order and band-limit. Applied and Computational Harmonic Analysis 2007; 22 (1): 105-123.
-
(2007)
Applied and Computational Harmonic Analysis
, vol.22
, Issue.1
, pp. 105-123
-
-
Rokhlin, V.1
Xiao, H.2
-
16
-
-
0035420586
-
Prolate spheroidal wavefunctions, quadrature and interpolation
-
Special issue to celebrate Pierre Sabatier's 65th birthday (Montpellier, 2000)
-
Xiao H, Rokhlin V, Yarvin N,. Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Problems 2001; 17 (4): 805-838. Special issue to celebrate Pierre Sabatier's 65th birthday (Montpellier, 2000).
-
(2001)
Inverse Problems
, vol.17
, Issue.4
, pp. 805-838
-
-
Xiao, H.1
Rokhlin, V.2
Yarvin, N.3
-
17
-
-
2442611122
-
-
Ph.D. Thesis, Yale University
-
Xiao H,. Prolate spheroidal wave functions, quadrature, interpolation, and asymptotic formulae. Ph.D. Thesis, Yale University, 2001.
-
(2001)
Prolate Spheroidal Wave Functions, Quadrature, Interpolation, and Asymptotic Formulae
-
-
Xiao, H.1
-
18
-
-
67650827571
-
A generalization of the prolate spheroidal wave functions
-
(electronic)
-
Zayed AI,. A generalization of the prolate spheroidal wave functions. Proceedings of the American Mathematical Society 2007; 135 (7): 2193-2203. (electronic).
-
(2007)
Proceedings of the American Mathematical Society
, vol.135
, Issue.7
, pp. 2193-2203
-
-
Zayed, A.I.1
-
20
-
-
15044353204
-
Generalized prolate spheroidal wave functions for optical finite fractional Fourier and Linear canonical transforms
-
Pei S, Ding J,. Generalized prolate spheroidal wave functions for optical finite fractional Fourier and Linear canonical transforms. Journal of the Optical Society of America A 2005; 22 (3): 460-474.
-
(2005)
Journal of the Optical Society of America A
, vol.22
, Issue.3
, pp. 460-474
-
-
Pei, S.1
Ding, J.2
-
22
-
-
22944487903
-
Non-commutative hypercomplex Fourier transforms of multidimensional signals
-
In, Sommer G. (ed.). Springer: Berlin, New York
-
Bülow T, Felsberg M, Sommer G,. Non-commutative hypercomplex Fourier transforms of multidimensional signals. In Geometric Computing with Clifford Algebra, Theoretical Foundations and Applications in Computer Vision and Robotics, Springer, Sommer G, (ed.). Springer: Berlin, New York, 2001; 187-207.
-
(2001)
Geometric Computing with Clifford Algebra, Theoretical Foundations and Applications in Computer Vision and Robotics, Springer
, pp. 187-207
-
-
Bülow, T.1
Felsberg, M.2
Sommer, G.3
-
23
-
-
84878011506
-
Prolate spheroidal wavelets in higher dimensions
-
Walter G,. Prolate spheroidal wavelets in higher dimensions. Journal of Integral Equations and Applications 2006; 18 (3): 415-435.
-
(2006)
Journal of Integral Equations and Applications
, vol.18
, Issue.3
, pp. 415-435
-
-
Walter, G.1
-
24
-
-
36849112629
-
Linear canonical transforms and their unitary representations
-
Moshinsky M, Quesne C,. Linear canonical transforms and their unitary representations. Journal of Computational Physics 1971; 12: 1772-1783.
-
(1971)
Journal of Computational Physics
, vol.12
, pp. 1772-1783
-
-
Moshinsky, M.1
Quesne, C.2
-
27
-
-
0042575188
-
Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms
-
Pei S, Ding J,. Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms. Journal of the Optical Society of America A 2003; 20: 522-532.
-
(2003)
Journal of the Optical Society of America A
, vol.20
, pp. 522-532
-
-
Pei, S.1
Ding, J.2
|