-
1
-
-
40849139027
-
Vanadium doped tin dioxide as a novel sulfur dioxide sensor
-
[1] Das, S., Chakraborty, S., Parkash, O., Kumar, D., Bandyopadhyay, S., Samudrala, S.K., Sen, A., Maiti, H.S., Vanadium doped tin dioxide as a novel sulfur dioxide sensor. Talanta 75 (2008), 385–389.
-
(2008)
Talanta
, vol.75
, pp. 385-389
-
-
Das, S.1
Chakraborty, S.2
Parkash, O.3
Kumar, D.4
Bandyopadhyay, S.5
Samudrala, S.K.6
Sen, A.7
Maiti, H.S.8
-
2
-
-
81155134843
-
2 gas sensor promoted with magnesium and vanadium oxides
-
2 gas sensor promoted with magnesium and vanadium oxides. Sens. Actuators B 160 (2011), 1328–1334.
-
(2011)
Sens. Actuators B
, vol.160
, pp. 1328-1334
-
-
Lee, S.C.1
Hwang, B.W.2
Lee, S.J.3
Choi, H.Y.4
Kim, S.Y.5
Jung, S.Y.6
Ragupathy, D.7
Lee, D.D.8
Kim, J.C.9
-
3
-
-
84864335232
-
A survey on gas sensing technology
-
[3] Liu, X., Cheng, S., Liu, H., Hu, S., Zhang, D., Ning, H., A survey on gas sensing technology. Sensors 12 (2012), 9635–9665.
-
(2012)
Sensors
, vol.12
, pp. 9635-9665
-
-
Liu, X.1
Cheng, S.2
Liu, H.3
Hu, S.4
Zhang, D.5
Ning, H.6
-
4
-
-
84891684211
-
3 nanostructures with different morphologies
-
3 nanostructures with different morphologies. Procedia Eng. 47 (2012), 1033–1036.
-
(2012)
Procedia Eng.
, vol.47
, pp. 1033-1036
-
-
Boudiba, A.1
Zhang, C.2
Bittencourt, C.3
Umek, P.4
Olivier, M.5
Snyders, R.6
Debliquy, M.7
-
5
-
-
84887052535
-
Synthesis, characteristics and enhanced sulfur dioxide sensing properties of Cu-doped SnO2 microspheres
-
[5] Peng, S., Wu, G., Song, W., Synthesis, characteristics and enhanced sulfur dioxide sensing properties of Cu-doped SnO2 microspheres. Sens. Transducers J. 156 (2013), 310–316.
-
(2013)
Sens. Transducers J.
, vol.156
, pp. 310-316
-
-
Peng, S.1
Wu, G.2
Song, W.3
-
6
-
-
68949181595
-
A single ZnO tetrapod-based sensor
-
[6] Lupan, O., Chow, L., Chai, G., A single ZnO tetrapod-based sensor. Sens. Actuators B 141 (2009), 511–517.
-
(2009)
Sens. Actuators B
, vol.141
, pp. 511-517
-
-
Lupan, O.1
Chow, L.2
Chai, G.3
-
7
-
-
84940578651
-
Solitary surfactant assisted morphology dependent chemiresistive polyaniline sensors for room temperature monitoring of low parts per million sulfur dioxide
-
[7] Chaudhary, V., Kaur, A., Solitary surfactant assisted morphology dependent chemiresistive polyaniline sensors for room temperature monitoring of low parts per million sulfur dioxide. Polym. Int. 64 (2015), 1475–1481.
-
(2015)
Polym. Int.
, vol.64
, pp. 1475-1481
-
-
Chaudhary, V.1
Kaur, A.2
-
9
-
-
40449133508
-
Composites of intrinsically conducting polymers as sensing nanomaterials
-
[9] Hatchett, D.W., Josowicz, Mira, Composites of intrinsically conducting polymers as sensing nanomaterials. Chem. Rev. 108 (2008), 746–769.
-
(2008)
Chem. Rev.
, vol.108
, pp. 746-769
-
-
Hatchett, D.W.1
Josowicz, M.2
-
10
-
-
81155133704
-
Semiconducting metal oxides as sensors for environmentally hazardous gases
-
[10] Wetchakun, K., Samerjai, T., Tamaekong, N., Liewhiran, C., Siriwong, C., Kruefu, V., Wisitsoraat, A., Tuantranont, A., Phanichphant, S., Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators B 160 (2011), 580–591.
-
(2011)
Sens. Actuators B
, vol.160
, pp. 580-591
-
-
Wetchakun, K.1
Samerjai, T.2
Tamaekong, N.3
Liewhiran, C.4
Siriwong, C.5
Kruefu, V.6
Wisitsoraat, A.7
Tuantranont, A.8
Phanichphant, S.9
-
12
-
-
84881628853
-
Graphene-based gas sensors
-
[12] Yuan, W., Shi, G., Graphene-based gas sensors. J. Mater. Chem. A 1 (2013), 10078–10091.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 10078-10091
-
-
Yuan, W.1
Shi, G.2
-
13
-
-
84929629325
-
Recent advances in graphene based gas sensors
-
[13] Varghese, S.S., Lonkar, S., Singh, K.K., Swaminathan, S., Abdala, A., Recent advances in graphene based gas sensors. Sens. Actuators B 218 (2015), 160–183.
-
(2015)
Sens. Actuators B
, vol.218
, pp. 160-183
-
-
Varghese, S.S.1
Lonkar, S.2
Singh, K.K.3
Swaminathan, S.4
Abdala, A.5
-
14
-
-
84938633955
-
Selective band gap manipulation of graphene oxide by its reduction with mild reagents
-
[14] Velasco-Soto, M.A., Perez-Garcia, S.A., Alvarez-Quintana, J., Cao, Y., Nyborg, L., Licea-Jimenez, L., Selective band gap manipulation of graphene oxide by its reduction with mild reagents. Carbon 93 (2015), 967–973.
-
(2015)
Carbon
, vol.93
, pp. 967-973
-
-
Velasco-Soto, M.A.1
Perez-Garcia, S.A.2
Alvarez-Quintana, J.3
Cao, Y.4
Nyborg, L.5
Licea-Jimenez, L.6
-
15
-
-
84927936567
-
Observation of different charge transport regimes and large magnetoresistance in graphene oxide layers
-
[15] Vianelli, A., Candini, A., Treossi, E., Palermo, V., Affronte, M., Observation of different charge transport regimes and large magnetoresistance in graphene oxide layers. Carbon 89 (2015), 188–196.
-
(2015)
Carbon
, vol.89
, pp. 188-196
-
-
Vianelli, A.1
Candini, A.2
Treossi, E.3
Palermo, V.4
Affronte, M.5
-
16
-
-
77949880674
-
-
[16] Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S., Chem. Soc. Rev. 39 (2010), 228–240.
-
(2010)
Chem. Soc. Rev.
, vol.39
, pp. 228-240
-
-
Dreyer, D.R.1
Park, S.2
Bielawski, C.W.3
Ruoff, R.S.4
-
17
-
-
79961022208
-
The chemistry of graphene oxide
-
[17] Liu, W., Li, H., Xu, C., Khatami, Y., Banerjee, K., The chemistry of graphene oxide. Carbon 49 (2011), 4122–4130.
-
(2011)
Carbon
, vol.49
, pp. 4122-4130
-
-
Liu, W.1
Li, H.2
Xu, C.3
Khatami, Y.4
Banerjee, K.5
-
18
-
-
84860655534
-
The reduction of graphene oxide
-
[18] Pei, S., Cheng, H.M., The reduction of graphene oxide. Carbon 50 (2012), 3210–3228.
-
(2012)
Carbon
, vol.50
, pp. 3210-3228
-
-
Pei, S.1
Cheng, H.M.2
-
19
-
-
70349101206
-
Insulator to semimetal transition in graphene oxide
-
[19] Eda, G., Mattevi, C., Yamaguchi, H., Kim, H.K., Chhowalla, M., Insulator to semimetal transition in graphene oxide. J. Phys. Chem. C 113 (2009), 15768–15771.
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 15768-15771
-
-
Eda, G.1
Mattevi, C.2
Yamaguchi, H.3
Kim, H.K.4
Chhowalla, M.5
-
20
-
-
84920707227
-
Morphological optical, and electrical investigations of solution-processed reduced graphene oxide and its application to transparent electrodes in organic solar cells
-
[20] Yun, J.M., Jung, C.H., Noh, Y.J., Jeon, Y.J., Kim, S.S., Kim, D.Y., Na, S.I., Morphological optical, and electrical investigations of solution-processed reduced graphene oxide and its application to transparent electrodes in organic solar cells. J. Ind. Eng. Chem. 21 (2015), 877–883.
-
(2015)
J. Ind. Eng. Chem.
, vol.21
, pp. 877-883
-
-
Yun, J.M.1
Jung, C.H.2
Noh, Y.J.3
Jeon, Y.J.4
Kim, S.S.5
Kim, D.Y.6
Na, S.I.7
-
21
-
-
84870944457
-
Reduced graphene oxide based flexible organic charge trap memory devices
-
[21] Rani, A., Song, J.M., Lee, M.J., Lee, J.S., Reduced graphene oxide based flexible organic charge trap memory devices. Appl. Phys. Lett., 101, 2012, 233308.
-
(2012)
Appl. Phys. Lett.
, vol.101
, pp. 233308
-
-
Rani, A.1
Song, J.M.2
Lee, M.J.3
Lee, J.S.4
-
22
-
-
84929274407
-
2 nanocomposites and their application in supercapacitors
-
2 nanocomposites and their application in supercapacitors. Ceram. Int. 41 (2015), 8710–8716.
-
(2015)
Ceram. Int.
, vol.41
, pp. 8710-8716
-
-
Ji, Z.1
Shen, X.2
Zhou, H.3
Chen, K.4
-
23
-
-
84921739929
-
Probing the engineered sandwich network of vertically aligned carbon nanotube–reduced graphene oxide composites for high performance electromagnetic interference shielding applications
-
[23] Singh, A.P., Mishra, M., Hashim, D.P., Narayanan, T.N., Hahm, M.G., Kumar, P., Dwivedi, J., Kedawat, G., Gupta, A., Singh, B.P., Chandra, A., Vajtai, R., Dhawan, S.K., Ajayan, P.M., Gupta, B.K., Probing the engineered sandwich network of vertically aligned carbon nanotube–reduced graphene oxide composites for high performance electromagnetic interference shielding applications. Carbon 85 (2015), 79–88.
-
(2015)
Carbon
, vol.85
, pp. 79-88
-
-
Singh, A.P.1
Mishra, M.2
Hashim, D.P.3
Narayanan, T.N.4
Hahm, M.G.5
Kumar, P.6
Dwivedi, J.7
Kedawat, G.8
Gupta, A.9
Singh, B.P.10
Chandra, A.11
Vajtai, R.12
Dhawan, S.K.13
Ajayan, P.M.14
Gupta, B.K.15
-
24
-
-
77249097555
-
Reduced graphene oxide for room-temperature gas sensors
-
[24] Lu, G., Ocola, L.E., Chen, J., Reduced graphene oxide for room-temperature gas sensors. Nanotechnology, 20, 2009, 445502.
-
(2009)
Nanotechnology
, vol.20
, pp. 445502
-
-
Lu, G.1
Ocola, L.E.2
Chen, J.3
-
25
-
-
34249742469
-
Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
-
[25] Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45 (2007), 1558–1565.
-
(2007)
Carbon
, vol.45
, pp. 1558-1565
-
-
Stankovich, S.1
Dikin, D.A.2
Piner, R.D.3
Kohlhaas, K.A.4
Kleinhammes, A.5
Jia, Y.6
Wu, Y.7
Nguyen, S.T.8
Ruoff, R.S.9
-
26
-
-
75749121906
-
An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder
-
[26] Fan, Z., Wang, K., Wei, T., Yan, J., Song, L., Shao, B., An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 48 (2010), 1686–1689.
-
(2010)
Carbon
, vol.48
, pp. 1686-1689
-
-
Fan, Z.1
Wang, K.2
Wei, T.3
Yan, J.4
Song, L.5
Shao, B.6
-
27
-
-
77957119241
-
Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids
-
[27] Pei, S., Zhao, J., Du, J., Ren, W., Cheng, H.M., Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48 (2010), 4466–4474.
-
(2010)
Carbon
, vol.48
, pp. 4466-4474
-
-
Pei, S.1
Zhao, J.2
Du, J.3
Ren, W.4
Cheng, H.M.5
-
28
-
-
76249106647
-
Reduction of graphene oxide via l—ascorbic acid
-
[28] Zhang, J., Yang, H., Shen, G., Cheng, P., Zhang, J., Guo, S., Reduction of graphene oxide via l—ascorbic acid. Chem. Commun. 46 (2010), 1112–1114.
-
(2010)
Chem. Commun.
, vol.46
, pp. 1112-1114
-
-
Zhang, J.1
Yang, H.2
Shen, G.3
Cheng, P.4
Zhang, J.5
Guo, S.6
-
29
-
-
79955555293
-
Hydrazine-reduction of graphite- and graphene oxide
-
[29] Park, S., An, J., Potts, J.R., Velamakanni, A., Murali, S., Ruoff, R.S., Hydrazine-reduction of graphite- and graphene oxide. Carbon 49 (2011), 3019–3023.
-
(2011)
Carbon
, vol.49
, pp. 3019-3023
-
-
Park, S.1
An, J.2
Potts, J.R.3
Velamakanni, A.4
Murali, S.5
Ruoff, R.S.6
-
30
-
-
78649593780
-
Chemical reduction of graphene oxide to graphene by sulfur-containing compounds
-
[30] Chen, W., Yan, L., Bangal, P.R., Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. J. Phys. Chem. C 114 (2010), 19885–19890.
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 19885-19890
-
-
Chen, W.1
Yan, L.2
Bangal, P.R.3
-
31
-
-
33947461960
-
Preparation of graphitic oxide
-
[31] Hummers, W.S., Offeman, R.E., Preparation of graphitic oxide. J. Am. Chem. Soc., 80, 1958, 1339.
-
(1958)
J. Am. Chem. Soc.
, vol.80
, pp. 1339
-
-
Hummers, W.S.1
Offeman, R.E.2
-
32
-
-
78650092372
-
Improved synthesis of graphene oxide
-
[32] Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., Tour, J.M., Improved synthesis of graphene oxide. ACS Nano 4 (2010), 4806–4814.
-
(2010)
ACS Nano
, vol.4
, pp. 4806-4814
-
-
Marcano, D.C.1
Kosynkin, D.V.2
Berlin, J.M.3
Sinitskii, A.4
Sun, Z.5
Slesarev, A.6
Alemany, L.B.7
Lu, W.8
Tour, J.M.9
-
33
-
-
84862826342
-
Restoration of graphene from graphene oxide by defect repair
-
[33] Cheng, M., Yang, R., Zhang, L., Shi, Z., Yang, W., Wang, D., Xie, G., Shi, D., Zhang, G., Restoration of graphene from graphene oxide by defect repair. Carbon 50 (2012), 2581–2587.
-
(2012)
Carbon
, vol.50
, pp. 2581-2587
-
-
Cheng, M.1
Yang, R.2
Zhang, L.3
Shi, Z.4
Yang, W.5
Wang, D.6
Xie, G.7
Shi, D.8
Zhang, G.9
-
34
-
-
78049528899
-
Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol
-
[34] Akhavan, O., Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol. Carbon 49 (2011), 11–18.
-
(2011)
Carbon
, vol.49
, pp. 11-18
-
-
Akhavan, O.1
-
36
-
-
34249889935
-
Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and non-adiabatic effects
-
[36] Ferrari, A.C., Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and non-adiabatic effects. Solid State Commun. 143 (2007), 47–57.
-
(2007)
Solid State Commun.
, vol.143
, pp. 47-57
-
-
Ferrari, A.C.1
-
37
-
-
33750459007
-
Raman spectrum of graphene and graphene layers
-
[37] Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett., 97, 2006, 187401.
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 187401
-
-
Ferrari, A.C.1
Meyer, J.C.2
Scardaci, V.3
Casiraghi, C.4
Lazzeri, M.5
Mauri, F.6
Piscanec, S.7
Jiang, D.8
Novoselov, K.S.9
Roth, S.10
Geim, A.K.11
-
38
-
-
0014829099
-
Raman spectrum of graphite
-
[38] Tuinstra, F., Koenig, J.L., Raman spectrum of graphite. J. Chem. Phys. 53 (1970), 1126–1130.
-
(1970)
J. Chem. Phys.
, vol.53
, pp. 1126-1130
-
-
Tuinstra, F.1
Koenig, J.L.2
-
39
-
-
0001457045
-
Raman scattering from ion-implanted diamond, graphite, and polymers
-
[39] Lee, E.H., Hembree, D.M., Rao, G.R., Mansur, L.K., Raman scattering from ion-implanted diamond, graphite, and polymers. Phys. Rev. B, 48, 1993, 15540.
-
(1993)
Phys. Rev. B
, vol.48
, pp. 15540
-
-
Lee, E.H.1
Hembree, D.M.2
Rao, G.R.3
Mansur, L.K.4
-
40
-
-
6744234501
-
Raman scattering from ion-implanted graphite
-
[40] Elman, B.S., Dresselhaus, M.S., Dresselhaus, G., Maby, E.W., Mazurek, H., Raman scattering from ion-implanted graphite. Phys. Rev. B 24 (1981), 1027–1034.
-
(1981)
Phys. Rev. B
, vol.24
, pp. 1027-1034
-
-
Elman, B.S.1
Dresselhaus, M.S.2
Dresselhaus, G.3
Maby, E.W.4
Mazurek, H.5
-
41
-
-
84882293569
-
2
-
2. Supercond. Sci. Technol., 26, 2013, 95008.
-
(2013)
Supercond. Sci. Technol.
, vol.26
, pp. 95008
-
-
Sudesh, N.1
Kumar, S.2
Das, C.3
Bernhard, G.4
Varma, D.5
-
42
-
-
84922725803
-
A Cu-m-phenylenediamine complex induced route to fabricate poly(m-phenylenediamine)/reduced graphene oxide hydrogel and its adsorption application
-
[42] Chai, L., Wang, T., Zhang, L., Wang, H., Yang, W., Dai, S., Meng, Y., Li, X., A Cu-m-phenylenediamine complex induced route to fabricate poly(m-phenylenediamine)/reduced graphene oxide hydrogel and its adsorption application. Carbon 81 (2015), 748–757.
-
(2015)
Carbon
, vol.81
, pp. 748-757
-
-
Chai, L.1
Wang, T.2
Zhang, L.3
Wang, H.4
Yang, W.5
Dai, S.6
Meng, Y.7
Li, X.8
-
43
-
-
84922218581
-
A comparative study of silver-graphene oxide nanocomposites as a recyclable catalyst for the aerobic oxidation of benzyl alcohol: support effect
-
[43] Zahed, B., Monfared, H.H., A comparative study of silver-graphene oxide nanocomposites as a recyclable catalyst for the aerobic oxidation of benzyl alcohol: support effect. Appl. Surf. Sci. 328 (2015), 536–547.
-
(2015)
Appl. Surf. Sci.
, vol.328
, pp. 536-547
-
-
Zahed, B.1
Monfared, H.H.2
-
44
-
-
84926311760
-
Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites
-
[44] Naebe, M., Wang, J., Amini, A., Khayyam, H., Hameed, N., Li, L.H., Chen, Y., Fox, B., Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci. Rep., 4, 2014, 4375.
-
(2014)
Sci. Rep.
, vol.4
, pp. 4375
-
-
Naebe, M.1
Wang, J.2
Amini, A.3
Khayyam, H.4
Hameed, N.5
Li, L.H.6
Chen, Y.7
Fox, B.8
-
45
-
-
4344679400
-
3-based micro-hotplate sensors
-
3-based micro-hotplate sensors. Sens. Actuators B 102 (2004), 219–225.
-
(2004)
Sens. Actuators B
, vol.102
, pp. 219-225
-
-
Stankova, M.1
Vilanova, X.2
Calderer, J.3
Llobet, E.4
Ivanov, P.5
Gracia, I.6
Cane, C.7
Correig, X.8
-
46
-
-
84894231204
-
2 sensor for power plant emission applications
-
2 sensor for power plant emission applications. Sens. Actuators B 194 (2014), 511–520.
-
(2014)
Sens. Actuators B
, vol.194
, pp. 511-520
-
-
Darmastuti, Z.1
Bur, C.2
Moller, P.3
Rahlin, R.4
Lindqvist, N.5
Andersson, M.6
Schütze, A.7
Spetz, A.L.8
-
49
-
-
84871806980
-
Edge-tailored graphene oxide nanosheets based field effect transistors for fast and reversible electronic detection of sulfur dioxide
-
[49] Shen, F., Wang, D., Liu, R., Pei, X., Zhang, T., Jin, J., Edge-tailored graphene oxide nanosheets based field effect transistors for fast and reversible electronic detection of sulfur dioxide. Nanoscale 5 (2013), 537–540.
-
(2013)
Nanoscale
, vol.5
, pp. 537-540
-
-
Shen, F.1
Wang, D.2
Liu, R.3
Pei, X.4
Zhang, T.5
Jin, J.6
-
50
-
-
84893650764
-
Sulfur dioxide molecule sensors based on zigzag graphene
-
[50] Shao, L., Chen, G., Yea, H., Niu, H., Wu, Y., Zhu, Y., Ding, B., Sulfur dioxide molecule sensors based on zigzag graphene. Phys. Lett. A 378 (2014), 667–671.
-
(2014)
Phys. Lett. A
, vol.378
, pp. 667-671
-
-
Shao, L.1
Chen, G.2
Yea, H.3
Niu, H.4
Wu, Y.5
Zhu, Y.6
Ding, B.7
-
51
-
-
84904817191
-
2 gas sensing properties of graphene by introducing dopant and defect: a first-principles study
-
2 gas sensing properties of graphene by introducing dopant and defect: a first-principles study. Appl. Surf. Sci. 313 (2014), 405–410.
-
(2014)
Appl. Surf. Sci.
, vol.313
, pp. 405-410
-
-
Liu, X.1
Zhang, J.2
Xu, K.3
Ji, V.4
-
52
-
-
33846028721
-
Humidity sensing and electrical properties of polyaniline/cobalt oxide composites
-
[52] Parvatikar, N., Jain, S., Kanamadi, C.M., Chougule, B.K., Bhoraskar, S.V., Prasad, M.V.N.A., Humidity sensing and electrical properties of polyaniline/cobalt oxide composites. J. Appl. Polym. Sci. 103 (2007), 653–658.
-
(2007)
J. Appl. Polym. Sci.
, vol.103
, pp. 653-658
-
-
Parvatikar, N.1
Jain, S.2
Kanamadi, C.M.3
Chougule, B.K.4
Bhoraskar, S.V.5
Prasad, M.V.N.A.6
-
53
-
-
84957808136
-
Humidity sensing investigation on nanostructured polyaniline synthesized via chemical polymerization method
-
[53] Kumar, R., Yadav, B.C., Humidity sensing investigation on nanostructured polyaniline synthesized via chemical polymerization method. Mater. Lett. 167 (2016), 300–302.
-
(2016)
Mater. Lett.
, vol.167
, pp. 300-302
-
-
Kumar, R.1
Yadav, B.C.2
-
54
-
-
84927734734
-
Free-standing dried foam films of graphene oxide for humidity sensing
-
[54] Feng, X., Chen, W., Yan, L., Free-standing dried foam films of graphene oxide for humidity sensing. Sens. Actuators B 215 (2015), 316–322.
-
(2015)
Sens. Actuators B
, vol.215
, pp. 316-322
-
-
Feng, X.1
Chen, W.2
Yan, L.3
-
55
-
-
58149325887
-
Ceramic sensors for humidity detection: the state of the art and future developments
-
[55] Traversa, E., Ceramic sensors for humidity detection: the state of the art and future developments. Sens. Actuators B 23 (1995), 135–156.
-
(1995)
Sens. Actuators B
, vol.23
, pp. 135-156
-
-
Traversa, E.1
-
56
-
-
0024879751
-
The sensing mechanism in a semiconducting humidity sensor with Pt electrodes
-
[56] Shimizu, Y., Shimabukuro, M., Arai, H., The sensing mechanism in a semiconducting humidity sensor with Pt electrodes. J. Electrochem. Soc. 136 (1989), 3868–3871.
-
(1989)
J. Electrochem. Soc.
, vol.136
, pp. 3868-3871
-
-
Shimizu, Y.1
Shimabukuro, M.2
Arai, H.3
-
57
-
-
84944044417
-
2 thick film sensors under UV-light irradiation at room temperature
-
2 thick film sensors under UV-light irradiation at room temperature. Sens. Actuators B 223 (2016), 429–439.
-
(2016)
Sens. Actuators B
, vol.223
, pp. 429-439
-
-
Saboor, F.H.1
Ueda, T.2
Kamada, K.3
Hyodo, T.4
Mortazavi, Y.5
Khodadadi, A.A.6
Shimizu, Y.7
-
58
-
-
84878699763
-
Highly selective gas sensor arrays based on thermally reduced graphene oxide
-
[58] Lipatov, A., Varezhnikov, A., Wilson, P., Sysoev, V., Kolmakov, A., Sinitskii, A., Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale 5 (2013), 5426–5434.
-
(2013)
Nanoscale
, vol.5
, pp. 5426-5434
-
-
Lipatov, A.1
Varezhnikov, A.2
Wilson, P.3
Sysoev, V.4
Kolmakov, A.5
Sinitskii, A.6
-
59
-
-
0037142225
-
chloroform vapour sensor based on copper/polyaniline nanocomposite
-
[59] Sharma, S., Nirkhe, C., Pethkar, S., Athwale, A.A., chloroform vapour sensor based on copper/polyaniline nanocomposite. Sens. Actuators B 85 (2002), 131–136.
-
(2002)
Sens. Actuators B
, vol.85
, pp. 131-136
-
-
Sharma, S.1
Nirkhe, C.2
Pethkar, S.3
Athwale, A.A.4
|