메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1-183

A gentle introduction to support vector machines in biomedicine: Volume 1: Theory and methods

Author keywords

[No Author keywords available]

Indexed keywords

PATTERN RECOGNITION;

EID: 84995480893     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1142/7922     Document Type: Book
Times cited : (60)

References (54)
  • 1
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • Aizerman, M.A., Braverman, E.M. and Rozonoer, L. (1964) Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25, 821-837.
    • (1964) Automation and Remote Control , vol.25 , pp. 821-837
    • Aizerman, M.A.1    Braverman, E.M.2    Rozonoer, L.3
  • 2
    • 76749137632 scopus 로고    scopus 로고
    • Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification. Part I: Algorithms and Empirical Evaluation
    • Aliferis, C.F. etal. (2010a) Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification. Part I: Algorithms and Empirical Evaluation. Journal of Machine Learning Research, 11, 171-234.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 171-234
    • Aliferis, C.F.1
  • 3
    • 33748955151 scopus 로고    scopus 로고
    • Challenges in the analysis of mass-throughput data: A technical commentary from the statistical machine learning perspective
    • Aliferis, C.F., Statnikov, A. and Tsamardinos, I. (2006) Challenges in the analysis of mass-throughput data: a technical commentary from the statistical machine learning perspective. Cancer Informatics, 2, 133-162.
    • (2006) Cancer Informatics , vol.2 , pp. 133-162
    • Aliferis, C.F.1    Statnikov, A.2    Tsamardinos, I.3
  • 4
    • 76749122843 scopus 로고    scopus 로고
    • Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification. Part II: Analysis and Extensions
    • Aliferis, C.F. etal. (2010b) Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification. Part II: Analysis and Extensions. Journal of Machine Learning Research, 11, 235-284.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 235-284
    • Aliferis, C.F.1
  • 7
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers. Proceedings ofthe Fifth Annual Workshop on Computational Learning Theory (COLT)
    • Boser, B.E., Guyon, I.M. and Vapnik, V.N. (1992) A training algorithm for optimal margin classifiers. Proceedings ofthe Fifth Annual Workshop on Computational Learning Theory (COLT), 144-152.
    • (1992) 144-152
    • Boser, B.E.1    Guyon, I.M.2    Vapnik, V.N.3
  • 8
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C.J.C. (1998) A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 9
    • 34247558132 scopus 로고    scopus 로고
    • Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters
    • Cawley, G.C. and Talbot, N.L.C. (2007) Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters. The Journal of Machine Learning Research, 8, 861.
    • (2007) The Journal of Machine Learning Research , vol.8 , pp. 861
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 10
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C. and Vapnik, V. (1995) Support-vector networks. Machine Learning, 20, 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 11
    • 84918441630 scopus 로고
    • Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
    • Cover, T.M. (1965) Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE transactions on electronic computers, 14, 326-334.
    • (1965) IEEE Transactions on Electronic Computers , vol.14 , pp. 326-334
    • Cover, T.M.1
  • 15
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • Fan, R.E., Chen, P.H. and Lin, C.J. (2005) Working set selection using second order information for training support vector machines. Journal of Machine Learning Research, 6, 1918.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1918
    • Fan, R.E.1    Chen, P.H.2    Lin, C.J.3
  • 16
    • 7244250182 scopus 로고    scopus 로고
    • Data mining in bioinformatics using Weka
    • Frank, E. et al. (2004) Data mining in bioinformatics using Weka. Bioinformatics, 20, 2479.
    • (2004) Bioinformatics , vol.20 , pp. 2479
    • Frank, E.1
  • 17
    • 84995480515 scopus 로고    scopus 로고
    • A practical guide to model selection
    • Guyon, I. (2010) A practical guide to model selection. PASCAL EPrints, 5768.
    • (2010) PASCAL Eprints , pp. 5768
    • Guyon, I.1
  • 19
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I. et al. (2002) Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389-422.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1
  • 25
    • 0002229304 scopus 로고    scopus 로고
    • Smola, A. et al. (eds), MIT Press, Cambridge, MA
    • Kressel, U. (1999) Pairwise classification and support vector machines. In Smola, A. et al. (eds), Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge, MA, pp. 255-268.
    • (1999) Pairwise Classification and Support Vector Machines , pp. 255-268
    • Kressel, U.1
  • 28
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • Smola, A., et al., MIT press, Cambridge, MA
    • Platt, J.C. (1999) Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In Smola, A. et al. (eds), Advances in Large Margin Classifiers. MIT press, Cambridge, MA.
    • (1999) Advances in Large Margin Classifiers
    • Platt, J.C.1
  • 29
    • 0016765357 scopus 로고
    • On optimal nonlinear associative recall
    • Poggio, T. (1975) On optimal nonlinear associative recall. Biological Cybernetics, 19, 201-209.
    • (1975) Biological Cybernetics , vol.19 , pp. 201-209
    • Poggio, T.1
  • 30
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio, T. and Girosi, F. (1990a) Networks for approximation and learning. Proceedings of the IEEE, 78, 1481-1497.
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 31
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • Poggio, T. and Girosi, F. (1990b) Regularization algorithms for learning that are equivalent to multilayer networks. Science, 247, 978-982.
    • (1990) Science , vol.247 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 33
    • 33044495254 scopus 로고    scopus 로고
    • Error estimation and model selection
    • Technischen Universitat Berlin, School of Computer Science
    • Scheffer, T. (1999) Error estimation and model selection. Ph.D.Thesis, Technischen Universitat Berlin, School of Computer Science.
    • (1999) Ph.D.Thesis
    • Scheffer, T.1
  • 34
    • 0000487102 scopus 로고    scopus 로고
    • Estimating the Support of a High-Dimensional Distribution
    • Scholkopf, B. et al. (2001) Estimating the Support of a High-Dimensional Distribution. Neural Computation, 13, 1443-1471.
    • (2001) Neural Computation , vol.13 , pp. 1443-1471
    • Scholkopf, B.1
  • 37
    • 0037245343 scopus 로고    scopus 로고
    • Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification
    • Simon, R. et al. (2003) Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J. Natl Cancer Inst, 95, 14-18.
    • (2003) J. Natl Cancer Inst , vol.95 , pp. 14-18
    • Simon, R.1
  • 38
    • 0343019657 scopus 로고
    • Pattern classifier design by linear programming
    • Smith, F.W. (1968) Pattern classifier design by linear programming. IEEE Transactions on Computers, 100, 367-372.
    • (1968) IEEE Transactions on Computers , vol.100 , pp. 367-372
    • Smith, F.W.1
  • 39
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola, A.J. and Scholkopf, B. (2004) A tutorial on support vector regression. Statistics and Computing, 14, 199-222.
    • (2004) Statistics and Computing , vol.14 , pp. 199-222
    • Smola, A.J.1    Scholkopf, B.2
  • 40
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • Statnikov, A. et al. (2005a) A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics, 21, 631-643.
    • (2005) Bioinformatics , vol.21 , pp. 631-643
    • Statnikov, A.1
  • 42
    • 22544475586 scopus 로고    scopus 로고
    • GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression data
    • Statnikov, A. et al. (2005b) GEMS: a system for automated cancer diagnosis and biomarker discovery from microarray gene expression data. Int. J. Med. Inform, 74, 491-503.
    • (2005) Int. J. Med. Inform , vol.74 , pp. 491-503
    • Statnikov, A.1
  • 44
    • 0010864753 scopus 로고
    • Pattern recognition using generalized portrait method
    • Vapnik, V. and Lerner, A. (1963) Pattern recognition using generalized portrait method. Automation and Remote Control, 24, 774-780.
    • (1963) Automation and Remote Control , vol.24 , pp. 774-780
    • Vapnik, V.1    Lerner, A.2
  • 50
    • 84995394637 scopus 로고
    • M. Kaufmann Publishers
    • Weiss, S.M. and Kulikowski, C.A. (1991) Computer systems that learn: classification and prediction methods from statistics, neural nets, machine learning, and expert systems. M. Kaufmann Publishers
    • (1991)
    • Weiss, S.M.1    Kulikowski, C.A.2
  • 51
    • 84890520049 scopus 로고    scopus 로고
    • Use ofthe zero-norm with linear models and kernel methods
    • San Mateo, CalifWeston J. etal. (2003) Use ofthe zero-norm with linear models and kernel methods. Journal of Machine Learning Research, 3, 1439-1461.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1439-1461
    • Mateo, S.1    Califweston, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.