메뉴 건너뛰기




Volumn 10, Issue 4, 2015, Pages 991-1023

Variational inference for count response semiparametric regression

Author keywords

Approximate bayesian inference; Generalized additive mixed models; Mean field variational bayes; Penalized splines; Real time semiparametric regression

Indexed keywords


EID: 84979895357     PISSN: 19360975     EISSN: 19316690     Source Type: Journal    
DOI: 10.1214/14-BA932     Document Type: Article
Times cited : (31)

References (37)
  • 1
    • 84916537550 scopus 로고
    • Bayesian analysis of binary and polychotomous response data
    • Albert, J. H. and Chib, S. (1993). "Bayesian analysis of binary and polychotomous response data." Journal of the American Statistical Association, 88: 669-679. MR1224394. doi: http://dx.doi.org/10.1080/01621459.1993.10476321
    • (1993) Journal of the American Statistical Association , vol.88 , pp. 669-679
    • Albert, J.H.1    Chib, S.2
  • 2
    • 84898931951 scopus 로고    scopus 로고
    • Ensemble learning for multi-layer networks
    • In: Jordan, M I., Kearns, K. J., and Solla, S. A. (eds.) Cambridge, Massachusetts: MIT Press
    • Barber, D. and Bishop, C. M. (1998). "Ensemble learning for multi-layer networks." In: Jordan, M. I., Kearns, K. J., and Solla, S. A. (eds.), Advances in Neural Information Processing Systems, 10, 395-401. Cambridge, Massachusetts: MIT Press.
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 395-401
    • Barber, D.1    Bishop, C.M.2
  • 3
    • 46049112055 scopus 로고    scopus 로고
    • A new framework for machine learning
    • In: J. M. Zurada et al., (eds.), World Congress on Computational Intelligence, 2008 Plenary/Invited Lectures. Heidelberg, Germany: Springer-Verlag
    • Bishop, C. M. (2008). "A new framework for machine learning." In: J. M. Zurada et al., (eds.), World Congress on Computational Intelligence, 2008 Plenary/Invited Lectures, Lecture Notes in Computer Science, 5050, 1-24. Heidelberg, Germany: Springer-Verlag
    • (2008) Lecture Notes in Computer Science , vol.5050 , pp. 1-24
    • Bishop, C.M.1
  • 4
    • 84878260706 scopus 로고    scopus 로고
    • SMC2: an efficient algorithm for sequential analysis of state space models
    • Chopin, N., Jacob, P. E., and Papaspiliopoulos, O. (2013). "SMC2: an efficient algorithm for sequential analysis of state space models." Journal of the Royal Statistical Society: Series B, 75: 397-426. doi: http://dx.doi.org/10.1111/j.1467-9868.2012.01046.x
    • (2013) Journal of the Royal Statistical Society: Series B , vol.75 , pp. 397-426
    • Chopin, N.1    Jacob, P.E.2    Papaspiliopoulos, O.3
  • 5
    • 35148829045 scopus 로고    scopus 로고
    • Mean-field variational approximate Bayesian inference for latent variable models
    • MR2418528
    • Consonni, G. and Marin, J.-M. (2007). "Mean-field variational approximate Bayesian inference for latent variable models." Computational Statistics and Data Analysis, 52: 790-798. MR2418528. doi: http://dx.doi.org/10.1016/j.csda.2006.10.028
    • (2007) Computational Statistics and Data Analysis , vol.52 , pp. 790-798
    • Consonni, G.1    Marin, J.-M.2
  • 6
    • 0033481108 scopus 로고    scopus 로고
    • Gibbs sampling for Bayesian nonconjugate and hierarchical models by using auxiliary variables
    • MR1680334
    • Damien, P., Wakefield, J., and Walker, S. (1999). "Gibbs sampling for Bayesian nonconjugate and hierarchical models by using auxiliary variables." Journal of the Royal Statistical Society, Series B, 61: 331-345. MR1680334. doi: http://dx.doi.org/ 10.1111/1467-9868.00179
    • (1999) Journal of the Royal Statistical Society, Series B , vol.61 , pp. 331-345
    • Damien, P.1    Wakefield, J.2    Walker, S.3
  • 7
    • 0002344794 scopus 로고
    • Bootstrap methods: another look at the jackknife
    • MR0515681
    • Efron, B. (1979). "Bootstrap methods: another look at the jackknife." The Annals of Statistics, 7: 1-26. MR0515681. doi: http://dx.doi.org/10.1214/aos/1176344552
    • (1979) The Annals of Statistics , vol.7 , pp. 1-26
    • Efron, B.1
  • 8
    • 84982907230 scopus 로고    scopus 로고
    • Generalised linear mixed model analysis via sequential Monte Carlo sampling
    • Fan, Y., Leslie, D. S. and Wand, M. P. (2008). "Generalised linear mixed model analysis via sequential Monte Carlo sampling." Electronic Journal of Statistics, 2: 916-938. doi: http://dx.doi.org/10.1214/07-EJS158
    • (2008) Electronic Journal of Statistics , vol.2 , pp. 916-938
    • Fan, Y.1    Leslie, D.S.2    Wand, M.P.3
  • 9
    • 70349816927 scopus 로고    scopus 로고
    • Improved auxiliary mixture sampling for hierarchical models of non-Gaussian data
    • MR2565319
    • Frühwirth-Schnatter, S., Frühwirth, R., Held, L., and Rue, H. (2009). "Improved auxiliary mixture sampling for hierarchical models of non-Gaussian data." Statistics and Computing, 19: 479-492. MR2565319. doi: http://dx.doi.org/10.1007/s11222-008-9109-4
    • (2009) Statistics and Computing , vol.19 , pp. 479-492
    • Frühwirth-Schnatter, S.1    Frühwirth, R.2    Held, L.3    Rue, H.4
  • 10
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • Gelman, A. (2006). "Prior distributions for variance parameters in hierarchical models." Bayesian Analysis, 1: 515-533. doi: http://dx.doi.org/10.1214/06-BA107A. 996
    • (2006) Bayesian Analysis , vol.1 , pp. 515-533
    • Gelman, A.1
  • 11
    • 33745841370 scopus 로고    scopus 로고
    • Variational Bayesian multinomial probit regression
    • MR2230854
    • Girolami, M. and Rogers, S. (2006). "Variational Bayesian multinomial probit regression." Neural Computation, 18: 1790-1817. MR2230854. doi: http://dx.doi.org/ 10.1162/neco.2006.18.8.1790
    • (2006) Neural Computation , vol.18 , pp. 1790-1817
    • Girolami, M.1    Rogers, S.2
  • 13
    • 0042685161 scopus 로고    scopus 로고
    • Bayesian parameter estimation via variational methods
    • Jaakkola, T. S. and Jordan, M. I. (2000). "Bayesian parameter estimation via variational methods." Statistics and Computing, 10: 25-37. doi: http://dx.doi.org/10.1023/A:1008932416310
    • (2000) Statistics and Computing , vol.10 , pp. 25-37
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 14
    • 85162453650 scopus 로고    scopus 로고
    • Non-conjugate message passing for multinomial and binary regression
    • In: Shawe-Taylor, J., Zamel, R S., Bartlett, P., Pereira, F., and Weinberger, K. Q. (eds.)
    • Knowles, D. A. and Minka, T. P. (2011). "Non-conjugate message passing for multinomial and binary regression." In: Shawe-Taylor, J., Zamel, R. S., Bartlett, P., Pereira, F., and Weinberger, K. Q. (eds.), Advances in Neural Information Processing Systems 24, 1701-1709.
    • (2011) Advances in Neural Information Processing Systems , vol.24 , pp. 1701-1709
    • Knowles, D.A.1    Minka, T.P.2
  • 15
    • 84988052086 scopus 로고
    • Negative Binomial and mixed Poisson regression
    • MR0926553
    • Lawless, J. F. (1987). "Negative Binomial and mixed Poisson regression." Canadian Journal of Statistics, 15: 209-225. MR0926553. doi: http://dx.doi.org/10.2307/ 3314912
    • (1987) Canadian Journal of Statistics , vol.15 , pp. 209-225
    • Lawless, J.F.1
  • 16
    • 84979935813 scopus 로고    scopus 로고
    • A 30-year georeferenced global event database: The Global Database of Events
    • Language, and Tone (GDELT)." In: International Studies Association Conference. San Francisco, USA.
    • Leetaru, K. H. and Schrodt, P. A. (2013). "A 30-year georeferenced global event database: The Global Database of Events, Language, and Tone (GDELT)." In: International Studies Association Conference. San Francisco, USA.
    • (2013)
    • Leetaru, K.H.1    Schrodt, P.A.2
  • 17
    • 44849098150 scopus 로고    scopus 로고
    • On the asymptotics of penalized splines
    • MR2521591
    • Li, Y. and Ruppert, D. (2008). "On the asymptotics of penalized splines." Biometrika, 95: 415-436. MR2521591. doi: http://dx.doi.org/10.1093/biomet/asn010
    • (2008) Biometrika , vol.95 , pp. 415-436
    • Li, Y.1    Ruppert, D.2
  • 20
    • 78650533815 scopus 로고    scopus 로고
    • Non-standard semiparametric regression via BRugs
    • Marley, J. K. and Wand, M. P. (2010). "Non-standard semiparametric regression via BRugs." Journal of Statistical Software, 37: 1-30.
    • (2010) Journal of Statistical Software , vol.37 , pp. 1-30
    • Marley, J.K.1    Wand, M.P.2
  • 23
    • 0345978970 scopus 로고    scopus 로고
    • Expectation propagation for approximate Bayesian inference
    • In: Proceedings of Conference on Uncertainty in Artificial Intelligence
    • Minka, T. P. (2001). "Expectation propagation for approximate Bayesian inference." In: Proceedings of Conference on Uncertainty in Artificial Intelligence, 362-369.
    • (2001) , pp. 362-369
    • Minka, T.P.1
  • 24
    • 84979949433 scopus 로고    scopus 로고
    • High-dimensional, massive sample-size Cox proportional hazards regression for survival analysis
    • Mittal, S., Madigan, D., Burd, R. S., and Suchard, M. A. (2013). "High-dimensional, massive sample-size Cox proportional hazards regression for survival analysis." Biostatistics, 15: 287-294.
    • (2013) Biostatistics , vol.15 , pp. 287-294
    • Mittal, S.1    Madigan, D.2    Burd, R.S.3    Suchard, M.A.4
  • 25
    • 84972545853 scopus 로고
    • A statistical perspective on ill-posed inverse problems (with discussion)
    • O'Sullivan, F. (1986). "A statistical perspective on ill-posed inverse problems (with discussion)." Statistical Science, 1: 502-527.
    • (1986) Statistical Science , vol.1 , pp. 502-527
    • O'Sullivan, F.1
  • 26
    • 84907095419 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing
    • Vienna, Austria
    • R Development Core Team (2015). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
    • (2015) R Foundation for Statistical Computing
  • 27
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion)
    • Rue, H., Martino, S., and Chopin, N. (2009). "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion)." Journal of the Royal Statistical Society, Series B, 71: 319-392. doi: http://dx.doi.org/10.1111/j.1467-9868.2008.00700.x
    • (2009) Journal of the Royal Statistical Society, Series B , vol.71 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 28
    • 0012891890 scopus 로고    scopus 로고
    • New York: Cambridge University Press. MR1998720.
    • Ruppert, D., Wand, M. P., and Carroll, R. J. (2003). Semiparametric Regression. New York: Cambridge University Press. MR1998720. doi: http://dx.doi.org/10.1017/CBO9780511755453
    • (2003) Semiparametric Regression
    • Ruppert, D.1    Wand, M.P.2    Carroll, R.J.3
  • 29
    • 84884959104 scopus 로고    scopus 로고
    • Semiparametric regression during 2003-2007
    • MR2566186
    • Ruppert, D., Wand, M. P., and Carroll, R. J. (2009). "Semiparametric regression during 2003-2007." Electronic Journal of Statistics, 3: 1193-1256. MR2566186. doi: http://dx.doi.org/10.1214/09-EJS525
    • (2009) Electronic Journal of Statistics , vol.3 , pp. 1193-1256
    • Ruppert, D.1    Wand, M.P.2    Carroll, R.J.3
  • 31
    • 84878988007 scopus 로고    scopus 로고
    • Variational inference for generalized linear mixed models using partially noncentred parametrizations
    • MR3112404
    • Tan, L. S. L. and Nott, D. J. (2013). "Variational inference for generalized linear mixed models using partially noncentred parametrizations." Statistical Science, 28: 168-188. MR3112404. doi: http://dx.doi.org/10.1214/13-STS418
    • (2013) Statistical Science , vol.28 , pp. 168-188
    • Tan, L.S.L.1    Nott, D.J.2
  • 32
    • 0034018652 scopus 로고    scopus 로고
    • Negative binomial additive models
    • Thurston, S. W., Wand, M. P., and Weincke, J. K. (2000). "Negative binomial additive models." Biometrics, 56: 139-144. doi: http://dx.doi.org/10.1111/j.0006-341X.2000.00139.x
    • (2000) Biometrics , vol.56 , pp. 139-144
    • Thurston, S.W.1    Wand, M.P.2    Weincke, J.K.3
  • 33
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential families, and variational inference
    • Wainwright, M. J. and Jordan, M. I. (2008). "Graphical models, exponential families, and variational inference." Foundation and Trends in Machine Learning, 1: 1-305. doi: http://dx.doi.org/10.1561/2200000001
    • (2008) Foundation and Trends in Machine Learning , vol.1 , pp. 1-305
    • Wainwright, M.J.1    Jordan, M.I.2
  • 34
    • 84901597335 scopus 로고    scopus 로고
    • Fully simplified Multivariate Normal updates in non-conjugate variational message passing
    • Wand, M. P. (2014). "Fully simplified Multivariate Normal updates in non-conjugate variational message passing." Journal of Machine Learning Research, 15: 1351-1369.
    • (2014) Journal of Machine Learning Research , vol.15 , pp. 1351-1369
    • Wand, M.P.1
  • 35
    • 47249158963 scopus 로고    scopus 로고
    • On O'Sullivan penalised splines and semiparametric regression
    • MR2431193
    • Wand, M. P. and Ormerod, J. T. (2008). "On O'Sullivan penalised splines and semiparametric regression." Australian and New Zealand Journal of Statistics, 50: 179-198. MR2431193. doi: http://dx.doi.org/10.1111/j.1467-842X.2008.00507.x
    • (2008) Australian and New Zealand Journal of Statistics , vol.50 , pp. 179-198
    • Wand, M.P.1    Ormerod, J.T.2
  • 36
    • 84856958759 scopus 로고    scopus 로고
    • Mean field variational Bayes for elaborate distributions
    • MR2869967
    • Wand, M. P., Ormerod, J. T., Padoan, S. A., and Frühwirth, R. (2011). "Mean field variational Bayes for elaborate distributions." Bayesian Analysis, 6: 847-900. MR2869967. doi: http://dx.doi.org/10.1214/11-BA631
    • (2011) Bayesian Analysis , vol.6 , pp. 847-900
    • Wand, M.P.1    Ormerod, J.T.2    Padoan, S.A.3    Frühwirth, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.