-
1
-
-
4544384719
-
Sampling of bandlimited signals: Fundamental results and some extensions
-
N.K. Bose, C.R. Rao (Eds.) Elsevier Science, Amsterdam, The Netherlands
-
J.L. Brown, Jr., Sampling of bandlimited signals: fundamental results and some extensions, in: N.K. Bose, C.R. Rao (Eds.), Handbook of Statistics, Elsevier Science, Amsterdam, The Netherlands, pp. 59101.
-
Handbook of Statistics
, pp. 59-101
-
-
Brown Jr., J.L.1
-
2
-
-
0039527356
-
Irregular sampling, Toeplitz matrices, and the approximation of entire functions of exponential type
-
K. Grochenig Irregular sampling, Toeplitz matrices, and the approximation of entire functions of exponential type Mathematics of Computation 68 226 1999 749 765
-
(1999)
Mathematics of Computation
, vol.68
, Issue.226
, pp. 749-765
-
-
Grochenig, K.1
-
5
-
-
0034498688
-
Reconstruction of irregularly sampled discrete-time bandlimited signals with unknown sampling locations
-
DOI 10.1109/78.887038
-
P. Marziliano, and M. Vetterli Reconstruction of irregularly sampled discrete-time bandlimited signals with unknown sampling locations IEEE Transactions on Signal Processing 48 12 2000 3462 3471 (Pubitemid 32085771)
-
(2000)
IEEE Transactions on Signal Processing
, vol.48
, Issue.12
, pp. 3462-3471
-
-
Marziliano, P.1
Vetterli, M.2
-
6
-
-
34147155204
-
Approximating signals from nonuniform continuous time samples at unknown locations
-
DOI 10.1109/TSP.2006.889979
-
J. Browning Approximating signals from nonuniform continuous time samples at unknown locations IEEE Transactions on Signal Processing 55 4 2007 1549 1554 (Pubitemid 46563176)
-
(2007)
IEEE Transactions on Signal Processing
, vol.55
, Issue.4
, pp. 1549-1554
-
-
Browning, J.1
-
7
-
-
40149104667
-
Cases where the linear canonical transform of a signal has compact support or is band-limited
-
DOI 10.1364/OL.33.000228
-
J.J. Healy, and J.T. Sheridan Cases where the linear canonical transform of a signal has compact support or is band-limited Optics Letters 33 3 2008 228 230 (Pubitemid 351328224)
-
(2008)
Optics Letters
, vol.33
, Issue.3
, pp. 228-230
-
-
Healy, J.J.1
Sheridan, J.T.2
-
8
-
-
36849112629
-
Linear canonical transformations and their unitary representations
-
M. Moshinsky, and C. Quesne Linear canonical transformations and their unitary representations Journal of Mathematical Physics 12 8 1971 1772 1783
-
(1971)
Journal of Mathematical Physics
, vol.12
, Issue.8
, pp. 1772-1783
-
-
Moshinsky, M.1
Quesne, C.2
-
9
-
-
0001484759
-
ABCD matrix formalism of fractional Fourier optics
-
L.M. Bernardo ABCD matrix formalism of fractional Fourier optics Optical Engineering 35 3 1996 732 740 (Pubitemid 126664584)
-
(1996)
Optical Engineering
, vol.35
, Issue.3
, pp. 732-740
-
-
Bernardo, L.M.1
-
12
-
-
0028546458
-
The fractional Fourier transform and time frequency representation
-
L.B. Almeida The fractional Fourier transform and time frequency representation IEEE Transactions on Signal Processing 42 11 1994 3084 3091
-
(1994)
IEEE Transactions on Signal Processing
, vol.42
, Issue.11
, pp. 3084-3091
-
-
Almeida, L.B.1
-
13
-
-
0030145797
-
The generalized Fresnel transform and its application to optics
-
D.F.V. James, and G.S. Agarwal The generalized Fresnel transform and its applications to optics Optics Communications 126 5 1996 207 212 (Pubitemid 126369128)
-
(1996)
Optics Communications
, vol.126
, Issue.4-6
, pp. 207-212
-
-
James, D.F.V.1
Agarwal, G.S.2
-
14
-
-
54949091947
-
On sampling of band-limited signals associated with the linear canonical transform
-
R. Tao, B.-Z. Li, and G.K. Aggrey On sampling of band-limited signals associated with the linear canonical transform IEEE Transactions on Signal Processing 56 11 2008 5454 5464
-
(2008)
IEEE Transactions on Signal Processing
, vol.56
, Issue.11
, pp. 5454-5464
-
-
Tao, R.1
Li, B.-Z.2
Aggrey, G.K.3
-
15
-
-
33646129911
-
Sampling of linear canonical transformed signals
-
A. Stern Sampling of linear canonical transformed signals Signal Processing 86 2006 1421 1425
-
(2006)
Signal Processing
, vol.86
, pp. 1421-1425
-
-
Stern, A.1
-
16
-
-
33846571498
-
New sampling formulae related to linear canonical transform
-
DOI 10.1016/j.sigpro.2006.09.008, PII S0165168406003136
-
B.-Z. Li, R. Tao, and Y. Wang New sampling formulae related to linear canonical transform Signal Processing 87 2007 983 990 (Pubitemid 46186523)
-
(2007)
Signal Processing
, vol.87
, Issue.5
, pp. 983-990
-
-
Li, B.-Z.1
Tao, R.2
Wang, Y.3
-
17
-
-
0033339817
-
Fractional fourier series expansion for finite signals and extension to discrete-time fractional fourier transform
-
S.-C. Pei, M.-H. Yeh, and T.-L. Luo Fractional fourier series expansion for finite signals and extension to discrete-time fractional fourier transform IEEE Transactions on Signal Processing 47 10 1999 2883 2888
-
(1999)
IEEE Transactions on Signal Processing
, vol.47
, Issue.10
, pp. 2883-2888
-
-
Pei, S.-C.1
Yeh, M.-H.2
Luo, T.-L.3
-
18
-
-
70350745408
-
New sampling formulae for non-bandlimited signals associated with linear canonical transform and nonlinear Fourier atoms
-
Y.-L. Liu, K.-I. Kou, and I.-T. Ho New sampling formulae for non-bandlimited signals associated with linear canonical transform and nonlinear Fourier atoms Signal Processing 90 2010 933 945
-
(2010)
Signal Processing
, vol.90
, pp. 933-945
-
-
Liu, Y.-L.1
Kou, K.-I.2
Ho, I.-T.3
|