-
1
-
-
0000874557
-
Theoretical foundations of the potential function method in pattern recognition learning
-
Aizerman, M.A., Braverman, E.M. and Rozonoer, L. (1964) Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25, 821-837.
-
(1964)
Automation and Remote Control
, vol.25
, pp. 821-837
-
-
Aizerman, M.A.1
Braverman, E.M.2
Rozonoer, L.3
-
2
-
-
76749137632
-
Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification. Part I: Algorithms and Empirical Evaluation
-
Aliferis, C.F. etal. (2010a) Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification. Part I: Algorithms and Empirical Evaluation. Journal of Machine Learning Research, 11, 171-234.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 171-234
-
-
Aliferis, C.F.1
-
3
-
-
33748955151
-
Challenges in the analysis of mass-throughput data: A technical commentary from the statistical machine learning perspective
-
Aliferis, C.F., Statnikov, A. and Tsamardinos, I. (2006) Challenges in the analysis of mass-throughput data: a technical commentary from the statistical machine learning perspective. Cancer Informatics, 2, 133-162.
-
(2006)
Cancer Informatics
, vol.2
, pp. 133-162
-
-
Aliferis, C.F.1
Statnikov, A.2
Tsamardinos, I.3
-
4
-
-
76749122843
-
Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification. Part II: Analysis and Extensions
-
Aliferis, C.F. etal. (2010b) Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification. Part II: Analysis and Extensions. Journal of Machine Learning Research, 11, 235-284.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 235-284
-
-
Aliferis, C.F.1
-
7
-
-
0026966646
-
A training algorithm for optimal margin classifiers. Proceedings ofthe Fifth Annual Workshop on Computational Learning Theory (COLT)
-
Boser, B.E., Guyon, I.M. and Vapnik, V.N. (1992) A training algorithm for optimal margin classifiers. Proceedings ofthe Fifth Annual Workshop on Computational Learning Theory (COLT), 144-152.
-
(1992)
144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
8
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges, C.J.C. (1998) A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121-167.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
9
-
-
34247558132
-
Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters
-
Cawley, G.C. and Talbot, N.L.C. (2007) Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters. The Journal of Machine Learning Research, 8, 861.
-
(2007)
The Journal of Machine Learning Research
, vol.8
, pp. 861
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
10
-
-
34249753618
-
Support-vector networks
-
Cortes, C. and Vapnik, V. (1995) Support-vector networks. Machine Learning, 20, 273-297.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
11
-
-
84918441630
-
Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
-
Cover, T.M. (1965) Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE transactions on electronic computers, 14, 326-334.
-
(1965)
IEEE Transactions on Electronic Computers
, vol.14
, pp. 326-334
-
-
Cover, T.M.1
-
15
-
-
29144499905
-
Working set selection using second order information for training support vector machines
-
Fan, R.E., Chen, P.H. and Lin, C.J. (2005) Working set selection using second order information for training support vector machines. Journal of Machine Learning Research, 6, 1918.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1918
-
-
Fan, R.E.1
Chen, P.H.2
Lin, C.J.3
-
16
-
-
7244250182
-
Data mining in bioinformatics using Weka
-
Frank, E. et al. (2004) Data mining in bioinformatics using Weka. Bioinformatics, 20, 2479.
-
(2004)
Bioinformatics
, vol.20
, pp. 2479
-
-
Frank, E.1
-
17
-
-
84995480515
-
A practical guide to model selection
-
Guyon, I. (2010) A practical guide to model selection. PASCAL EPrints, 5768.
-
(2010)
PASCAL Eprints
, pp. 5768
-
-
Guyon, I.1
-
19
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon, I. et al. (2002) Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389-422.
-
(2002)
Machine Learning
, vol.46
, pp. 389-422
-
-
Guyon, I.1
-
21
-
-
0003684449
-
-
Springer, New York
-
Hastie, T., Tibshirani, R. and Friedman, J.H. (2001) The elements of statistical learning: data mining, inference, and prediction. Springer, New York.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.H.3
-
25
-
-
0002229304
-
-
Smola, A. et al. (eds), MIT Press, Cambridge, MA
-
Kressel, U. (1999) Pairwise classification and support vector machines. In Smola, A. et al. (eds), Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge, MA, pp. 255-268.
-
(1999)
Pairwise Classification and Support Vector Machines
, pp. 255-268
-
-
Kressel, U.1
-
28
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
-
Smola, A., et al., MIT press, Cambridge, MA
-
Platt, J.C. (1999) Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In Smola, A. et al. (eds), Advances in Large Margin Classifiers. MIT press, Cambridge, MA.
-
(1999)
Advances in Large Margin Classifiers
-
-
Platt, J.C.1
-
29
-
-
0016765357
-
On optimal nonlinear associative recall
-
Poggio, T. (1975) On optimal nonlinear associative recall. Biological Cybernetics, 19, 201-209.
-
(1975)
Biological Cybernetics
, vol.19
, pp. 201-209
-
-
Poggio, T.1
-
30
-
-
0025490985
-
Networks for approximation and learning
-
Poggio, T. and Girosi, F. (1990a) Networks for approximation and learning. Proceedings of the IEEE, 78, 1481-1497.
-
(1990)
Proceedings of the IEEE
, vol.78
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
31
-
-
0025056697
-
Regularization algorithms for learning that are equivalent to multilayer networks
-
Poggio, T. and Girosi, F. (1990b) Regularization algorithms for learning that are equivalent to multilayer networks. Science, 247, 978-982.
-
(1990)
Science
, vol.247
, pp. 978-982
-
-
Poggio, T.1
Girosi, F.2
-
33
-
-
33044495254
-
Error estimation and model selection
-
Technischen Universitat Berlin, School of Computer Science
-
Scheffer, T. (1999) Error estimation and model selection. Ph.D.Thesis, Technischen Universitat Berlin, School of Computer Science.
-
(1999)
Ph.D.Thesis
-
-
Scheffer, T.1
-
34
-
-
0000487102
-
Estimating the Support of a High-Dimensional Distribution
-
Scholkopf, B. et al. (2001) Estimating the Support of a High-Dimensional Distribution. Neural Computation, 13, 1443-1471.
-
(2001)
Neural Computation
, vol.13
, pp. 1443-1471
-
-
Scholkopf, B.1
-
35
-
-
84873878217
-
-
Cambridge, Mass
-
Scholkopf, B., Burges, C.J.C. and Smola, A.J. (1999) Advances in kernel methods: support vector learning. MIT Press, Cambridge, Mass.
-
(1999)
Advances in Kernel Methods: Support Vector Learning. MIT Press
-
-
Scholkopf, B.1
Burges, C.J.C.2
Smola, A.J.3
-
37
-
-
0037245343
-
Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification
-
Simon, R. et al. (2003) Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J. Natl Cancer Inst, 95, 14-18.
-
(2003)
J. Natl Cancer Inst
, vol.95
, pp. 14-18
-
-
Simon, R.1
-
38
-
-
0343019657
-
Pattern classifier design by linear programming
-
Smith, F.W. (1968) Pattern classifier design by linear programming. IEEE Transactions on Computers, 100, 367-372.
-
(1968)
IEEE Transactions on Computers
, vol.100
, pp. 367-372
-
-
Smith, F.W.1
-
39
-
-
4043137356
-
A tutorial on support vector regression
-
Smola, A.J. and Scholkopf, B. (2004) A tutorial on support vector regression. Statistics and Computing, 14, 199-222.
-
(2004)
Statistics and Computing
, vol.14
, pp. 199-222
-
-
Smola, A.J.1
Scholkopf, B.2
-
40
-
-
15844413351
-
A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
-
Statnikov, A. et al. (2005a) A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics, 21, 631-643.
-
(2005)
Bioinformatics
, vol.21
, pp. 631-643
-
-
Statnikov, A.1
-
42
-
-
22544475586
-
GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression data
-
Statnikov, A. et al. (2005b) GEMS: a system for automated cancer diagnosis and biomarker discovery from microarray gene expression data. Int. J. Med. Inform, 74, 491-503.
-
(2005)
Int. J. Med. Inform
, vol.74
, pp. 491-503
-
-
Statnikov, A.1
-
44
-
-
0010864753
-
Pattern recognition using generalized portrait method
-
Vapnik, V. and Lerner, A. (1963) Pattern recognition using generalized portrait method. Automation and Remote Control, 24, 774-780.
-
(1963)
Automation and Remote Control
, vol.24
, pp. 774-780
-
-
Vapnik, V.1
Lerner, A.2
-
50
-
-
84995394637
-
-
M. Kaufmann Publishers
-
Weiss, S.M. and Kulikowski, C.A. (1991) Computer systems that learn: classification and prediction methods from statistics, neural nets, machine learning, and expert systems. M. Kaufmann Publishers
-
(1991)
-
-
Weiss, S.M.1
Kulikowski, C.A.2
-
51
-
-
84890520049
-
Use ofthe zero-norm with linear models and kernel methods
-
San Mateo, CalifWeston J. etal. (2003) Use ofthe zero-norm with linear models and kernel methods. Journal of Machine Learning Research, 3, 1439-1461.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1439-1461
-
-
Mateo, S.1
Califweston, J.2
|