-
1
-
-
0003621789
-
The Fractional Fourier Transform
-
New York: Wiley
-
H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform. New York: Wiley, 2001.
-
(2001)
-
-
Ozaktas, H.M.1
Zalevsky, Z.2
Kutay, M.A.3
-
2
-
-
0031079193
-
Optimal filtering with linear canonical transformations
-
B. Barshan, M. A. Kutay, and H. M. Ozaktas, “Optimal filtering with linear canonical transformations,” Opt. Commun., vol. 135, pp. 32–36, 1997.
-
(1997)
Opt. Commun.
, vol.135
, pp. 32-36
-
-
Barshan, B.1
Kutay, M.A.2
Ozaktas, H.M.3
-
3
-
-
33747799699
-
Closed-form discrete fractional and affine Fourier transforms
-
S. C. Pei and J. J. Ding, “Closed-form discrete fractional and affine Fourier transforms,” IEEE Trans. Signal Process., vol. 48, pp. 1338–1353, 2000.
-
(2000)
IEEE Trans. Signal Process.
, vol.48
, pp. 1338-1353
-
-
Pei, S.C.1
Ding, J.J.2
-
4
-
-
19944406134
-
Fast numerical algorithm for the linear canonical transform
-
B. M. Hennelly and J. T. Sheridan, “Fast numerical algorithm for the linear canonical transform,” J. Opt. Soc. Amer. A, vol. 22, pp. 928–937, 2005.
-
(2005)
J. Opt. Soc. Amer. A
, vol.22
, pp. 928-937
-
-
Hennelly, B.M.1
Sheridan, J.T.2
-
5
-
-
0003517252
-
Signal Analysis
-
New York: McGraw-Hill
-
A. Papoulis, Signal Analysis. New York: McGraw-Hill, 1977.
-
(1977)
-
-
Papoulis, A.1
-
6
-
-
0033345657
-
Unified fractional Fourier transform and sampling theorem
-
T. Erseghe, P. Kraniauskas, and G. Cariolaro, “Unified fractional Fourier transform and sampling theorem,” IEEE Trans. Signal Process., vol. 47, pp. 3419–3423, 1999.
-
(1999)
IEEE Trans. Signal Process.
, vol.47
, pp. 3419-3423
-
-
Erseghe, T.1
Kraniauskas, P.2
Cariolaro, G.3
-
7
-
-
0041072734
-
The discrete fractional Fourier transform
-
C. Candan, M. A. Kutay, and H. M. Ozaktas, “The discrete fractional Fourier transform,” IEEE Trans. Signal Process., vol. 48, pp. 1329–1337, 2000.
-
(2000)
IEEE Trans. Signal Process.
, vol.48
, pp. 1329-1337
-
-
Candan, C.1
Kutay, M.A.2
Ozaktas, H.M.3
-
8
-
-
20144383756
-
A multicarrier architecture based upon the affine Fourier transform
-
T. Erseghe, N. Laurenti, and V. Cellini, “A multicarrier architecture based upon the affine Fourier transform,” IEEE Trans. Commun., vol. 53, pp. 853–862, 2005.
-
(2005)
IEEE Trans. Commun.
, vol.53
, pp. 853-862
-
-
Erseghe, T.1
Laurenti, N.2
Cellini, V.3
-
9
-
-
33646129911
-
Sampling of linear canonical transformed signals
-
A. Stern, “Sampling of linear canonical transformed signals,” Signal Process., vol. 86, pp. 1421–1425, 2006.
-
(2006)
Signal Process.
, vol.86
, pp. 1421-1425
-
-
Stern, A.1
-
10
-
-
33749469804
-
Convolution theorems for the linear canonical transform and their applications
-
B. Deng, R. Tao, and Y. Wang, “Convolution theorems for the linear canonical transform and their applications,” Sci. China Ser. F Inform. Sci., vol. 49, pp. 592–603, 2006.
-
(2006)
Sci. China Ser. F Inform. Sci.
, vol.49
, pp. 592-603
-
-
Deng, B.1
Tao, R.2
Wang, Y.3
-
11
-
-
55549130243
-
Research of Fractional Fourier Transform and Linear Canonical Transform
-
Ph.D. Thesis, National Taiwan Univ., Taipei, Taiwan
-
J. J. Ding, “Research of Fractional Fourier Transform and Linear Canonical Transform,” Ph.D. Thesis, National Taiwan Univ., Taipei, Taiwan, 2001.
-
(2001)
-
-
Ding, J.J.1
-
12
-
-
0033339817
-
Fractional Fourier series expansion for finite signals and dual extension to discrete-time fractional Fourier transform
-
S. C. Pei, M. H. Yeh, and T. L. Luo, “Fractional Fourier series expansion for finite signals and dual extension to discrete-time fractional Fourier transform,” IEEE Trans. Signal Process., vol. 47, pp. 2883–2888, 1999.
-
(1999)
IEEE Trans. Signal Process.
, vol.47
, pp. 2883-2888
-
-
Pei, S.C.1
Yeh, M.H.2
Luo, T.L.3
-
13
-
-
0141892675
-
Sampling and series expansion theorems for fractional Fourier and other transforms
-
C. Candan and H. M. Ozaktas, “Sampling and series expansion theorems for fractional Fourier and other transforms,” Signal Process., vol. 83, pp. 1455–1457, 2003.
-
(2003)
Signal Process.
, vol.83
, pp. 1455-1457
-
-
Candan, C.1
Ozaktas, H.M.2
-
14
-
-
33750401327
-
Interpolating between periodicity and discreteness through the fractional Fourier transform
-
H. M. Ozaktas and U. Sumbul, “Interpolating between periodicity and discreteness through the fractional Fourier transform,” IEEE Trans. Signal Process., vol. 54, pp. 4233–4243, 2006.
-
(2006)
IEEE Trans. Signal Process.
, vol.54
, pp. 4233-4243
-
-
Ozaktas, H.M.1
Sumbul, U.2
-
15
-
-
40149104667
-
Cases where the linear canonical transform of a signal has compact support or is band-limited
-
J. J. Healy and J. T. Sheridan, “Cases where the linear canonical transform of a signal has compact support or is band-limited,” Opt. Lett., vol. 33, pp. 228–230, 2008.
-
(2008)
Opt. Lett.
, vol.33
, pp. 228-230
-
-
Healy, J.J.1
Sheridan, J.T.2
-
16
-
-
0030243105
-
Digital computation of the fractional Fourier transform
-
H. M. Ozaktas, O. Arikan, M. A. Kutay, and G. Bozdagi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process., vol. 44, pp. 2141–2150, 1996.
-
(1996)
IEEE Trans. Signal Process.
, vol.44
, pp. 2141-2150
-
-
Ozaktas, H.M.1
Arikan, O.2
Kutay, M.A.3
Bozdagi, G.4
-
17
-
-
44949106262
-
Digital computation of linear canonical transforms
-
A. Koc, H. M. Ozaktas, C. Candan, and M. A. Kutay, “Digital computation of linear canonical transforms,” IEEE Trans. Signal Process., vol. 56, pp. 2383–2394, 2008.
-
(2008)
IEEE Trans. Signal Process.
, vol.56
, pp. 2383-2394
-
-
Koc, A.1
Ozaktas, H.M.2
Candan, C.3
Kutay, M.A.4
-
18
-
-
19944379483
-
Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms
-
B. M. Hennelly and J. T. Sheridan, “Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms,” J. Opt. Soc. Amer. A, vol. 22, pp. 917–927, 2005.
-
(2005)
J. Opt. Soc. Amer. A
, vol.22
, pp. 917-927
-
-
Hennelly, B.M.1
Sheridan, J.T.2
-
19
-
-
0028382656
-
Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms
-
H. M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Amer. A, vol. 11, pp. 547–559, 1994.
-
(1994)
J. Opt. Soc. Amer. A
, vol.11
, pp. 547-559
-
-
Ozaktas, H.M.1
Barshan, B.2
Mendlovic, D.3
Onural, L.4
-
20
-
-
0030107597
-
On bandlimited signals with fractional Fourier transform
-
X. G. Xia, “On bandlimited signals with fractional Fourier transform,” IEEE Signal Process. Lett., vol. 3, pp. 72–74, 1996.
-
(1996)
IEEE Signal Process. Lett.
, vol.3
, pp. 72-74
-
-
Xia, X.G.1
-
21
-
-
0030413251
-
On the relationship between the Fourier and fractional Fourier transforms
-
A. I. Zayed, “On the relationship between the Fourier and fractional Fourier transforms,” IEEE Signal Process. Lett., vol. 3, pp. 310–311, 1996.
-
(1996)
IEEE Signal Process. Lett.
, vol.3
, pp. 310-311
-
-
Zayed, A.I.1
-
22
-
-
57749196950
-
Sampling and discretization of the linear canonical transform
-
J. J. Healy and J. T. Sheridan, “Sampling and discretization of the linear canonical transform,” Signal Process., vol. 89, pp. 641–648, 2009.
-
(2009)
Signal Process.
, vol.89
, pp. 641-648
-
-
Healy, J.J.1
Sheridan, J.T.2
|