-
1
-
-
84916537550
-
Bayesian analysis of binary and polychotomous response data
-
Albert, J. H. and Chib, S. (1993). "Bayesian analysis of binary and polychotomous response data." Journal of the American Statistical Association, 88: 669-679. MR1224394. doi: http://dx.doi.org/10.1080/01621459.1993.10476321
-
(1993)
Journal of the American Statistical Association
, vol.88
, pp. 669-679
-
-
Albert, J.H.1
Chib, S.2
-
2
-
-
84898931951
-
Ensemble learning for multi-layer networks
-
In: Jordan, M I., Kearns, K. J., and Solla, S. A. (eds.) Cambridge, Massachusetts: MIT Press
-
Barber, D. and Bishop, C. M. (1998). "Ensemble learning for multi-layer networks." In: Jordan, M. I., Kearns, K. J., and Solla, S. A. (eds.), Advances in Neural Information Processing Systems, 10, 395-401. Cambridge, Massachusetts: MIT Press.
-
(1998)
Advances in Neural Information Processing Systems
, vol.10
, pp. 395-401
-
-
Barber, D.1
Bishop, C.M.2
-
3
-
-
46049112055
-
A new framework for machine learning
-
In: J. M. Zurada et al., (eds.), World Congress on Computational Intelligence, 2008 Plenary/Invited Lectures. Heidelberg, Germany: Springer-Verlag
-
Bishop, C. M. (2008). "A new framework for machine learning." In: J. M. Zurada et al., (eds.), World Congress on Computational Intelligence, 2008 Plenary/Invited Lectures, Lecture Notes in Computer Science, 5050, 1-24. Heidelberg, Germany: Springer-Verlag
-
(2008)
Lecture Notes in Computer Science
, vol.5050
, pp. 1-24
-
-
Bishop, C.M.1
-
4
-
-
84878260706
-
SMC2: an efficient algorithm for sequential analysis of state space models
-
Chopin, N., Jacob, P. E., and Papaspiliopoulos, O. (2013). "SMC2: an efficient algorithm for sequential analysis of state space models." Journal of the Royal Statistical Society: Series B, 75: 397-426. doi: http://dx.doi.org/10.1111/j.1467-9868.2012.01046.x
-
(2013)
Journal of the Royal Statistical Society: Series B
, vol.75
, pp. 397-426
-
-
Chopin, N.1
Jacob, P.E.2
Papaspiliopoulos, O.3
-
5
-
-
35148829045
-
Mean-field variational approximate Bayesian inference for latent variable models
-
MR2418528
-
Consonni, G. and Marin, J.-M. (2007). "Mean-field variational approximate Bayesian inference for latent variable models." Computational Statistics and Data Analysis, 52: 790-798. MR2418528. doi: http://dx.doi.org/10.1016/j.csda.2006.10.028
-
(2007)
Computational Statistics and Data Analysis
, vol.52
, pp. 790-798
-
-
Consonni, G.1
Marin, J.-M.2
-
6
-
-
0033481108
-
Gibbs sampling for Bayesian nonconjugate and hierarchical models by using auxiliary variables
-
MR1680334
-
Damien, P., Wakefield, J., and Walker, S. (1999). "Gibbs sampling for Bayesian nonconjugate and hierarchical models by using auxiliary variables." Journal of the Royal Statistical Society, Series B, 61: 331-345. MR1680334. doi: http://dx.doi.org/ 10.1111/1467-9868.00179
-
(1999)
Journal of the Royal Statistical Society, Series B
, vol.61
, pp. 331-345
-
-
Damien, P.1
Wakefield, J.2
Walker, S.3
-
7
-
-
0002344794
-
Bootstrap methods: another look at the jackknife
-
MR0515681
-
Efron, B. (1979). "Bootstrap methods: another look at the jackknife." The Annals of Statistics, 7: 1-26. MR0515681. doi: http://dx.doi.org/10.1214/aos/1176344552
-
(1979)
The Annals of Statistics
, vol.7
, pp. 1-26
-
-
Efron, B.1
-
8
-
-
84982907230
-
Generalised linear mixed model analysis via sequential Monte Carlo sampling
-
Fan, Y., Leslie, D. S. and Wand, M. P. (2008). "Generalised linear mixed model analysis via sequential Monte Carlo sampling." Electronic Journal of Statistics, 2: 916-938. doi: http://dx.doi.org/10.1214/07-EJS158
-
(2008)
Electronic Journal of Statistics
, vol.2
, pp. 916-938
-
-
Fan, Y.1
Leslie, D.S.2
Wand, M.P.3
-
9
-
-
70349816927
-
Improved auxiliary mixture sampling for hierarchical models of non-Gaussian data
-
MR2565319
-
Frühwirth-Schnatter, S., Frühwirth, R., Held, L., and Rue, H. (2009). "Improved auxiliary mixture sampling for hierarchical models of non-Gaussian data." Statistics and Computing, 19: 479-492. MR2565319. doi: http://dx.doi.org/10.1007/s11222-008-9109-4
-
(2009)
Statistics and Computing
, vol.19
, pp. 479-492
-
-
Frühwirth-Schnatter, S.1
Frühwirth, R.2
Held, L.3
Rue, H.4
-
10
-
-
84867086419
-
Prior distributions for variance parameters in hierarchical models
-
Gelman, A. (2006). "Prior distributions for variance parameters in hierarchical models." Bayesian Analysis, 1: 515-533. doi: http://dx.doi.org/10.1214/06-BA107A. 996
-
(2006)
Bayesian Analysis
, vol.1
, pp. 515-533
-
-
Gelman, A.1
-
11
-
-
33745841370
-
Variational Bayesian multinomial probit regression
-
MR2230854
-
Girolami, M. and Rogers, S. (2006). "Variational Bayesian multinomial probit regression." Neural Computation, 18: 1790-1817. MR2230854. doi: http://dx.doi.org/ 10.1162/neco.2006.18.8.1790
-
(2006)
Neural Computation
, vol.18
, pp. 1790-1817
-
-
Girolami, M.1
Rogers, S.2
-
12
-
-
79551487646
-
Approximate Riemannian conjugate gradient learning for fixed-form variational Bayes
-
Honkela, A., Raiko, T., Kuusela, M., Tornio, M. and Karhunen, J. (2010). "Approximate Riemannian conjugate gradient learning for fixed-form variational Bayes." Journal of Machine Learning Research, 11: 3235-3268.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 3235-3268
-
-
Honkela, A.1
Raiko, T.2
Kuusela, M.3
Tornio, M.4
Karhunen, J.5
-
13
-
-
0042685161
-
Bayesian parameter estimation via variational methods
-
Jaakkola, T. S. and Jordan, M. I. (2000). "Bayesian parameter estimation via variational methods." Statistics and Computing, 10: 25-37. doi: http://dx.doi.org/10.1023/A:1008932416310
-
(2000)
Statistics and Computing
, vol.10
, pp. 25-37
-
-
Jaakkola, T.S.1
Jordan, M.I.2
-
14
-
-
85162453650
-
Non-conjugate message passing for multinomial and binary regression
-
In: Shawe-Taylor, J., Zamel, R S., Bartlett, P., Pereira, F., and Weinberger, K. Q. (eds.)
-
Knowles, D. A. and Minka, T. P. (2011). "Non-conjugate message passing for multinomial and binary regression." In: Shawe-Taylor, J., Zamel, R. S., Bartlett, P., Pereira, F., and Weinberger, K. Q. (eds.), Advances in Neural Information Processing Systems 24, 1701-1709.
-
(2011)
Advances in Neural Information Processing Systems
, vol.24
, pp. 1701-1709
-
-
Knowles, D.A.1
Minka, T.P.2
-
15
-
-
84988052086
-
Negative Binomial and mixed Poisson regression
-
MR0926553
-
Lawless, J. F. (1987). "Negative Binomial and mixed Poisson regression." Canadian Journal of Statistics, 15: 209-225. MR0926553. doi: http://dx.doi.org/10.2307/ 3314912
-
(1987)
Canadian Journal of Statistics
, vol.15
, pp. 209-225
-
-
Lawless, J.F.1
-
16
-
-
84979935813
-
A 30-year georeferenced global event database: The Global Database of Events
-
Language, and Tone (GDELT)." In: International Studies Association Conference. San Francisco, USA.
-
Leetaru, K. H. and Schrodt, P. A. (2013). "A 30-year georeferenced global event database: The Global Database of Events, Language, and Tone (GDELT)." In: International Studies Association Conference. San Francisco, USA.
-
(2013)
-
-
Leetaru, K.H.1
Schrodt, P.A.2
-
17
-
-
44849098150
-
On the asymptotics of penalized splines
-
MR2521591
-
Li, Y. and Ruppert, D. (2008). "On the asymptotics of penalized splines." Biometrika, 95: 415-436. MR2521591. doi: http://dx.doi.org/10.1093/biomet/asn010
-
(2008)
Biometrika
, vol.95
, pp. 415-436
-
-
Li, Y.1
Ruppert, D.2
-
18
-
-
84904979938
-
Real-time semiparametric regression
-
MR3224647
-
Luts, J., Broderick, T., and Wand, M. P. (2014). "Real-time semiparametric regression." Journal of Computational and Graphical Statistics, 23: 589-615. MR3224647. doi: http://dx.doi.org/10.1080/10618600.2013.810150
-
(2014)
Journal of Computational and Graphical Statistics
, vol.23
, pp. 589-615
-
-
Luts, J.1
Broderick, T.2
Wand, M.P.3
-
20
-
-
78650533815
-
Non-standard semiparametric regression via BRugs
-
Marley, J. K. and Wand, M. P. (2010). "Non-standard semiparametric regression via BRugs." Journal of Statistical Software, 37: 1-30.
-
(2010)
Journal of Statistical Software
, vol.37
, pp. 1-30
-
-
Marley, J.K.1
Wand, M.P.2
-
22
-
-
84865387869
-
Developing systems for real-time streaming analysis
-
MR2970908
-
Michalak, S., DuBois, A., DuBois, D., Vander Wiel, S., and Hogden, J. (2012). "Developing systems for real-time streaming analysis." Journal of Computational and Graphical Statistics, 21: 561-580. MR2970908. doi: http://dx.doi.org/10.1080/10618600.2012.657144
-
(2012)
Journal of Computational and Graphical Statistics
, vol.21
, pp. 561-580
-
-
Michalak, S.1
DuBois, A.2
DuBois, D.3
Vander Wiel, S.4
Hogden, J.5
-
23
-
-
0345978970
-
Expectation propagation for approximate Bayesian inference
-
In: Proceedings of Conference on Uncertainty in Artificial Intelligence
-
Minka, T. P. (2001). "Expectation propagation for approximate Bayesian inference." In: Proceedings of Conference on Uncertainty in Artificial Intelligence, 362-369.
-
(2001)
, pp. 362-369
-
-
Minka, T.P.1
-
24
-
-
84979949433
-
High-dimensional, massive sample-size Cox proportional hazards regression for survival analysis
-
Mittal, S., Madigan, D., Burd, R. S., and Suchard, M. A. (2013). "High-dimensional, massive sample-size Cox proportional hazards regression for survival analysis." Biostatistics, 15: 287-294.
-
(2013)
Biostatistics
, vol.15
, pp. 287-294
-
-
Mittal, S.1
Madigan, D.2
Burd, R.S.3
Suchard, M.A.4
-
25
-
-
84972545853
-
A statistical perspective on ill-posed inverse problems (with discussion)
-
O'Sullivan, F. (1986). "A statistical perspective on ill-posed inverse problems (with discussion)." Statistical Science, 1: 502-527.
-
(1986)
Statistical Science
, vol.1
, pp. 502-527
-
-
O'Sullivan, F.1
-
26
-
-
84907095419
-
R: A Language and Environment for Statistical Computing
-
Vienna, Austria
-
R Development Core Team (2015). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
-
(2015)
R Foundation for Statistical Computing
-
-
-
27
-
-
62849120031
-
Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion)
-
Rue, H., Martino, S., and Chopin, N. (2009). "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion)." Journal of the Royal Statistical Society, Series B, 71: 319-392. doi: http://dx.doi.org/10.1111/j.1467-9868.2008.00700.x
-
(2009)
Journal of the Royal Statistical Society, Series B
, vol.71
, pp. 319-392
-
-
Rue, H.1
Martino, S.2
Chopin, N.3
-
29
-
-
84884959104
-
Semiparametric regression during 2003-2007
-
MR2566186
-
Ruppert, D., Wand, M. P., and Carroll, R. J. (2009). "Semiparametric regression during 2003-2007." Electronic Journal of Statistics, 3: 1193-1256. MR2566186. doi: http://dx.doi.org/10.1214/09-EJS525
-
(2009)
Electronic Journal of Statistics
, vol.3
, pp. 1193-1256
-
-
Ruppert, D.1
Wand, M.P.2
Carroll, R.J.3
-
30
-
-
0003470083
-
BUGS: Bayesian inference using Gibbs sampling.
-
Cambridge, UK.
-
Spiegelhalter, D. J., Thomas, A., Best, N. G., Gilks, W. R., and Lunn, D. (2003). BUGS: Bayesian inference using Gibbs sampling. Medical Research Council Biostatistics Unit, Cambridge, UK. http://www.mrc-bsu.cam.ac.uk/bugs
-
(2003)
Medical Research Council Biostatistics Unit
-
-
Spiegelhalter, D.J.1
Thomas, A.2
Best, N.G.3
Gilks, W.R.4
Lunn, D.5
-
31
-
-
84878988007
-
Variational inference for generalized linear mixed models using partially noncentred parametrizations
-
MR3112404
-
Tan, L. S. L. and Nott, D. J. (2013). "Variational inference for generalized linear mixed models using partially noncentred parametrizations." Statistical Science, 28: 168-188. MR3112404. doi: http://dx.doi.org/10.1214/13-STS418
-
(2013)
Statistical Science
, vol.28
, pp. 168-188
-
-
Tan, L.S.L.1
Nott, D.J.2
-
32
-
-
0034018652
-
Negative binomial additive models
-
Thurston, S. W., Wand, M. P., and Weincke, J. K. (2000). "Negative binomial additive models." Biometrics, 56: 139-144. doi: http://dx.doi.org/10.1111/j.0006-341X.2000.00139.x
-
(2000)
Biometrics
, vol.56
, pp. 139-144
-
-
Thurston, S.W.1
Wand, M.P.2
Weincke, J.K.3
-
33
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
Wainwright, M. J. and Jordan, M. I. (2008). "Graphical models, exponential families, and variational inference." Foundation and Trends in Machine Learning, 1: 1-305. doi: http://dx.doi.org/10.1561/2200000001
-
(2008)
Foundation and Trends in Machine Learning
, vol.1
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
34
-
-
84901597335
-
Fully simplified Multivariate Normal updates in non-conjugate variational message passing
-
Wand, M. P. (2014). "Fully simplified Multivariate Normal updates in non-conjugate variational message passing." Journal of Machine Learning Research, 15: 1351-1369.
-
(2014)
Journal of Machine Learning Research
, vol.15
, pp. 1351-1369
-
-
Wand, M.P.1
-
35
-
-
47249158963
-
On O'Sullivan penalised splines and semiparametric regression
-
MR2431193
-
Wand, M. P. and Ormerod, J. T. (2008). "On O'Sullivan penalised splines and semiparametric regression." Australian and New Zealand Journal of Statistics, 50: 179-198. MR2431193. doi: http://dx.doi.org/10.1111/j.1467-842X.2008.00507.x
-
(2008)
Australian and New Zealand Journal of Statistics
, vol.50
, pp. 179-198
-
-
Wand, M.P.1
Ormerod, J.T.2
-
36
-
-
84856958759
-
Mean field variational Bayes for elaborate distributions
-
MR2869967
-
Wand, M. P., Ormerod, J. T., Padoan, S. A., and Frühwirth, R. (2011). "Mean field variational Bayes for elaborate distributions." Bayesian Analysis, 6: 847-900. MR2869967. doi: http://dx.doi.org/10.1214/11-BA631
-
(2011)
Bayesian Analysis
, vol.6
, pp. 847-900
-
-
Wand, M.P.1
Ormerod, J.T.2
Padoan, S.A.3
Frühwirth, R.4
-
37
-
-
0033531652
-
Early age at smoking initiation and tobacco carcinogen DNA damage in the lung
-
Wiencke, J., Thurston, S. W., Kelsey, K. T., Varkonyi, A.,Wain, J. C.,Mark, E. J., and Christiani, D. C. (1999). "Early age at smoking initiation and tobacco carcinogen DNA damage in the lung." Journal of the National Cancer Institute, 91: 614-619. doi: http://dx.doi.org/10.1093/jnci/91.7.614
-
(1999)
Journal of the National Cancer Institute
, vol.91
, pp. 614-619
-
-
Wiencke, J.1
Thurston, S.W.2
Kelsey, K.T.3
Varkonyi, A.4
Wain, J.C.5
Mark, E.J.6
Christiani, D.C.7
|